
Received May 29, 2019, accepted June 26, 2019, date of publication July 2, 2019, date of current version August 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2926264

Adaptive Asymptotic Control for a Class
of Uncertain Nonlinear Systems
HANQIAO HUANG1, SHUANGYU DONG2, ZONGCHENG LIU 3, AND RENWEI ZUO 3
1Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
2SMZ Telecom Pty Ltd., Melbourne, VIC 3130, Australia
3Aeronautics Engineering College, Air Force Engineering University, Xi’an 710038, China

Corresponding author: Zongcheng Liu (liu434853780@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61601505 and Grant 61603411, and in
part by the Innovative Talents Promotion Project of Shaanxi under Grant 2018KJXX-002.

ABSTRACT This paper addresses the asymptotic tracking problem of adaptive neural control for a class
of uncertain strict-feedback nonlinear systems. As a universal approximator, the neural network is widely
utilized to solve the tracking control problem of unknown continuous nonlinear systems. Due to the existence
of neural network approximation errors, previous neural network-based control approaches can only achieve
the bounded tracking rather than the asymptotic tracking. This paper designs an asymptotic error eliminating
term to achieve the adaptive neural asymptotic tracking. By utilizing the Lyapunov stability theory, all the
variables of the resulting closed-loop system are proven to be semi-globally uniformly ultimately bounded,
and the tracking error can converge to zero asymptotically by choosing design parameters appropriately.
A simulation example is presented to show the effectiveness of the proposed control approach.

INDEX TERMS Asymptotic stability, neural network, adaptive control.

I. INTRODUCTION
Over the past few decades, adaptive control for a class
of strict-feedback nonlinear systems with parameterized
functions or matched uncertainties have been extensively
studied for both theoretical interests and engineering applica-
tions [1]–[5]. However, the early stages of the research cannot
always be applied because some practical systems inevitably
contain some unknown functions which cannot be expressed
as the linearized parameter form, and the unknown uncer-
tainties may not appear in the same channel as the control
input. To solve the controller design problem of nonlinear
systems with unknown functions and mismatched uncertain-
ties, many researchers resorted to the backstepping technique
and neural network [6]–[8]. In the controllers design process,
neural network-based functional approximators such as radial
basis function neural network (RBFNN) [9]–[12], multilayer
neural network (MNN) [13]–[16], wavelet neural network
(WNN) [17]–[19], fuzzy neural network (FNN) [20]–[23]
and so on are usually used for approximating the unknown
system uncertainty because of their universal approximation
properties. More recently, adaptive neural backstepping con-
trol approaches have been further extended to several more
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general classes of non-linear systems. For example, a neural
network-based adaptive control problem is addressed for a
class of pure-feedback systemswith non-affine functions pos-
sibly being in-differentiable [24], and this in-differentiable
condition on non-affine functions is further relaxed to be
semi-bounded and discontinuous in [25] and [26], respec-
tively. In case of MIMO pure-feedback nonlinear systems
with unknown time-varying disturbances, a recursive adap-
tive neural control design method is presented in [27].

In the development of neural network-based adaptive
control approaches, some important techniques are pre-
sented. For example, the dynamic surface control (DSC)
is intensively investigated for handling the ‘‘explosion of
complexity’’ problem, which is caused by repeated differ-
entiations of virtual control laws in the backstepping-like
approaches [28]–[31]. However, the weakness of the afore-
mentioned DSC methods is that, the boundary layer errors
are introduced into the considered systems because of the
use of linear low-pass filters. It is worth mentioning that, due
to the existence of neural network approximation errors and
boundary layer errors, most of the previous neural-network-
based backstepping approaches cannot achieve the zero
error asymptotic tracking. Instead, only the bounded-error
trajectory tracking was established. It is well known that
asymptotic tracking has progressed a lot both in theory and
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practice [32]–[38]. To acquire the asymptotic output track-
ing, a modified DSC is presented by utilizing the nonlinear
filters with a positive time-varying integral function [36].
In [37], with the aid of barrier functions, a universal adaptive
state-feedback asymptotic tracking control strategy is pro-
posed for a class of unknown time-varying nonlinear systems.
However, it is noted that although vast amount of remarkable
results on asymptotic tracking control have been obtained
previously, to our best knowledge, the effect of neural net-
work approximation errors has not been concerned yet.

