
Received June 13, 2019, accepted June 27, 2019, date of publication July 3, 2019, date of current version July 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2926541

Dynamics of Rogue Waves for a Generalized
Inhomogeneous Third-Order Nonlinear
Schrödinger Equation From the Heisenberg
Ferromagnetic System
NI SONG AND HUI XUE
Department of Mathematics, School of Science, North University of China, Taiyuan 030051, China

Corresponding author: Ni Song (songni@nuc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NNSFC) under Grant 11602232, in part by the
Shanxi Natural Science Foundation (SNSF) under Grant 201801D221040 and Grant 201801D121158, and in part by the Fund for Shanxi
under Grant 1331KIRT.

ABSTRACT In this paper, dynamics of the higher-order rogue waves for a generalized inhomogeneous
third-order nonlinear Schrödinger equation is investigated by using the generalized Darboux transformation.
Based on the Lax pair, the first-order to the third-order rogue wave solutions are derived through algebraic
iteration starting from a seed solution. Nonlinear dynamical properties of rogue waves are analyzed on the
basis of 3-D plots and density profiles. The new arrangement of the higher-order rogue waves is obtained.
It is helpful to study the phenomenon of rogue waves in the Heisenberg ferromagnetic system.

INDEX TERMS Generalized Darboux transformation, Heisenberg ferromagnetic system, rogue waves,
third-order nonlinear Schrödinger equation.

I. INTRODUCTION
Rogue waves, originated from the ocean dynamics, are short-
peakwaves with large amplitude above several tens ofmeters,
which rise from the surrounding waves and have little rela-
tionship with the neighboring ones. They exist for a short
time and disappear very quickly. Since Draper came up
with the concept of rogue waves for the first time in 1965
[1], research on them has attracted considerable attention
in various fields including the hydrodynamic surface [2],
nonlinear fiber optics [3], Bose-Einstein condensates [4],
atmospheric dynamics [5], plasma [6], capillary waves [7]
and even finance [8]. Rogue waves are widely distributed
in different sea areas of the world, which are very harmful
to oil platforms, ship navigation, deep-sea fisheries and so
on. It is dangerous and difficult to explore rogue waves in
the ocean. The study on rogue waves, a hot topic in non-
linear fields, mainly focuses on the theoretical analysis [9],
[10]. Nonlinear partial differential equations can be used to
describe rogue waves. One of the most important models is
nonlinear Schrödinger equation [11], [12]. In addition, Hirota
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equation [13], Sasa-Satsuma equation [14], Gross-Pitaevskii
equation [15], Hirota-LPD equation [16], Hirota Maxwell-
Bloch equation [17] and Fokas-Lenells [18] also play an
important role in the study of rogue waves.

In recent years, many researchers have been studying non-
linear Schrödinger equation and made much progress. The
generalized Darboux transformation (DT) [19] was proposed,
which is an important tool to solve nonlinear Schrödinger
equation. Song et al. constructed the higher-order rogue
wave solutions for the inhomogeneous fourth-order nonlin-
ear Schrödinger equation by using the generalized DT [20].
Chen et al. obtained the higher-order rational solutions and
rogue wave solutions for a (2+1)-dimensional nonlinear
Schrödinger equation [21]. Jia and Guo established the gen-
eralized N -fold DT and investigated the breathers and rogue
waves for the nonlinear Schrödinger-Maxwell-Bloch equa-
tion [22]. Furthermore, Su et al. presented the generalized DT
and rogue wave solutions for a generalized AB system [23].
Huang derived rational solitary wave and rogue wave solu-
tions in coupled defocusing Hirota equation [24]. Yu et al.
investigated localized analytical solutions and soliton stabil-
ity for a nonlinear Gross-Pitaevskii equation with external
potentials [25], [15].
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Inspired by the pioneers’ works, a generalized inhomo-
geneous third-order nonlinear Schrödinger equation will be
discussed [26]

iψt + iεψxxx + 6iε|ψ |2ψx + (fψ)xx − i(hψ)x

+ 2ψ
(
f |ψ |2 +

∫ x

−∞

fx |ψ |2ds
)
= 0, (1)

