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ABSTRACT Accurately describing and classifying driving style is crucial for driving safety intervention
strategies in the design of advanced driver assistance systems (ADASs). This paper presents a novel
driving style classification method based on constructed driving operational pictures (DOPs) which map
sequential data from naturalistic driving into 2-D pictures. By using the nested time window method,
798/1683/1153 DOPs sized 42 (features) × 60 (seconds) were generated for three different driving styles
(low-risk, moderate-risk, and high-risk), respectively. The three kinds of neural network algorithms, i.e.,
convolutional neural network (CNN), long short-term memory (LSTM) network, and pretrain-LSTM were
applied to recognize driving styles based on DOPs. The results showed that CNN performed the best with an
accuracy of 98.5%, better than the traditional support vector machine (SVM) method. This study provides a
new perspective to classify driving style which may help design ADASs operating characteristics to improve
driving comfort and safety.

INDEX TERMS Driving style, driving comfort and safety, driving operational pictures, neural network,
naturalistic driving.

I. INTRODUCTION
Driving style is defined as a set of individual driving habits
formed gradually with the accumulation of driving experi-
ence [1]. It significantly influences driving safety [2] and
fuel economy [3]. Knowledge about driving style can play an
important role in the design of advanced driver assistance sys-
tems (ADASs) [5], [6]. However, even the same driver may
exhibit different driving styles in different scenarios or the
same scenario at different times [7]. Therefore, characterizing
and determining drivers’ driving style is particularly chal-
lenging.

Driving style can be determined subjectively or objectively.
Among the subjective approaches, questionnaires/surveys
and expert assessment are the most widely accepted [8], [9].
The multidimensional driving style inventory (MDSI) is
a 44-item questionnaire for driving style evaluation [10],
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of which the questions are categorized according to the
four pre-defined driving styles, i.e., drivers’ reckless and
careless styles (11 items), anxious styles (19 items), angry
and hostile styles (5 items), and patient and careful styles
(9 items). MDSI was first applied in Israel and has been
widely employed in driving style classification research else-
where [11]–[13]. To improve the objectivity and directness
of the questionnaire, Hong et al. added the record of driving
violations as an evaluation criterion [14].

To avoid the reliability problems from drivers’ self-
reported answers, expert evaluation is an alternative sub-
jective method. Unfortunately, subjective consciousness still
exists and there is no uniform standard to guide consistent
expert judgments [15].

Although subjective evaluation can be effective for classi-
fying driving style, the method is excessively labor intensive
and requires experts to always be in the vehicle. This is
often not possible, especially if the intended sample size is
large or the focus is on higher level automation, where an
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expert evaluator often is not normally in the vehicle. There-
fore, finding alternative (objective) ways to estimate driving
style is desired.

Most of the reported objective efforts on driving style
classification were based on driver operation and vehicle
movement signals. Han et al. [7] evaluated driving styles
based on longitudinal speed and throttle opening. Xue et al.
[16] extracted features from acceleration, relative speed, and
relative distance from vehicle trajectory data for driving style
recognition. Suzdaleva and Nagy [1] found that fuel con-
sumption, vehicle speed, throttle position, and gear position
contributed to the recognition of drivers’ driving style. Eboli
et al. [14] used vehicle speed and accelerations to determine
drivers’ driving style by counting the number of data out
of the pre-defined safety domain. Besides these operational-
level signals, maneuver-level features also can be used for
driving style classification. Li et al. [17] found that driving
maneuver transitions could be used to classify driving style
with a higher accuracy than when using the event numbers
of those maneuvers. Bejani and Ghatee [18] divided driving
profile into four maneuvers and three time intervals and used
that information to estimate the risk level of driving behavior.