Motivated by the above discussion, in this paper, an adap-
tive neural control scheme is proposed for a class of uncertain
strict-feedback nonlinear systems in the frame of backstep-
ping method. The main contributions of this paper are sum-
marized as follows.

(1) In this paper, we develop an adaptive neural-network-
based asymptotic tracking controllers for a class of uncertain
strict-feedback nonlinear systems. At each step, the asymp-
totic error eliminating term is constructed recursively to elim-
inate the effect raised by the neural network approximation
errors.

(2) Most of the DSC methods are generally under the strict
assumption on the upper bound of the gain function. This
restrictive assumption is relaxed, such that only the sign of
gain function is known.

(3) By applying the Lyapunov theorem and Barbalat
lemma, all the variables of the resulting closed-loop system
are proven to be semi-globally bounded, and the proposed
control method can achieve the asymptotic tracking perfor-
mance by choosing design parameters appropriately.

The rest of this paper is organized as follows. Section II
gives the problem formulation and preliminaries. Adap-
tive neural controller is developed for a class of uncertain
strict-feedback nonlinear by using backstepping scheme in
Section III. The stability analysis of the closed-loop system
is given in Section IV. In Section V, simulation study is
presented to show the effectiveness of the proposed scheme.
Finally, the conclusion is included in Section VI.

II. PROBLEM STATEMENT AND PRELIMINARIES
Consider a class of uncertain strict-feedback nonlinear sys-
tems of the following form
ẋi = fi(x̄i)+ gi(x̄i)xi+1 + di(t), i = 1, 2 . . . , n− 1
ẋn = fn(x̄n)+ gi(x̄i)u+ dn(t)
y = x1

(1)

where x = [x1, x2, . . . , xn]T ∈ Rn denotes the state vector of
the system; u ∈ R is system control input; y ∈ R is system
output; x̄i = [x1, x2, . . . , xi]T ∈ Ri; fi(·) is an unknown
continuous functions, and gi(·) is a known smooth function;
di(t) are the unknown external disturbances or uncertainties
of the system, i = 1, . . . , n.

The control objective is to design adaptive tracking control
such that the system output y asymptotically converges to a

desired trajectory yd and all signals in the closed-loop system
are bounded by appropriately choosing design parameters.

To guarantee the controllability, we will invoke the follow-
ing assumptions, which are standard in backstepping design
method.
Assumption 1: The functions gi(x̄i) are strictly either posi-

tive or negative, that is, |gi(x̄i)| > 0. Without loss of general-
ity, suppose gi(x̄i) > 0 throughout this paper.
Remark 1: It should be noticed that, in most of the

researches, gi(x̄i) are always assumed to be bounded by posi-
tive constants, that is, 0 < bm ≤ gi(x̄i) ≤ bM with bm and bM
being positive constants. Obviously, Assumption 1 is more
relaxed than 0 < bm ≤ gi(x̄i) ≤ bM , which appears in most
of the exiting researches.
Assumption 2: The desired trajectory yd is sufficiently

smooth function of t , and yd , ẏd , and ÿd are bounded, that
is, there exists a positive constant B0 such that 50 :={
(yd , ẏd , ÿd ) : (yd )2 + (ẏd )2 + (ÿd )2 ≤ B0

}
.

Assumption 3: For 1 ≤ i ≤ n, there exist an unknown
positive constant d∗i such that |di(t)| ≤ d∗i .
Lemma 1 [36]: for any q ∈ R and ∀υ > 0, the following

inequality holds

0 ≤ |q| −
q2√

q2 + υ2
≤ υ (2)

A. RBFNN BASICS
The radial basis function neural network (RBFNN) is consid-
ered to be used for the controller design in this paper, which
is utilized to approximate the continuous function h(Z ):
Rn→ R

hnn(Z ) = θTψ(Z ) (3)

where Z ∈ �Z ⊂ Rn is the input vector, θ =

[θ1, θ2, . . . , θl] ∈ Rl is the weight vector, l > 1
is the neural network (NN) node number, and ψ(Z ) =
[ψ1(Z ), . . . , ψl(Z )]T is the basis function vector, with ψi(Z )
chosen commonly as a Gaussian function as