whereψ(x, t) is a complex function with respect to the spatial
coordinate x and the scaled time t . f and h represent the
variation of the bilinear and biquadratic exchange interactions
at different sites along the spin chain and

f = f1x + f2, h = h1x + h2, (2)

fi, hi (i = 1, 2) are real constants. ε is a small perturba-
tion parameter. As for (1), it comes from the deformation
of the Heisenberg ferromagnetic system by using prolonga-
tion structure theory in Minkowski space. With the help of
the Hasimoto transformation, geometric equivalence relation
is established between modified Heisenberg ferromagnetic
spin chain equation and nonlinear Schrödinger equation in
the [26]. In physics, ferromagnetic system plays a key role
in information technology [27], [28] and nonlinear waves
propagation [29]–[31]. There are many research results
about Heisenberg ferromagnetic system [32]–[34]. However,
little research about the rogue waves of (1) is reported in the
existing literature. Therefore, it is expected to obtain some
novel and different results to enrich the studies of rogue
waves.

In the paper, the generalized DT is established for an
inhomogeneous third-order nonlinear Schrödinger equation.
The N th-order rogue wave solutions are obtained in terms of
a recursive formula. Starting from a seed solution, the first-
order to the third-order rogue wave solutions are derived.
Numerical simulations are carried out and dynamical char-
acteristics are analyzed by selecting different parameters.

II. GENERALIZED DARBOUX TRANSFORMATION
In this section, we start from the 2× 2 Lax pair ensuring the
integrability of (1), which is given as follows

8x = U8 =
(
−iλ ψ

−ψ∗ iλ

)
8, (3)

8t = V8 =
(

A B
−B∗ −A

)
8, (4)

where

A = 2iελ|ψ |2 − ε(ψ∗ψx − ψψ∗x )− 4iελ3 − 2if λ2 (5)

+ i
(
f |ψ |2 +

∫ x

−∞

fx |ψ |2ds
)
− ihλ,

B = −2ε|ψ |2ψ + 4ελ2ψ + 2iελψx − εψxx + i(fψ)x
+ 2f λψ + hψ. (6)

8 = (ϕ, φ)T is an eigenfunction of the Lax pair, λ is a spectral
parameter and the asterisk denotes the complex conjugation.

Basing on the procedure of DT for AKNS system in the
reference [35], we can introduce aDarbouxmatrix T to satisfy

8[1] = T8. (7)

Assume the Darboux matrix T meets the following
condition

T = λI − S, S = H3H−1, (8)

where

I =
(
1 0
0 1

)
, H=

(
ϕ1 φ∗1
φ1 −ϕ∗1

)
, 3=

(
λ1 0
0 λ∗1

)
. (9)

Let 81 = (ϕ1, φ1)T be an eigenfunction of the Lax pair
with a seed solution ψ = ψ[0] and λ = λ1. If different λ =
λk correspond to different eigenfunctions, the classical DT
can be iterated successfully

λ= λk , 8k= (ϕk , φk )T (j=1, 2, . . . ,N ), (10)

8N [N − 1] = T [N − 1]T [N − 2] · · · T [1]T [0]8N , (11)

ψ[N ] = ψ[0]− 2i
N∑
k=1

(λ1 − λ∗1)

×
ϕk [k − 1]φ∗k [k − 1]

|ϕk [k − 1]|2 + |φk [k − 1]|2
, (12)

T [k] = λk+1I − H [k − 1]3[k]H [k − 1]−1, (13)

where

H [k − 1] =
(
ϕk [k − 1] φ∗k [k − 1]
φk [k − 1] −ϕ∗k [k − 1]

)
, (14)

3[k] =
(
λk 0
0 λ∗k

)
, (15)

8k [k−1] = (T [k−1]T [k−2] · · · T [1]T [0])|λ=λk8k . (16)

According to the above DT, the generalized DT of (1) is
presented.