To classify driving style based on the above-mentioned
features, machine learning techniques show great potential.
Support vector machine (SVM) is a simple but effective
algorithm, which has been widely used and improved in
driving style classification tasks. Woo et al. [19] classified
driving style using SVM based on the extracted features from
vehicle movement variables, and found an average of 71.0%
for the evaluated F1-score. Wang et al. [20] employed a semi-
supervised SVM to model driving style into aggressive and
normal groups with an accuracy of 86.6%. Random forest
algorithm, one of the top two conventional classifiers demon-
strated by Fernández-Delgado et al. [21], is also reported
in [17] to successfully classify driving styles into three
groups with an accuracy of 93.0%. Also, algorithms based
on Bayes theorem have also been used in [7] to successfully
classify driving styles with a reported accuracy of 93.5%.
Besides these supervised learning algorithms, a typical unsu-
pervised learning method k-means was applied in [1] to label
the ground-truth of driving style into seven groups without
clearly describing the meaning of each group.

Within the last three years, newly developed neural net-
work methods such as the convolutional neural network
(CNN) and recurrent neural network (RNN) have been
widely used in classification tasks with satisfactory perfor-
mance [22]–[24]. However, none of the previous studies have
employed these advanced methods on driving style classi-
fication. If these advanced methods could be successfully
applied, it might significantly improve the adaptive design
of ADASs for drivers with different driving preferences [25],
[26]. Many of the previous studies assume that the driving
style of a driver is stable. However, as was noted earlier, driv-
ing style changes with the driving situations [5]. High-risk
drivers may drive cautiously when not being irritated, and
low-risk drivers could drive aggressively under high time

pressure to reach a destination. Therefore, person-based driv-
ing style classification may not be applicable for real-time or
quasi-real-time applications in vehicles.

To advance the state-of-the-art and overcome concerns
with previous methods, this paper innovatively proposes a
nested time window method to construct drivers’ quasi-real-
time driving operational pictures (DOPs), based on which
advanced machine learning techniques are used to classify
driving style. The developed DOPs describe driving style
from multiple aspects in the operational level (steering wheel
angle, vehicle speed, acceleration, etc.) by combining vari-
ous statistical functions. Advanced methods including CNN,
LSTM (long short-term memory), and pretrain-LSTM were
adopted to classify naturalistic driving data collected on high-
ways. The contributions of this presented approach include:

(1) The idea of using DOPs to classify driving style is
new. The DOPs make it intuitive to see the driving style
patterns, and the collection of features in a DOPwill be easier
for understanding and evaluation than when the features are
presented as tables of numerical data.

(2) We utilized CNN and LSTM to effectively classify
driving style based on the constructed DOPs. Although these
methodologies are not novel in the field of computer sci-
ence, this is the first application of them to driving style
classification.

(3) The proposed approach is applicable in the classifica-
tion of dynamically changing driving style. A timely recog-
nition of drivers’ driving style would provide supports on
adaptive strategies for driver assistance or intelligent driving
applications.

The remainder of this paper is organized as follows:
Section II clearly described the details about the naturalis-
tic driving experiment, the ground-truth labeling of driving
style, and the collected data. How the DOPs are constructed
based on the collected data is introduced in section III.
The employed advanced algorithms are briefly introduced
in section IV. Section V lists the evaluation criterion of the
examined algorithms. Section VI presents and discusses the
results.

II. NATURALISTIC DRIVING EXPERIMENT AND DATA
COLLECTION
To collect naturalistic driving data for driving style clas-
sification, 28 participants (18 males and 10 females) were
recruited to drive on the highway from Beijing to Xianghe,
a town in Hebei province in China. The age of the drivers
ranged from 27 to 59 years old with a mean of 42. They
had a mean driving experience of 13.0 years, ranging from
2 to 33. The round-trip distance was about 146 km with a
posted speed limit of 120 km/h. Six cameras were mounted
on the test vehicle to record drivers’ face images, operation
of the pedals, following time headway, front road scenes, and
left and right side scenes. See Figure 1. Six basic features
(BFs) from the CAN-bus were collected at 10 Hz, including
throttle pedal position (Thro), vehicle speed (Speed), brake
pedal position (Brake), steering wheel angle (SWA), lateral
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acceleration (LAcc), and yaw-rate (Yaw). Figure 2 presents a
brief overview of the collected BFs.