ψi(Z ) = exp
[
−(Z − µi)T (Z − µi)

η2

]
, i = 1, 2, . . . ., l

(4)

whereµi = [µi1, µi2, . . . , µin]T is the center of the receptive
field and η is the width of the Gaussian function.
It has been proven that network (3) can approximate any

continuous function over a compact set �Z ⊂ Rn to any
desired accuracy in the form of

h(Z ) = θ∗Tψ(Z )+ ε(Z ), ∀Z ∈ �Z ⊂ Rn (5)

where θ∗ is the ideal constant weight vector, and ε(Z ) is
the approximation error which is bounded over the compact
set, that is, ‖ε(Z )‖ ≤ ε∗ for ∀Z ∈ �Z , where ε∗ > 0 is
an unknown constant. ε(Z ) is denoted as ε to simplify the
notation in this paper.
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The optimal weight vector θ∗ is an ‘‘artificial’’ quantity
required only for analytical purposes. Typically, θ∗ is chosen
as the value of θ that minimizes ε over �Z , that is

θ∗ := arg min
θ∈Rl

{
sup
Z∈�Z
|h(Z )− θTψ(Z )|

}
(6)

Let || · || denote the 2-norm, and λmax(A), λmin(A) denote
the largest and smallest eigenvalues of a square matrix A,
respectively.

III. ADAPTIVE TRACKING CONTROL
In the framework of backstepping approach the following
change of coordinates is made :{

e1 = x1 − yd
ei = xi − zi, i = 2, 3, . . . , n

(7)

where e1 is the tracking error, and zi is the output of the non-
linear filter with αi−1 as the input, which should be developed
for the corresponding i−1th subsystem. The recursive design
procedure contains n steps. First, at each step of the backstep-
ping design, the intermediate control αi−1 is designed tomake
the corresponding subsystem toward equilibrium position,
and at the final step, the stabilization of system (7) can be
achieved with the actual control input u being designed.
In this paper, let θ̃i = θi − θ̂i, where θ̂i is the estimate of

the unknown constant θi, with θi being the unknown weight
vector of the RBFNN in step i. The RBFNN in each step is
employed to approximate the unknown continuous function
fi(x̄i) as follows

fi(x̄i) = θTi ψi(x̄i)+ εi, i = 1, 2, . . . , n (8)

where x̄i ∈ �x̄i ⊂ Ri, and εi is the approximation error which
satisfies |εi| ≤ ε∗i with ε∗i being unknown positive constant.
As the ideal weight θ∗i is unknown, we will use its estimate
θ̂i instead in the later controller design of each step.
Step 1: To start, consider the following subsystem of (1)

and noting e1 = x1 − yd , we have

ė1 = ẋ1 − ẏd
= f1(x1)+ g1(x1)x2 + d1(t)− ẏd (9)

where x2 is regarded as a virtual control input of this sub-
system. Consider the stabilization of subsystem (9) and the
follow quadratic Lyapunov function candidate

Ve1 =
1
2
e21 (10)

The time derivative of Ve1 along (9) is

V̇e1 = e1 (f1(x1)+ g1(x1)x2 + d1(t)− ẏd ) (11)

We construct a virtual control α1 and the adaptation func-
tions θ̂1 and M̂1 as follows

α1 = g−11 (x1)

−k1e1 − θ̂T1 ψ1(x1)−
M̂2

1 e1√
M̂2

1 e
2
1 + δ

2
+ ẏd


(12)

˙̂
θ1 = 01e1ψ1(x1) (13)
˙̂M1 = γ1 |e1| (14)

where k1, 01, and γ1 are the design parameters; M̂1 is the
estimate ofM1 withM1 = d∗1 + ε