Taking the initial value in the following form

81[0] = (ϕ1[0], φ1[0])T = (ϕ1, φ1)T = 81, (17)

we assume that 9 = 81(λ1, η) is a special solution of Lax
pair at λ = λ1, η is a small parameter. Using Maple, we can
expand 9 into the Taylor series at η = 0

9=8
[0]
1 +8

[1]
1 η+8

[2]
1 η

2
+ · · · +8

[m]
1 ηm + o(ηm), (18)

where

8
[j]
1 =

1
j!
∂ j

∂λj
81(λ)|λ=λ1 (j = 1, 2, . . . ,m). (19)

It is easily verified that8[0]
1 = 81[0] is the special solution

of Lax pair with a seed solution ψ = ψ[0] and λ = λ1.
Hence, the zero-order generalized DT of (1) is defined as
follows

ψ[1] = ψ[0]− 2i(λ1 − λ∗1)
ϕ1[0]φ∗1 [0]

|ϕ1[0]|2 + |φ1[0]|2
. (20)
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Basing on the above process, the limit is calculated

81[1] = lim
η→0

[T [1]|λ=λ1+η]9
η

= lim
η→0

[η + T [1]|λ=λ1 ]9
η

= 8
[0]
1 + T1[1](λ1)8

[1]
1 . (21)

Then, we derive the first-order generalized DT by iterating
the zero-order one

ψ[2] = ψ[1]− 2i(λ1 − λ∗1)
ϕ1[1]φ∗1 [1]

|ϕ1[1]|2 + |φ1[1]|2
. (22)

Further, the (N − 1)th-order generalized DT can be obtained

81[N−1]=8
[0]
1 +

[
N−1∑
l=1

T1[l]

]
8

[1]
1

+

[
N−1∑
l=1

N−1∑
k>l

T1[k]T1[l]

]
8

[2]
1 + · · ·

+ [T1[N−1]T1[N−2] · · · T1[1]]8
[N−1]
1 , (23)

ψ[N ] = ψ[N − 1]

− 2i(λ1 − λ∗1)
ϕ1[N − 1]φ∗1 [N − 1]

|ϕ1[N − 1]|2 + |φ1[N − 1]|2
,

(24)

T1[k] = λ1I − H1[k − 1]3[1]H1[k − 1]−1, (25)

where

H1[k − 1] =
(
ϕ1[k − 1] φ∗1 [k − 1]
φ1[k − 1] −ϕ∗1 [k − 1]

)
, (26)

81[k − 1] =
(
ϕ1[k − 1]
φ1[k − 1]

)
. (27)

From the above discussion, we gain the (N − 1)th-order
generalized DT, which is convenient to establish rogue wave
solutions of (1) in the next section.

III. ROGUE WAVE SOLUTIONS
For the sake of simplicity, we assume that f = 1, h = 1

6 ,
which are independent of spatial coordinate x.

Starting with a seed solution ψ[0] = aeiθ , θ = kx +
ωt , a and k are real constants and ω satisfies the nonlinear
dispersion relation

ω = εk3 − fk2 − 6εa2k + 2a2f + hk. (28)

The corresponding eigenfunction 81(η) of the Lax pair for
linear spectral problem at λ = k

2 − ia+ η
2 is

81(η) =

(
(C1eρ + C2e−ρ)e

iθ
2

(C2eρ + C1e−ρ)e−
iθ
2

)
, (29)

where

C1 =

√
−µ+

ik
2
+ iλ, C2 =

√
µ+

ik
2
+ iλ, (30)

ρ = µ(x + δt +�(η)), (31)

�(η) =
N∑
j=1

(aj + ibj)η2j (aj, bj ∈ R), (32)

δ=−2εa2+4ελ2−2ελk+εk2−fk+2f λ+ h, (33)

δ is a small parameter and �(η) is the separating function.
Let a = 1, k = 0, the function81(η) is expanded as Taylor

series at η = 0

81(η) = 8
[0]
1 +8

[1]
1 η

2
+8

[2]
1 η

4
+8

[3]
1 η

6

+ · · · +8
[m]
1 η2m + · · · , (34)

where

8
[0]
1 =

(
ϕ
[0]
1
φ
[0]
1

)
, 8

[1]
1 =

(
ϕ
[1]
1
φ
[1]
1

)
, 8

[2]
1 =

(
ϕ
[2]
1
φ
[2]
1

)
, · · · .

