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ABSTRACT The performance of existing signal detection methods depends heavily on the amount of prior
information acquired by the sensor of interest. Therefore, to improve cognitive radio-based detection in low-
signal-to-noise (SNR) environments, we propose a deep learning method-based passive signal detection.
A convolution neural network (CNN) and the long short-term memory (LSTM) approach are used to extract
the frequency and time domain features of the signal. Our method can detect signal when little to none prior
information exists. The simulation experiments verify the probability of detection for our method. The results
show that our method is about 4.5–5.5 dB better than a traditional blind detection algorithm under different
SNR environments.

INDEX TERMS Cognitive radio, deep learning, signal detection.

I. INTRODUCTION
As 5G communication and Internet of Things (IoT)
technologies grow and become more sophisticated, the num-
ber of wireless network devices will only increase more dra-
matically than before. However, available spectrum resources
are extremely limited, andmany allocated spectrum resources
are not fully exploited, which results in unbalanced utilization
of RF spectrum [1]. Cognitive Radio (CR) is regarded as
a promising technology that can improve the efficient uti-
lization of spectrum resources. Sensors that detect available
spectrum resources is a key technology in CR communica-
tion, particularly since it can detect available resources in any
region without any prior information. A spectrum is vacant if
it can be utilized by a secondary user (SU) without interfering
with the primary user (PU).

Many spectrum-sensing algorithms have been proposed
and studied. Energy detection(ED) [2]–[6] is the most widely
used method because of its low complexity and also because
no prior information is required [7], [8]. However, this
method has a poor detection performance in low signal-to-
noise (SNR) environments. A more advanced method, cyclo-
stationary feature detection (CFD) [9]–[11] performs better
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than the simple ED method. CFD can distinguish between
signals and noise by analyzing spectral correlation functions
of the signal. However, this requires certain prior knowledge
about the PU’s signals. Matched filter [12]–[15] techniques
are optimal in the sense that they require only a few samples to
achieve good performance detection, but the PUs waveforms
and channels need to be determined prior to filtering [16].
In non-cooperative communication, a signal is transmitted
over an unknown channel, so methods that rely on prior
knowledge, are difficult to adapt to CR.

Recently, some researchers have proposed machine
learning based methods to improve CR communication.
Thomas and Brunskill [17] propose reinforcement learning
based algorithms to find better spectrum sensing modalities.
Cui et al. [18], Huang et al. [19], and Ramon et al. [20] have
designed a support vector machine (SVM)-based learning
systems to classify PUs and determine wireless communi-
cation parameters. However, developing a method leverages
deep learning to determine spectrum availability efficiently
and effectively is still a challenging problem.

To improve detection performance in non-cooperative
communication, radio signals are artificially generated
according to theoretical information, which can be expressed
in frequency-domain and time-domain form; however, noise
does not have such information. Therefore, a deep learning
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method is used in this work to extract and integrate the-
oretical models to distinguish between signal and noise.
Convolution, long short-term memory and fully-connected
deep neural networks (CLDNN) [21]–[23] are successfully
integrated into natural language processing (NLP). This inte-
gration is composed of a convolution neural network (CNN),
long short-term memory (LSTM) and fully-connected deep
neural networks (DNN). CNN is suitable for extracting local
features, which are related to frequency-domain information.
LSTM is a recurrent neural network, that can efficiently
model time-domain features. DNN can map signal features
to classifiable intervals. In this paper, we propose a method
based on CLDNN networks to model additional features
and characteristics of a random signal. To better describe
the time-domain correlation of signals, the input data of the
network will contain past and future signals, so that the
whole system can be regarded as an advanced finite impulse-
response-based smoothing function. LSTM has more param-
eters than general networks; therefore, the method will
require more training time. To overcome this additional com-
putational cost, CNNs can also reduce the dimension of input
data [23].

The paper is organized as follows. In section II, we describe
a signal detection model and CLDNN structure in detail.
Simulation results are given in in section III, and we finally
discuss our conclusion in section IV.

II. SYSTEM MODEL
A. BINARY HYPOTHESIS
In our work, we propose a model based on CLDNN that can
be utilized for spectrum sensing. Initially, we assume that
there is only one antenna that receives a single PU’s signal.
We set x(t) as the received signal, which is transmitted into
unknown channel. Therefore, the received signal sample is
characterized by

x[n] = x (nTs) , (1)

where Ts is the sampling period.
Generally, a signal detection problem can be regarded as

a binary hypothesis test. Where H0 represents the case when
only the noise exists and H1 represents the case when both
the signal and noise exist. The receive signal samples, of the
two hypotheses are expressed as{

H0 : x[n] = ω[n]
H1 : x[n] = s[n]+ ω[n]

, (2)

where ω[n] is additive white Gaussian noise with a zeromean
and a variance of σ 2. Each ω[n] sample is assumed to be
independent and identically distributed (i.i.d.). The term s[n]
represents the PUs signal. There are two probabilities used
to evaluate the performance of the method. When detecting
the signal at hypothesis H1, it is called the probability of
detection Pd , and when detecting the signal at hypothesisH0,
it is characterized as the probability of false alarm Pfa. Our
purpose is to obtain a high Pd and a low Pfa.