∗

1 ; δ is any positive uniform
continuous and bounded function, which satisfies

lim
t→∞

∫ t

0
δ(τ )dτ ≤ δ1 < +∞ (15)∣∣δ̇(t)∣∣ ≤ δ2 < +∞ (16)

where δ1 and δ2 are any positive constants.
To avoid repeatedly differentiating α1, which leads to the

so-called ‘‘explosion of complexity’’, in the sequel, the basic
idea of DSC technique is employed here. Introduce a new
variable z2, and let α1 pass through a nonlinear filter with
time constant τ2 to obtain z2 as

τ2ż2 = −y2 −
τ2N̂ 2

2 y2√
N̂ 2
2 y

2
2 + δ

2
(17)

with

˙̂N2 = β2 |y2| (18)

where y2 = z2 − α1, β2 is a design parameter and N̂2 is the
estimate of N2 which will be defined later, then, it yields

ẏ2 = ż2 − α̇1

= −
y2
τ2
−

N̂ 2
2 y2√

N̂ 2
2 y

2
2 + δ

2
− α̇1

= −
y2
τ2
−

N̂ 2
2 y2√

N̂ 2
2 y

2
2 + δ

2
− α̇1 (19)

Noting that x2 = e2 + z2 and y2 = z2 − α1, we have

x2 = e2 + α1 + y2 (20)

Define the Lyapunov function candidate

V1 = Ve1 +
1
2γ1

M̃2
1 +

1
2
θ̃T1 0

−1
1 θ̃1 (21)

In view of (11), (20), and (21), we have

V̇1 = e1 (f1(x1)+ d1(t)− ẏd )−
1
γ1
M̃1
˙̂M1

+ g1(x1)e1 (e2 + α1 + y2)− θ̃T1 0
−1
1
˙̂
θ1 (22)

Substituting (8) and (12) into (22) yields

V̇1 = e1d1 + e1θT1 ψ1(x1)+ e1ε1 − k1e21

−
M̂2

1 e
2
1√

M̂2
1 e

2
1 + δ

2
+ g1(x1)e1 (e2 + y2)

−
1
γ1
M̃1
˙̂M1 − e1θ̂T1 ψ1(x1)− e1θ̃T1 ψ1(x1) (23)
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Rearranging (23) and noting Assumption 3 and |ε1| ≤ ε∗1 ,
one obtains

V̇1 ≤ |e1|
(
d∗1 + ε

∗

1
)
−

M̂2
1 e

2
1√

M̂2
1 e

2
1 + δ

2

− k1e21 + g1(x1)e1 (e2 + y2)−
1
γ1
M̃1
˙̂M1 (24)

By using Lemma 1 and noting M1 = d∗1 + ε
∗

1 , we have

V̇1 ≤ |e1| M̂1 + |e1| M̃1 −
M̂2

1 e
2
1√

M̂2
1 e

2
1 + δ

2

− k1e21 + g1(x1)e1 (e2 + y2)−
1
γ1
M̃1
˙̂M1

≤ δ −
1
γ1
M̃1

(
˙̂M1 − γ1 |e1|

)
− k1e21 + g1(x1)e1 (e2 + y2) (25)

In view of (14), we have

V̇1 ≤ −k1e21 + δ + g1(x1)e1 (e2 + y2) (26)

Step i (2 ≤ i ≤ n − 1): A similar procedure is employed
recursively for each step i = 2, . . . , n − 1. For the sake of
brevity, Step i are simplified, with redundant equations and
explanations being omitted.

Consider the following subsystem of (1) and noting
ei = xi − zi, we have

ėi = ẋi − żi

= fi(x̄i)+ gi(x̄i)xi+1 + di +
yi
τi
+

N̂ 2
i yi√

N̂ 2
i y

2
i + δ

2
(27)

where xi+1 is regarded as a virtual control input of this
subsystem. Consider the stabilization of subsystem (27) and
the follow quadratic Lyapunov function candidate

Vei =
1
2
e2i (28)

The time derivative of Vei along (27) is

V̇ei = ei

(
fi(x̄i)+ gi(x̄i)xi+1 + di +

yi
τi
+

N̂ 2
i yi√

N̂ 2
i y

2
i + δ

2

)
(29)

We construct a virtual control αi and the adaptation func-
tions θ̂i and M̂i as follows

αi = g−1i (x̄i)
(
− kiei − θ̂Ti ψi(x̄i)

−
M̂2
i ei√

M̂2
i e

2
i + δ

2
−
yi
τi
−

N̂ 2
i yi√

N̂ 2
i y

2
i + δ

2

)
(30)

˙̂
θi = 0ieiψi(x̄i) (31)
˙̂Mi = γi |ei| (32)

where ki, 0i, and γi are the design parameters, and M̂i is the
estimate of Mi with Mi = d∗i + ε

∗
i .