(35)

Making use of Maple, we obtain corresponding coefficients
of Taylor expansion

ϕ
[0]
1 = 2

√
ae

iθ
2 , φ

[0]
1 = 2

√
ae−

iθ
2 , (36)

ϕ
[1]
1 =

1
√
a
(
1
18
i(1296a6ε2t2 + 864ia5εt2 − 144a4t2

− 72a4εt2 − 432a4εtx − 24ia3t2 − 144ia3tx

+ a2t2 + 12a2tx + 36a2x2 + 216a3εt + 72ia2t

− 6ta− 36ax + 9))e
iθ
2 , (37)

φ
[1]
1 =

1
√
a
(
1
18
i(1296a6ε2t2 + 864ia5εt2 − 144a4t2

− 72a4εt2 − 432a4εtx − 24ia3t2 − 144ia3tx

+ a2t2 + 12a2tx + 36a2x2 − 216a3εt − 72ia2t

+ 6ta+ 36ax + 9))e−
iθ
2 . (38)

ϕ
[2]
1 and φ[2]1 are given in the Appendix A.
We expect to construct rogue wave solutions using the

(N − 1)th-order iterative formulas and coefficients of Taylor
expansion.

A. FIRST-ORDER ROGUE WAVE SOLUTION
Actually, it could be easily verified that 8[0]

1 is the solution
of Lax pair with a seed solution ψ[0] = eiθ and λ = −i.
Substituting 8[0]

1 , ψ[0] = eiθ and λ = −i into (20), we can
obtain a trival solution ψ[1] of (1)

ψ[1] = −eiθ , T1[1] =
(
−i ieiθ

ie−iθ −i

)
. (39)

Then we work out the following limit

81[1] = lim
η→0

[T [1]|λ=λ1+η]9
η

= lim
η→0

[η + T [1]|λ=λ1 ]9
η

= 8
[0]
1 + T1[1](λ1)8

[1]
1 , (40)

the first-order rogue wave solution of (1) is obtained

ψ[2] = ψ[1]− 2i(λ1 − λ∗1)
ϕ1[1]φ∗1 [1]

|ϕ1[1]|2 + |φ1[1]|2

=

(
F
G

)
eiθ , (41)
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where

F = 1296ε2t2 − 72εt2 − 432εtx − 144it + 145t2

+ 12tx + 36x2 − 27, (42)

G = 1296ε2t2 − 72εt2 − 432εtx + 145t2 + 12tx

+ 36x2 + 9, (43)

ϕ1[1] =
2
3

√
a(36a3εt + 12ia2t − ta− 6ax + 3)e

iθ
2 , (44)

φ1[1]=−
2
3

√
a(36a3εt+12ia2t−ta−6ax−3)e−

iθ
2 . (45)

There is merely a free parameter ε in the first-order rogue
wave solution. Setting ε = 0, equation (1) is changed into
nonlinear Schrödinger equation with the first partial deriva-
tive term. Three-dimensional plot and density profile are
shown in Figure 1. It is the fundamental form of the first-order
rogue wave. The maximum amplitude is 3, which occurs at
t = 0, x = 0. The amplitude suddenly increases at the center
and quickly disappears. In Figure 2, we have ε = 0.1. There is
a little incline as the small perturbation parameter ε changes,
which has no influence on the structure of rogue waves. In
the following discussion, we could assume ε = 0.

FIGURE 1. The first-order rogue wave with ε = 0.

B. SECOND-ORDER ROGUE WAVE SOLUTION
Putting more attention on the limitation

81[2] = lim
η→0

[η + T [2]|λ=λ1 ][η + T [1]|λ=λ1 ]9
η2

= 8
[0]
1 + (T1[2](λ1)+ T1[1](λ1))8

[1]
1

+T1[2](λ1)T1[1](λ1)8
[2]
1 , (46)

FIGURE 2. The first-order rogue wave with ε = 0.1.

FIGURE 3. The second-order rogue wave with a1 = b1 = 0.

where

81[2] =
(
ϕ1[2]
φ1[2]

)
. (47)

T1[2] is worked out by Maple. ϕ1[2] and φ1[2] are presented
in the Appendix B. Further, the second-order rogue wave
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FIGURE 4. The second-order rogue wave with a1 = b1 = 20.