FIGURE 1. Collected camera images.

FIGURE 2. A brief overview of the collected BFs.

To provide a standard for comparison, three licensed driver,
experienced in rating driving behavior, rated the driving style
label of each subject using a three-point scale (1: low-risk,
2: moderate-risk, 3: high-risk). They all had been involved in
driving behavior analysis and related projects for more than
three years. Ratings were discussed and re-rated as necessary
to obtain a consistent estimate of the probability the driver
was going to be involved in a crash.When there was a conflict
between their subjective evaluations, themajority rating score
would be adopted as the final style label. If all the three ratings
were different, the corresponding data sample needed to be
re-checked and re-rated.

III. DRIVING OPERATIONAL PICTURE (DOP)
CONSTRUCTION
A nested time window method was developed to map the
collected operational level signals in a picture for driving style
classification. The DOP construction method was described
in detail in Figure 3. The nested time window included a
big time window (TB) and a small time window (TS ) slid-
ing in TB along with time. The big time window describes
drivers’ operational behavior in a relatively long period, while
the small time window reveals drivers’ transient operational
behavior. The selection of different time window length has

no influence on the following networks for driving style
classification, but will correspond to different classification
performance because the DOP quality will be affected by the
time window selection. In this study, the length of TB and TS
was set as 60 seconds and 2 seconds respectively according
to our experience. The time step of TS was set as half of TS ,
which means that the overlap between each two adjacent TS
was 1 second. Similarly, the time step of TB was set as half of
TB, i.e., 30 seconds.

The TS nested in TB was proposed to describe the driving
information in each TB. The information was described from
multiple aspects by seven statistical functions (SFs) including
mean, minimum, maximum, median, 25% percentile, 75%
percentile, and standard deviation. Therefore, a column vec-
tor sized 42 × 1 (6 BFs × 7 SFs) was generated for each
TS . Therefore, in each TB, there would be 60 (2 × TB

/
TS )

column vectors working together to map a complete DOP,
which means that the size of the DOP was 42×60. The pixel
of a DOP represented a specific SF of a certain BF during a
TS . All the features were normalized to eliminate the effect
of different feature dimensions in DOPs.

IV. NEURAL NETWORKS FOR DRIVING STYLE
CLASSIFICATION
In this paper, three advanced neural network algorithms
including convolutional neural network (CNN), long short-
term memory (LSTM) network, and pretrain-LSTM were
applied for driving style classification.

A. CONVOLUTIONAL NEURAL NETWORK (CNN)
CNN has been widely used in classification tasks based on
images [27]. Given the generated DOPs as inputs, CNN can
be trained for driving style classification. The developed
CNN architecture used in this study is shown in Figure 4.
The architecture includes two convolution-pooling layers and
a fully-connected layer. The size of the convolution kernel
was 42 × 5 while the size of the max-pooling kernel was
1 × 2 in the first convolution-pooling layer. The correspond-
ing sizes of the kernels were 1 × 3, 1 × 2 in the second
convolution-pooling layer. The following fully-connected
layer gave three outputs, which represented the three driving
styles to be categorized into. Based on the three outputs,
a softmax function [28] was used to calculate the classi-
fication probabilities into different driving styles. All the
activation function used in this network was rectified linear
units (ReLU).

B. LONG SHORT-TERM MEMORY (LSTM) NETWORK
Different from CNN, Recurrent Neural Network (RNN) was
designed to deal with time series problems. Long Short-Term
Memory (LSTM) [29] is one of themost advanced algorithms
developed based on RNN. As driving data is a typical time
sequence, LSTM was employed for driving style classifica-
tion in this study. An important improvement of LSTM is
displacing the repeating module of standard RNN with four
interacting layers, which are called ‘‘gates’’. The four layers
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FIGURE 3. The nested time window method for driving operational picture construction.