Let αi pass through a nonlinear filter with time constant
τi+1 to obtain zi+1 as

τi+1żi+1 = −yi+1 −
τi+1N̂ 2

i+1yi+1√
N̂ 2
i+1y

2
i+1 + δ

2
(33)

with
˙̂Ni+1 = βi+1 |yi+1| (34)

where yi+1 = zi+1−αi, βi+1 is a design parameter and N̂i+1 is
the estimate ofNi+1 which will be defined later, then, it yields

ẏi+1 = żi+1 − α̇i

= −
yi+1
τi+1
−

N̂ 2
i+1yi+1√

N̂ 2
i+1y

2
i+1 + δ

2
− α̇i

= −
yi+1
τi+1
−

N̂ 2
i+1yi+1√

N̂ 2
i+1y

2
i+1 + δ

2
− α̇i (35)

Noting that xi+1 = ei+1 + zi+1 and yi+1 = zi+1 − αi,
we have

xi+1 = ei+1 + yi+1 + αi (36)

Define the Lyapunov function candidate

Vi = Vei +
1
2
y2i +

1
2γi

M̃2
i +

1
2βi

Ñ 2
i +

1
2
θ̃Ti 0

−1
i θ̃i (37)

Using (29) and (36), the time derivative of Vi is

V̇i = ei

(
fi(x̄i)+ gi(x̄i)xi+1 + di +

yi
τi
+

N̂ 2
i yi√

N̂ 2
i y

2
i + δ

2

)
+ yiẏi + gi(x̄i)ei (ei+1 + yi+1 + αi)

−
1
γi
M̃i
˙̂Mi −

1
βi
Ñi
˙̂Ni − θ̃Ti 0

−1
i
˙̂
θi (38)

Similarly, substituting (30) and (31) into (38) and then
rearrange the inequality, we have

V̇i = eidi + eiεi − kie2i −
M̂2
i e

2
i√

M̂2
i e

2
i + δ

2
+ yiẏi

+ gi(x̄i)ei (ei+1 + yi+1)−
1
γi
M̃i
˙̂Mi −

1
βi
Ñi
˙̂Ni (39)

Noting Assumption 3 and |εi| ≤ ε∗i we have

V̇i ≤ |ei|
(
d∗i + ε

∗
i
)
− kie2i −

M̂2
i e

2
i√

M̂2
i e

2
i + δ

2
+ yiẏi

+ gi(x̄i)ei (ei+1 + yi+1)−
1
γi
M̃i
˙̂Mi −

1
βi
Ñi
˙̂Ni (40)

which can be handled as the same way as Step 1, and then we
obtain

V̇i ≤ −kie2i + gi(x̄i)ei (ei+1 + yi+1)+ δ + yiẏi −
1
βi
Ñi
˙̂Ni

(41)
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Step n: Noting that en = xn − zn, the dynamics of
en-subsystem can be written as

ėn = ẋn − żn

= fn(x̄n)+ gn(x̄n)u+ dn +
yn
τn
+

N̂ 2
n yn√

N̂ 2
n y2n + δ2

(42)

Similarly, consider the stabilization of subsystem (42) and
the follow quadratic Lyapunov function candidate

Ven =
1
2
e2n (43)

The time derivative of Ven along (42) is

V̇en = en

(
fn(x̄n)+ gn(x̄n)u+ dn +

yn
τn
+

N̂ 2
n yn√

N̂ 2
n y2n + δ2

)
(44)

We construct the actual control u and the adaptation func-
tions θ̂n and M̂n as follows

u = g−1n (x̄n)
(
− knen − θ̂Tn ψn(x̄n)

−
M̂2
n en√

M̂2
n e2n + δ2

−
yn
τn
−

N̂ 2
n yn√

N̂ 2
n y2n + δ2

)
(45)

˙̂
θn = 0nenψn(x̄n) (46)
˙̂Mn = γn |en| (47)

where kn, 0n, and γn are the design parameters, and M̂n is the
estimate of Mn with Mn = d∗n + ε

∗
n .