FIGURE 5. The second-order rogue wave with a1 = b1 = 200.

solution of (1) can be obtained

ψ[3] = ψ[2]− 4
ϕ1[2]φ∗1 [2]

|ϕ1[2]|2 + |φ1[2]|2
. (48)

FIGURE 6. The third-order rogue wave with a1 = a2 = 0, b1 = b2 = 0.

FIGURE 7. The third-order rogue wave with a1 = a2 = 60, b1 = b2 = 0.

There are three parameters ε, a1 and b1 in the solu-
tion ψ[3]. When the parameters a1 = b1 = 0, the plots of the
solution ψ[3] are exhibited in Figure 3. It is the fundamental
pattern of the second-order rogue wave and the maximum
amplitude of |ψ[3]| is 5. A bigger rogue wave lies in the
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FIGURE 8. The third-order rogue wave with a1 = a2 = 0, b1 = 0, b2 = 80.

center and four smaller ones are distributed symmetrically on
both sides.

Then, we will put the separating function into considera-
tion. Suppose a1 = b1 = 20, three-dimensional plot and
density profile are illustrated in Figure 4. It is shown that
the second-order rogue waves are divided into three first-
order ones, which have a structure of an isosceles triangle.
Increasing the values a1 = b1 = 200, the corresponding
plots of ψ[3] are displayed in Figure 5. Clearly, three first-
order rogue waves are separated completely.

C. THIRD-ORDER ROGUE WAVE SOLUTION
Taking the following limit into account

81[3]= lim
η→0

[η+T [3]|λ=λ1 ][η+T [2]|λ=λ1 ][η+T [1]|λ=λ1 ]9
η3

= 8
[0]
1 + (T1[3](λ1)+ T1[2](λ1)+ T1[1](λ1))8

[1]
1

+ (T1[2](λ1)T1[1](λ1)+ T1[3](λ1)T1[1](λ1)

+T1[3](λ1)T1[2](λ1))8
[2]
1

+T1[3](λ1)T1[2](λ1)T1[1](λ1)8
[3]
1 , (49)

where T1[3] and 81[3] can be calculated by Maple, which
are neglected because of their cumbersome forms. Hence,
the third-order rogue wave solution is derived

ψ[4] = ψ[3]− 4
ϕ1[3]φ∗1 [3]

|ϕ1[3]|2 + |φ1[3]|2
. (50)

There are five free parameters ε, a1, b1, a2, and b2 in the
solution ψ[4]. Suppose the parameters a1 = a2 = 0 and
b1 = b2 = 0, three-dimensional plot and density profile are

FIGURE 9. The third-order rogue wave with a1 = a2 = 0, b1 = 0,
b2 = 200.

displayed in Figure 6. It is a fundamental pattern of the third-
order rogue wave and the maximum amplitude is 7.

Changing the parameters as a1 = a2 = 60, three-
dimensional plot and density profile are depicted in Figure 7.
It is observed that the third-order rogue wave are made up
of six first-order rogue waves, which form an equilateral
triangle.

Assuming a1 = a2 = 0, b1 = 0 and b2 = 80,
the corresponding plots are shown in Figure 8. The six first-
order rogue waves array an isosceles triangle. Furthermore,
adjusting the parameter b2 = 200 and other parameters
being the same, three-dimensional plot and density profile
are illustrated in Figure 9. It is clear that six first-order rogue
waves are arranged in pairs and have a form of ‘‘W’’. A pair
of them is in the center, other two pairs are symmetrically
distributed on both sides.

Setting a1 = 0, a2 = 200 and b1 = b2 = 0, three-
dimensional plot and density profile are demonstrated in Fig-
ure 10. It can be seen that different configuration of rogue
waves appears, which has a ring structure with six peaks.

It is remarkable to note that Figure 9 is a new structure
of the third-order rogue waves, which enrich the studies of
the nonlinear Schrödinger equation. It is guessed that there
are more novel structures of the higher-order rogue wave
solution.