FIGURE 4. CNN architecture used for driving style classification.

are illustrated in Figure 5. Relying on the self-parameterized
controlling gates, the memory cell Ct is accessed, written
and cleared. It essentially acts as an accumulator of the state

information. Benefiting from the property of sigmod neural
net layer (σ ), the input information would be checked to
decide how much of them should be let through. See the
working functions in Equation (1). When the input gate
layer it is activated, the information of the new input will
be stored in the cell state. Meanwhile, the past cell state
Ct−1 could be ‘‘forgotten’’ in proportion by the opened for-
get gate layer. Therefore, the cell state Ct is updated by
‘‘forgetting’’ useless information and ‘‘remembering’’ new
information. Finally, the output is made up by the cell state
and the output of ot . Using the memory and gates to con-
trol information flow prevents the gradient from vanishing
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too quickly.

ft = σ (Wf · [ht−1, xt ]+ bf )

it = σ (Wi · [ht−1, xt ]+ bi)

C̃t = tanh(WC · [ht−1, xt ]+ bC )

Ct = ft × Ct−1 + it × C̃t
ot = σ (Wo · [ht−1, xt ]+ bo)

ht = ot × tanh(Ct ) (1)

where bf , bi, bC , bo are the biases, Wf ,Wi,WC ,Wo are the
weight matrixes, xt , ht are the inputted DOP and outputted
driving style.

FIGURE 5. The repeating module of LSTM.

C. PRETRAIN-LSTM
CNN creates new features through convolution operation.
These new features may work well on classification tasks
[30]. Thus, taking the outputs from the convolution-pooling
layer as the inputs of LSTM is feasible in practical. In this
paper, the convolution-pooling layers of pretrain-LSTMwere
the same as the CNN structure built above. The output of
the second convolution-pooling layer was re-shaped before
feeding into LSTM. Figure 6 illustrates how the pretrain-
LSTM works.

FIGURE 6. Working principle of pretrain-LSTM.

V. EVALUATION CRITERION
Table 1 presents the descriptions of the elements in the confu-
sion matrix on the classification of low-density samples. The
following terms were used to evaluate the performance of the
used methods:

1) True Positives (TP): The number of low-risk samples
that were classified into the correct driving style group (i.e.,
the low-risk group).

2) True Negatives (TN): The number of moderate- and
high-risk samples that were classified into the moderate-
or the high-risk group. TN = TN1 + TN2 + TN3 + TN4.

3) False Positives (FP): The number of moderate- and high-
risk samples that were classified into the low-risk group.
FP = FP 1 + FP2.

4) False Negatives (FN): The number of low-risk samples
that were classified into the moderate- or high-risk group.
FN = FN1 + FN2.

TABLE 1. Description on the elements in the confusion matrix on the
classification of low-risk samples.

To evaluate the performance of the employed advanced
methods based on DOPs, prevision, recall, and F1-score were
used. These indexes are commonly adopted andwell accepted
in classification tasks. See Equation (2) for their calculations.

Accuracy =
TP+ TN

TP+ TN + FP+ FN

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

Fβ − score = (1+ β2) ·
Precision · Recall(

β2 · Precision
)
+ Recall

(2)

where β = 1 is used in this study.
Based on the true positive rate (TPR = TP

/
(TP+ FN ))

and false positive rate (FPR = FP
/
(FP+ TN )) to describe

the probability of correct classification and the probability
of false alarm respectively, receiver operating characteristic
(ROC) curve was used to illustrate the relationship between
TPR and FPR. The ROC curve is also a commonly used
method to evaluate classifier performance. The more a curve
in the ROC space bends to the up-left corner, the better the
classification performance of the classifier is. To quantita-
tively describe the ROC curve, the machine learning commu-
nity usually employs the area under the curve (AUC) statistic
for model comparison. A higher AUC value indicates a closer
bending to the up-left corner of the ROC curve, which proves
better performance of the designed classifier.