Define the Lyapunov function candidate

Vn = Ven +
1
2
y2n +

1
2γn

M̃2
n +

1
2βn

Ñ 2
n +

1
2
θ̃Tn 0

−1
n θ̃n (48)

Using (44), the time derivative of Vn is

V̇n = gn(x̄n)enu−
1
γn
M̃n
˙̂Mn −

1
βn
Ñn
˙̂Nn − θ̃Tn 0

−1
n
˙̂
θn

+ ynẏn + en

(
fn(x̄n)+ dn+

yn
τn
+

N̂ 2
n yn√

N̂ 2
n y2n + δ2

)
(49)

Similarly as the former steps, by using (45), (46), and (47),
we can have

V̇n ≤ −kne2n + δ + ynẏn −
1
βn
Ñn
˙̂Nn (50)

The design process of adaptive neural tracking controller
has been completed.

IV. STABILITY ANALYSIS
In this section, themain result of this paper is stated as follows
Theorem 1: Consider the uncertain nonlinear system (1)

and Assumptions 1-3. The virtual controller are constructed
as (12) and (30), with the corresponding adaptation laws
given by (13), (14), (31), and (32). The actual controller is
given by (45) with the corresponding adaptation laws given

by (46) and (47). Then, for any initial conditions satisfying
V (0) ≤ p, where p is a given positive constant, there exist
ki, βi, γi, 0i, δi, and τi such that all of the signals in the
closed-loop system are semi-globally bounded. Furthermore,
by appropriately choosing design parameters, the tracking
error e1 can asymptotically converge to zero.

Proof: Choose the Lyapunov function as follows:

V =
n∑
i=1

Vi (51)

It follows from (24), (39), and (48) that the derivative
of V is

V̇ ≤ −
n∑
i=1

kie2i +
n−1∑
i=1

gi(x̄i) (ei+1 + yi+1) ei

+ nδ +
n−1∑
i=1

yi+1ẏi+1 −
n−1∑
i=1

1
βi+1

Ñi+1
˙̂Ni+1 (52)

In view of (17) and (33), we have

V̇ ≤
n−1∑
i=1

−y2i+1
τi+1
−

N̂ 2
i+1y

2
i+1√

N̂ 2
i+1y

2
i+1 + δ

2
− α̇iyi+1


−

n∑
i=1

kie2i +
n−1∑
i=1

gi(x̄i) (ei+1 + yi+1) ei

−

n−1∑
i=1

1
βi+1

Ñi+1
˙̂Ni+1 + nδ (53)

By noting xi = ei + yi + αi−1 and the expression of α1,
we can rewrite xi+1 and αi as follows

xi+1 =
(
ēi+1, ȳi+1,

¯̂
θi,
¯̂Mi,
¯̂Ni, yd , ẏd

)
(54)

αi =
(
ēi, ȳi,

¯̂
θi,
¯̂Mi,
¯̂Ni, yd , ẏd

)
(55)

where ēi = [e1, e2, . . . , ei]T , ȳi = [y2, . . . , yi]T ,
¯̂
θi =

[θ̂1, θ̂2, . . . , θ̂i]T ,
¯̂Mi = [M̂1, M̂2, . . . , M̂i]T , and ¯̂Ni =

[N̂1, N̂2, . . . , N̂i]T .
Then, it can be learned that gi(x̄i) can be rewritten as the

following expression

g1(x1) = gi (e1, yd ) (56)

gi(x̄i) = gi
(
ēi, ȳi,

¯̂
θi−1,

¯̂Mi−1,
¯̂Ni−1, yd , ẏd

)
, i=2, . . . , n

(57)

and there exists a continuous function κi (·) such that

|α̇i| ≤ κi

(
ēi+1, ȳi+1,

¯̂
θi,
¯̂Mi,
¯̂Ni, yd , ẏd , ÿd

)
(58)