FIGURE 1. The general structure of CLDNN.

FIGURE 2. The correlation function of signal and noise.

B. PROPOSED CLDNN STRUCTURE
FOR SIGNAL DETECTION
The general structure of CLDNN is shown in Fig. 1(b). First,
we pass the input data through several convolutional lay-
ers. As Fig.1(a) shows, radio signals enjoy different locality
characteristics along the frequency axis, which means that
the signal has energy concentrations in different local bands
along the frequency axis, but the noise fills up the entire
frequency band instead of a local band. These local energy
concentrations become critical clues to distinguish between
signal and noise. After frequency-domain-based modeling is
performed, we pass the CNN output to the LSTM layers;
this is an appropriate first step to model signal in the time
domain. As shown in Fig.2, there is a correlation between
s(t) and s(t + 1t) in communication signals, but there is
no correlation between noise terms. The correlation function
is a simple expression and can be easily mathematically
formulate it:

rx(1t) = E[x∗t xt+1t ], (3)
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FIGURE 3. Structure of a LSTM cell.

This correlation function is used in existing signal detec-
tion methods. However, there are still some valuable features
hidden in the signal that we can not easily mathematically
model, but that can help the signal detection process sig-
nificantly. Therefore, we propose modeling these unknown
features via LSTM to improve signal detection performance.

LSTM was initially proposed as an extension of the tradi-
tional recurrent neural networks (RNN). Although RNN can,
in theoretically, deal with temporally correlated data, it can-
not handle long-term time dependency in practice. LSTM
addresses this problem by implementing a memory cell, with
transmission gates, as shown in Fig. 3. Each gate type is
mathematically formulated as follows.

Forget gate:

ft = σ (Wf · [ht−1, xt ]+ bf ), (4)

where σ is a sigmoid function, Wf is the weight matrix
connecting the input vector xt and the forget gate. The σ func-
tion will read the ht−1 and xt , and output a value between
0 and 1 to decide how much information of the previous state
Ct−1 will be preserved. Therefore, the input gate is

Input gate:

it = σ (Wi · [ht−1, xt ]+ bi), (5)

C̃t = tanh(WC · [ht−1, xt ]+ bc), (6)

where Wi and WC are the weight matrices connecting the
input vector xt and input gate, respectively. The tanh function
will output a cell state vector Ct , and the cell will update
its status based on the it and Ct terms as shown in the (7).
Therefore, the cell state Ct , output gate ot and ht function are
characterized by

Cell state:

Ct = ft ∗ Ct−1 + it ∗ Ct , (7)

Output gate:

ot = σ (Wo[ht−1, xt ]+ bo), (8)

ht = ot ∗ tanh(Ct ), (9)

TABLE 1. Configuration of our structure.

Finally, the cell will output the state of the current moment
Ct to the next cell, which will then output ht , filtered by ot ,
to next layer.

After performing frequency and temporal modeling,
the output of the LSTM passes through several fully con-
nected DNN layers. These layers can produce a higher-order
feature representation that can be more easily separable into
the different classes we want to discriminate.

The detailed configuration of the network is listed in Tab. 1.
The network is composed of 5 convolution layers and max-
pooling layers, 2 LSTM layers, and 3 fully connected layers.
The length of the convolution filter is the size of the receptive
field. The receptive field of the first two layers has a smaller
size and has less filter numbers, which can select small
scale features. The next three convolution layers have more
filter numbers but a larger receptive field, which can identify
more large scale features, because as the data go through
more layers, the original signal information is gradually lost
(especially with the max pooling layer after each convolution
layer), more original signal information could be retained
based on a smalled size of receptive field. The receptive fields
are increased in the latter convolution layers as all the layers
are cascaded, because a lager receptive field means more fea-
tures can be integrated. After convolution feature modeling,
we pass the CNN output to two LSTM layers, where each
LSTM layer has 128 cells. Finally, we pass the output of the
LSTM to 3 fully connected DNN layers such that the last
DNN layer has only one unit and the activation function is a
sigmoid function, which will output a value between 0 and 1.
The value of the output characterized that a PU signal is
near. The extreme cases are ‘‘0’’, which represents only noise
exists, and ‘‘1’’, which represents both signal and noise exists.
Given these extreme values, we can decide wether a signal is
present or not.
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FIGURE 4. Input and output data.