VI. RESULTS AND DISCUSSION
In total, 3634DOPswere finally obtained from the 28 drivers’
naturalistic driving data on highways. Based on the subjective
evaluation on driving style, 798/1683/1153 DOPs were cate-
gorized into the risk groups (low, moderate, high). To verify
the effectiveness of the three neural network methods, 70%
of all the DOPs were randomly selected as the training set
and the remaining 30% were used as the test set. All these
methods were trained and tested on the same training and test
set to make fair comparisons.
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TABLE 2. Results on the training dataset.

TABLE 3. Results on the test dataset.

To compare the performance of employed neural networks
with other popular classification methods, SVM (support
vector machine) was adopted. Since a DOP contained 2520
(42 × 60) features but the number of training samples was
limited, it would cause overfitting problems when training
with SVM. Therefore, we used a feature selection method
based on conditional likelihood maximization to select the
top 10 features as inputs of the SVM classifier. Details of the
feature selection method can be found in [31].

A. CLASSIFICATION PERFORMANCE USING DIFFERENT
ALGORITHMS
Using DOPs as inputs of the three adopted methods and SVM
on the training set, the corresponding accuracies were calcu-
lated. See Table 2 for the classification results on the training
set. All the classifiers achieved satisfactory performance with
accuracies greater than 96% and almost all precisions, recalls,
and F1-scores were greater than 90%. However, on the test
set, the performance of pretrain-LSTM was far from sat-
isfactory. The classification accuracy was only 47.5%. See
Table 3 for the classification results on the test set. Among
the three networks, CNN did the best on classification with
the test accuracy of 98.5%. LSTM ranked the second with
an accuracy of 95.7%, following by SVM with an accuracy
of 92.2%.

The confusion matrix of the three neural networks and
SVM is shown in Table 4. It is clearly shown that only
16 low-risk samples were misclassified as moderate-risk by
CNN. LSTMmisclassified 46 low-risk samples as moderate-
risk, accounting for 18.3% of all the tested low-risk sam-
ples. For the pretrain-LSTM method, the majority of real
low-risk (204 out of 251) and high-risk (314 out of 347)
samples were misclassified as moderate-risk. Therefore, the
precision, recall, and F1-score were 4.0%, 18.7%, and 6.5%

TABLE 4. Confusion matrix on the test dataset.

for the low-risk group, respectively. These three numbers
were 100%, 9.5%, and 17.4% for the high-risk group using
pretrain-LSTM, respectively. SVM misclassified 85 DOPs
among the three style groups, accounting for 7.8% of the
test set.

Figure 7 illustrates the ROC curves of the four employed
methods on the test set. The AUCs for the macro-average
ROC curves were 0.97, 0.94, 0.49, and 0.94 for CNN, LSTM,
pretrain-LSTM, and SVM, respectively. For high-risk sam-
ples, the AUC was 1.00 using either CNN or LSTM. The
two numbers on low-risk samples were 0.93 and 0.86 for
CNN and LSTM, respectively. However, none of the AUC
values was greater than 0.5 when using pretrain-LSTM. In
summary, it can be clearly distinguished from Figure 7 that
CNN performed the best and pretrain-LSTM was the worst.
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FIGURE 7. ROC curves of the neural network algorithms and SVM (The macro-average ROC computes the matrix
independently for each group and then take the average (hence treating all groups equally), whereas the micro-average ROC
aggregates the contributions of all groups to compute the average.).

FIGURE 8. DOP example and the corresponding histogram for low-risk, moderate-risk, and high-risk driving styles.