Consider set �i :=

{[
ēTi , ȳ

T
i ,
¯̂
θTi ,
¯̂MT
i ,
¯̂NT
i

]T ∣∣∣ i∑
j=1

Vj ≤ p
}

i = 2, . . . , n, with p = V (0) + (2n− 1) δ1. Since the sets
�0 and �i ∈ R5i−2 are compact, �0 × �i ∈ R5i+1 is
also compact. Noting (54) and (55) and the definition of �i,
we can find that all the variables of the continuous function
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gi (·) are included in the compact set�0×�i. Thus, there exist
unknown positive constants gi,M such that |gi (·)| ≤ gi,M on
�0 × �i. Similarly, it can be known from (56) that all the
variables of the continuous function κi (·) are included in the
compact set �0 × �i+1, thus there exist unknown positive
constant which is defined as Ni such that |κi (·)| ≤ Ni. Thus,
we have

V̇ ≤
n−1∑
i=1

−y2i+1
τi+1
−

N̂ 2
i+1y

2
i+1√

N̂ 2
i+1y

2
i+1 + δ

2
i+1

+ Ni |yi+1|


−

n∑
i=1

kie2i +
n−1∑
i=1

gi,M (|ei+1| + |yi+1|) |ei|

−

n−1∑
i=1

1
βi+1

Ñi+1
˙̂Ni+1 + nδ (59)

on �0 ×�i.
Using (18) and (34) and noting Lemma 1, we have

1
βi+1

Ñi+1
˙̂Ni+1 + Ni |yi+1| −

N̂ 2
i+1y

2
i+1√

N̂ 2
i+1y

2
i+1 + δ

2
i+1

= N̂i |yi+1| −
N̂ 2
i+1y

2
i+1√

N̂ 2
i+1y

2
i+1 + δ

2

≤ δ (60)

Therefore, we can rewrite (59) as

V̇ ≤ −
n∑
i=1

kie2i +
n−1∑
i=1

(
−
y2i+1
τi+1

)

+

n−1∑
i=1

gi,M (|ei+1| + |yi+1|) |ei| + (2n− 1) δ (61)

Using the Young’s inequality, we have

gi,M |ei+1| |ei| ≤
e2i
2
+
g2i,M e2i+1

2

gi,M |yi+1| |ei| ≤
e2i
2
+
g2i,M y2i+1

2

Consequently, by choosing ki and τi+1 satisfying

ki ≥ 1+
g2i−1,M

2
+ c0 (62)

1
τi+1
≥
g2i,M
2
+ c0 (63)

with c0 being any positive constant, we have

−

n∑
i=1

kie2i +
n−1∑
i=1

(
−
y2i+1
τi+1

)

+

n−1∑
i=1

gi,M (|ei+1| + |yi+1|) |ei|

≤ −

n∑
i=1

kie2i +
n−1∑
i=1

(
−
y2i+1
τi+1

)

+

n−1∑
i=1

(
e2i +

g2i,Me
2
i+1

2
+
g2i,My

2
i+1

2

)

≤ −c0
n∑
i=1

e2i − c0
n−1∑
i=1

y2i+1 (64)

Substituting (64) into (61) yields

V̇ ≤ −c0
n∑
i=1

e2i − c0
n−1∑
i=1

y2i+1 + (2n− 1) δ (65)

Integrating (65) over [0, t] yields

V (t) ≤ V (0)+ (2n− 1)
∫ t

0
δ(ξ )dξ

−

∫ t

0

(
c0

n∑
i=1

e2i (ξ )+ c0
n−1∑
i=1

y2i+1(ξ )

)
dξ

≤ V (0)+ (2n− 1) δ1 (66)

which implies ei, en, θ̃i, θ̃n, M̃i, M̃n, Ñi, and yi+1, i =
1, 2, . . . , n−1 are bounded. In the sequel, we can deduce that
xi, xn, αi, and u, i = 1, 2, . . . , n− 1 are bounded. Moreover,
form (66), one has∫ t

0
c0

n∑
i=1

e2i (ξ )dξ ≤ V (0)+ (2n− 1) δ1 (67)

By applying the Barbalat lemma, it is concluded that

lim
t→∞

e1 = 0 (68)

That is, the asymptotic tracking is achieved.