IV. CONCLUSIONS
In this paper, we investigated the higher-order rogue
waves of a generalized inhomogeneous third-order nonlinear
Schrödinger equation. Based on the classical DT, the general-
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FIGURE 10. The third-order rogue wave with a1 = 0, a2 = 200,

b1 = b2 = 0.

ized DT is deduced by using Taylor expansion and limit pro-
cedures. The first-order to the third-order rogue wave solu-
tions are constructed through the algebraic iteration starting
from a seed solution. Nonlinear dynamic behaviors of rogue
waves are analyzed with numerical simulations. We hope the
results will be useful to come up with new ideas in nonlinear
optics theory, experiment and engineering application.

APPENDIX A

ϕ
[2]
1 = (−

1
3888

1
a3/2

(−243+ 19440ia2t − 9072ia3t2

+ 7776ia2a1 − 194400a4εtx − 15552a6εt2x2

− 31104a6εtx3 + 15552a5εt2x + 46656a5εtx2

− 93312a5εtb1 − 15552ia3xa1 + 373248a8εt3x

−1119744a10ε3t3x+93312a8ε2t3x+279936a8ε2t2x2

− 279936a7ε2t2x − 2592a6εt3x + 2239488ia11ε3t4

− 186624ia9ε2t4 − 2592ia3ta1 − 54432ia3tx

− 31104ia4tb1 + 15552ia4tx2 + 5184ia4t2x

+ 575424ia5εt2 − 324ta− 186624ia6εt2x

+ 93312ia5εta1 − 864ia5t3x − 248832ia9εt4

+ 559872ia8ε2t3+20736a8t4+5184a5t3−864a6t4

+ 1296a4x4 − 12a3t3 − 2592a3x3 − 7776a2b1
− 85536a4t2 + 162a2t2 + 5832a2x2 − 1944ax

+ a4t4 + 5184ia7εt4 + 41472ia7t3x − 31104ia6εt3

− 5184ia5t2x2 + 432ia4t3 + 186624ia7εt2x2

+ 62208ia7εt3x − 1119744ia9ε2t3x − 48ia5t4

− 20736ia6t3 + 6912ia7t4 − 10368ia5tx3

+ 7776a8ε2t4 − 144a6εt4 − 46656a7ε2t3

+ 24a4t3x + 559872a9ε3t3 + 1296a5εt3

+ 1679616a12ε4t4 + 864a4tx3 + 216a4t2x2

−186624a10ε3t4−216a3t2x−1296a3tx2+2592a3tb1
+ 15552a3xb1 − 1119744a10ε2t4 − 186624a7εt3

+ 62208a8εt4 + 31104a5t2x − 10368a6t3x

− 31104a6t2x2 − 31104a4ta1 + 1944a2tx

+ 956448a6ε2t2 − 32400a4εt2 + 73872a3εt))e
iθ
2 ,

φ
[2]
1 = (−

1
3888

1
a3/2

(−243− 19440ia2t − 9072ia3t2

− 7776ia2a1 − 194400a4εtx − 15552a6εt2x2

− 31104a6εtx3 − 15552a5εt2x − 46656a5εtx2

− 93312a5εtb1 − 15552ia3xa1 + 373248a8εt3x

−1119744a10ε3t3x+93312a8ε2t3x+279936a8ε2t2x2

+ 279936a7ε2t2x − 2592a6εt3x + 2239488ia11ε3t4

− 186624ia9ε2t4 − 2592ia3ta1 − 54432ia3tx

− 31104ia4tb1 − 15552ia4tx2 − 5184ia4t2x

+ 575424ia5εt2 + 324ta+ 186624ia6εt2x

+ 93312ia5εta1
− 864ia5t3x − 248832ia9εt4 − 559872ia8ε2t3

+20736a8t4−5184a5t3−864a6t4+1296a4x4+12a3t3

+ 2592a3x3 + 7776a2b1 − 85536a4t2 + 162a2t2

+ 5832a2x2 + 1944ax + a4t4 + 5184ia7εt4

+ 41472ia7t3x + 31104ia6εt3 − 5184ia5t2x2

− 432ia4t3 + 186624ia7εt2x2 + 62208ia7εt3x

− 1119744ia9ε2t3x − 48ia5t4 + 20736ia6t3

+ 6912ia7t4−10368ia5tx3+7776a8ε2t4−144a6εt4

+ 46656a7ε2t3+24a4t3x−559872a9ε3t3−1296a5εt3

+ 1679616a12ε4t4 + 864a4tx3 + 216a4t2x2

− 186624a10ε3t4

+ 216a3t2x+1296a3tx2 + 2592a3tb1 + 15552a3xb1
−1119744a10ε2t4+186624a7εt3+62208a8εt4

− 31104a5t2x − 10368a6t3x − 31104a6t2x2

− 31104a4ta1
+ 1944a2tx + 956448a6ε2t2 − 32400a4εt2

− 73872a3εt))e−
iθ
2 .