Figure 8 illustrates DOP examples for the low-, moderate-,
and high-risk driving styles. A warmer color indicates a
higher value of the corresponding ‘pixel’ after regularization,
and a colder color indicates a lower value. The DOPs show

that driving style of higher risk usually correlates with faster
speed and frequent operations on vehicles’ lateral movement.
Statistically significant differences (p < 0.001) were found
on all the 42 features among the style groups, which indicates
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FIGURE 9. The outputs from the second convolution-pooling layer and their histograms.

that the driving operations of drivers with different driving
styles greatly differed from each other. Therefore, design of
ADASs and intelligent vehicles should take this difference
between drivers seriously for the improvement on driving
comfort and safety.

Compared with driving style classification performance
in previous studies, the classification accuracies of driving
style varied from 71.0% to 93.5% when using operational
level variables as inputs of classifiers [1], [19], [20]. When
using maneuver transition probabilities as classifier inputs,
the reported classification accuracy was 93.0% in [17]. In this
study, the classification accuracy was 98.5% on the test set
when using the developed DOPs as inputs, better than when
using the traditional operational variables or maneuver tran-
sition features.

B. MISCLASSIFICATION BETWEEN LOW-RISK AND
MODERATE-RISK DOPS
The presented results clearly show that misclassifying low-
risk driving style as moderate-risk is the main classification
error of either CNN or LSTM. The factors leading to this
error may be attributed to: (1) The subjective evaluation of
driving style (the ground truth) is based on replayed videos
as illustrated in Figure 1, and the experts lack the feeling of
the real immersed longitudinal and lateral movements experi-
enced by participants. Therefore, the ground-truth style label
for a real low- or moderate-risk sample may be mislabeled.
(2) Low- and moderate-risk driving perform similarly, which
is difficult to be distinguished, even for experienced experts.
However, high-risk driving usually has obvious aggressive
operations like fast approaching and sharp lane changing
which is easy to be distinguished even from videos.

C. OVERFITTING OF PRETRAIN-LSTM
As for the overfitting problems of the pretrain-LSTMmethod,
the inputs of LSTM are the outputs from the second

convolution-pooling layer. As shown in Figure 9, there is
no obvious distinction between the pictures from different
driving style groups, which is different from the qualitative
presentation in Figure 8. This is because CNN disintegrates
the time sequence relationship in the original DOP by con-
volution and pooling, which brings too much noise in the
inputs of the following LSTM. As LSTM is good at dealing
with time sequence problems, the collapsed time sequence
relationship and the included noise in the outputs from the
convolution-pooling layers lead to the failure of the pretrain-
LSTM network.

D. CLASSIFICATION PERFORMANCE OF CNN ON
DIFFERENT DRIVERS
We also examined the performance of CNN on different
drivers using the leave-one-subject-out method. The DOPs
from one driver were selected as the test set, and the DOPs
from all the other drivers were combined as the training set.
Among the classification results on the 28 drivers, the DOPs
from 17 drivers were classified with an accuracy higher than
98%, but the DOPs from another 6 drivers were classified
with an accuracy lower than 70%. This probably may be
caused by the subjective evaluation error. Therefore, subjec-
tive evaluation from more experts should be used to establish
a more reliable ground truth in future efforts. In addition,
to alleviate the lack of real immersed feeling of vehicle
movements from videos, at least some of the expert ratings
should be collected onsite in the test vehicle in future efforts.

VII. CONCLUSION
This paper proposes an innovative and effective approach
to classify driving style based on constructed driving opera-
tional pictures (DOPs) using advanced neural networks. This
work extends previous efforts on driving style estimation
from post-driving person-based or trip-based classification
to quasi-real-time dynamic classification. The application of
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convolutional neural network (CNN) based on constructed
DOPs performs to be the best among the examined networks.
The innovatively developed DOP method could be further
expanded (e.g., picture dimension expansion by including
more features) and applied in driving related studies by com-
bining the state-of-the-art deep learning approaches. Future
efforts should focus on the following aspects: (1) Subjective
evaluations from experts in the test vehicle are needed to
establish a more reliable ground truth. (2) The classification
performance when using nested time windows with different
lengths needs to be examined to find the optimal combination.
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