V. SIMULATION RESULTSION
To illustrate the validity of the proposed adaptive neural
control scheme, consider the following nonlinear system in
strict-feedback form [36]:

ẋ1 = x1e−0.5x1 +
(
1+ x21

)
x2 + 0.2 sin t

ẋ2 = x1x22 + [3+ cos(x1x2)] u+ 0.1 cos t
y = x1

(69)

The objective is to design a DSC controller u such that
output y asymptotically tracks the desired trajectory yd =
3+ 0.5 sin(π t).
According to Theorem 1, the adaptive neural controller is

chosen as

α1 = g−11 (x1)
(
−k1 e1 − θ̂T1 ψ1(x1)−

M̂2
1 e1√

M̂2
1 e

2
1 + δ

2
+ ẏd

)

u = g−12 (x̄2)
(
− k2 e2 − θ̂T2 ψ2(x̄2)

−
M̂2

2 e2√
M̂2

2 e
2
2 + δ

2
−
y2
τ2
−

N̂ 2
2 y2√

N̂ 2
2 y

2
2 + δ

2

)
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FIGURE 1. Reference signal yd and system output y .

FIGURE 2. System state x2.

FIGURE 3. Control input u.

and the adaptive laws are provided by (13), (14), (46),
and (47), and the design parameters are selected as k1 = k2 =
15, γ1 = γ2 = 3, 01 = 02 = diag(0.5, 0.5, 0.5, 0.5, 0.5),
τ2 = 0.5, δ = 1/(0.1 + t2), and β2 = 3. The RBFNN
are selected in the following way: Neural networkW T

1 ψ(Z1)
contains 5 nodes with centers evenly spaced in the interval

FIGURE 4. Adaptive parameters M̂1, M̂2, and N̂1.

FIGURE 5. Adaptive parameters
∥∥∥θ̂1

∥∥∥2

F
and

∥∥∥θ̂2

∥∥∥2

F
.

FIGURE 6. Tracking errors e1.

[−2, 2] and widths equal to 2. Neural network W T
2 ψ(Z2)

contains 25 nodes with centers evenly spaced in the interval
[−2, 2]×[−2, 2] and widths equal to 2. The initial conditions
are seted as: [x1(0), x2(0)]T = [4, 1]T , M̂1(0) = M̂2(0) =
N̂1(0) = 0, and θ̂1(0) = θ̂2(0) = 0. The simulation results are
shown in Figs. 1-5.
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From Fig. 1, it can be seen that under the proposed con-
trol scheme, the good output tracking performance can be
achieved. Figs. 2-5 show the boundedness of x2, u, M̂1, M̂2,

N̂1,
∥∥∥θ̂1∥∥∥2

F
and

∥∥∥θ̂2∥∥∥2
F
, respectively.

For comparison, the conventional adaptive neural con-
trol (CANC) approach in [24] is performed with the same
parameters k1 = k2 = 15 and τ2 = 0.5, and the correspond-
ing simulation result on the system tracking error is presented
in Fig. 6. It is obviously shown in Fig. 6 that, the pro-
posed modified adaptive neural control (MANC) approach
can achieve the better asymptotic tracking compared with
CANC, which can only achieve the bounded tracking.

VI. CONCLUSION
To achieve the asymptotic tracking performance, an adap-
tive neural network-based controller is presented via
a modified DSC approach. Different from the exiting
approximator-based control approach, the proposed con-
troller can further achieve the asymptotic tracking instead of
bounded trajectory tracking. Moreover, the nonlinear filters
with a positive time-varying integral function is used to avoid
the ‘‘explosion of complexity’’ problem and to eliminate
the effect of boundary layer error. The asymptotic tracking
stability is rigorously proved by applying the Lyapunov The-
orem and Barbalat lemma. Simulation example demonstrate
the effectiveness and the feasibility of the proposed control
approach. Future work can extend the proposed method to
the pure-feedback cases.
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