APPENDIX B

ϕ1[2]

=
2
27

1
1

√
a(243− 11664ia5εta1 + 93312ia7εt2x2

+ 31104ia7εt3x − 3456ia7t4 + 20736ia6t3

− 24ia5t4 − 559872ia9ε2t3x − 5184ia5tx3

− 2592ia5t2x2 + a4t4 − 2592a5t3 − 20736a8t4
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− 972ax + 1296a4x4 − 972a2b1 − 6a3t3

− 1296a3x3 − 7776a4t2 − 162ta+ 2592ia7εt4

+ 23328a5εtx2 + 15552a4εtx − 2592a6εt3x

− 15552a6εt2x2 + 93312a8ε2t3x + 279936a8ε2t2x2

− 1119744a10ε3t3x − 31104a6εtx3 + 11664a5εtb1
− 139968a7ε2t2x + 7776a5εt2x − 20736ia7t3x

− 432ia5t3x + 93312a7εt3 − 186624a10ε3t4

+ 864a4tx3 − 93312a6ε2t2 − 144a6εt4

+ 648a5εt3−324a3tb1 − 3888a4ta1+1679616a12ε4t4

+ 279936a9ε3t3 + 2592a4εt2 + 13608a3εt

+ 216a4t2x2 − 23328a7ε2t3 + 24a4t3x + 7776a8ε2t4

− 15552a5t2x − 1944a3xb1 − 648a3tx2 − 108a3t2x

+ 648ia3t2 + 3888ia2t + 7776ia5εt2 − 3888ia4tb1
+ 3888ia3tx + 324ia3ta1 + 1944ia3xa1
+ 1119744ia11ε3t4 − 93312ia9ε2t4 + 124416ia9εt4

+ 972ia2a1)e
iθ
2 ,

φ1[2]

=
2
27

1
1

√
a(243− 11664ia5εta1 + 93312ia7εt2x2

+ 31104ia7εt3x − 3456ia7t4 − 20736ia6t3

− 24ia5t4 − 559872ia9ε2t3x − 5184ia5tx3

− 2592ia5t2x2 + a4t4 + 2592a5t3 − 20736a8t4

+ 972ax + 1296a4x4 + 972a2b1 + 6a3t3

+ 1296a3x3 − 7776a4t2 + 162ta+ 2592ia7εt4

− 23328a5εtx2 + 15552a4εtx − 2592a6εt3x

− 15552a6εt2x2 + 93312a8ε2t3x + 279936a8ε2t2x2

− 1119744a10ε3t3x − 31104a6εtx3 + 11664a5εtb1
+ 139968a7ε2t2x − 7776a5εt2x − 20736ia7t3x

− 432ia5t3x − 93312a7εt3 − 186624a10ε3t4

+ 864a4tx3 − 93312a6ε2t2 − 144a6εt4

− 648a5εt3−324a3tb1−3888a4ta1 + 1679616a12ε4t4

− 279936a9ε3t3 + 2592a4εt2 − 13608a3εt

+ 216a4t2x2 + 23328a7ε2t3 + 24a4t3x + 7776a8ε2t4

+ 15552a5t2x − 1944a3xb1 + 648a3tx2 + 108a3t2x

+ 648ia3t2 − 3888ia2t + 7776ia5εt2 − 3888ia4tb1
+ 3888ia3tx + 324ia3ta1 + 1944ia3xa1
+ 1119744ia11ε3t4 − 93312ia9ε2t4 + 124416ia9εt4

− 972ia2a1)e−
iθ
2 ,

1 = 1296a6ε2t2 − 72a4εt2 − 432a4εtx + 144a4t2 + a2t2

+ 12a2tx + 36a2x2 + 9.
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