C. INPUT AND OUTPUT
Let
−→
X N = [x(1), x(2) · · · x(n) · · · x(N−1), x(N )] be the input

data, and W the network weight matrix. Then y(n) = W [
−→
X ]

is the output data. As we have observed, information about
future and past help to better predict the current sam-
ple [23], the input data is delayed by N/2 − 1 samples.
As shown in Fig. 4, our model can be thought of as a
finite impulse-response smoothing function followed by a
nonlinearity [23].

III. SIMULATION
A. COMPARISON WITH OTHER ALGORITHM
IN DIFFERENT SNR
This section provides the simulation results of ourmethod and
its analysis. Since this paper focuses on a blind detection algo-
rithm for non-cooperative communication signals, we will
compare our the proposed deep-learning (DL) method to
the energy detection (ED) algorithm, which is the most
widely used blind detection algorithm. The ED method
assumes the signal follows a zero-mean Gaussian distribution
with covariance matrix σ 2

s I . The noise is also character-
ized by a zero-mean Gaussian distribution with covariance
matrix σ 2I .

s ∼ N (0, σ 2
s I ), (10)

ω ∼ N (0, σ 2I ), (11)

Both σ 2
s and σ 2 are known. Thus, the ED method com-

putes the energy of the samples as the test statistic TED and
compares the result to a threshold. The hypothesis H1 is
true if

TED =
N−1∑
n=0

x2[n] > γED, (12)

The dataset was collected from a real world communica-
tion station. The experiment equipment is shown in Fig. 5.
It comprises PCs, Anykey AKDS700 radios, a digital
receiver, and an oscilloscope. Two radios are linked to
two computers respectively to form a transmitter and a
receiver. Then, real time wireless communication is per-
formed between the transmitting side and the receiving side.

FIGURE 5. Schematic diagram of experimental equipment.

Following this, a digital oscilloscope is utilized to collect the
radio’s RF signals. The frequency of the signal is 763 MHz
and the code rate is 5-10 MHz. The modulations of signal
include DQPSK, QPSK, BPSK, 16QAM. The sampling rate
of the digital receiver is 250 MHz, and the intermediate
frequency (IF) of the digital receiver is 70 MHz, and the
instantaneous bandwidth is approximate 65-75 MHz. We set
the digital receiver is close to the transmitting side, therefore,
the SNR of the received signal is high enough to ensure there
is no noise in the received signal. We can add white Gaussian
noise to obtain various SNR levels to evaluate the algorithms
at different SNRs.

The simulation results of the detection performance,
in terms of number of inputs N (where N = 1000), are shown
in Fig. 6. When false alarm probability is 0.1, the detection
probability of DL method is the same as that of ED method,
and it grows faster than DLmethod with the increase of SNR.
The performance of DLmethod is up to 5.5dB better than ED
method under the same detection probability(90%).

When false alarm probability is 0.05, DL method performs
worse than EDmethod at first, but its performance also grows
faster. When SNR is higher than −12dB, DL method starts
to work better than ED method. Especially, when detection
probability is 90%, DL method performs about 4.5dB better
than ED method.

Next, several experimental trials were run to analyze the
influence of the number of input samples. Fig. 7 shows the
relationship between Pd and the length of input sample.
We notice that as the input samples increase, the performance
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FIGURE 6. Detection performance of DL method and ED method.

FIGURE 7. Probability of detection of ED and DL methods under different
input size.

of both the DL and EDmethod improve. When the number of
input samples decrease from 1000 to 500, the performance
of DL deteriorates by approximately 4 dB, while ED method
deteriorates by approximately 6dB. Therefore, we surmise
that the DL method is not insensitive to input length. The
result for the ED method illustrates that the DL method
utilizes more knowledge about the signal than the EDmethod
at the same length of input.

The influence of the number of training sample is also
tested and the result is shown in Fig. 8. The number of
training samples is from 2.5 × 105 to 2.5 × 107 samples.
We notice that the number of training samples has a small
effect on performance. However, if we continue to reduce the
number of training samples by 2.5 × 106, the performance
dose deteriorate rapidly and starts to fluctuate. Thus, there
is a relationship between sample size and performance that
slowly affects performance until a threshold is reached where
the performance deteriorates sharply. Thus we determine that
the minimum number of training samples for our model is
about 2.5× 107.
Besides, the performance of CNN + LSTM networks and

pure CNN networks was compared in this paper. The result is
shown in Fig. 9. There is a similar performance between the

FIGURE 8. Probability of detection of ED and DL methods under different
amount of training data.

FIGURE 9. The comparison of CNN + LSTM networks and pure CNN
networks.

CNN+ LSTM networks and CNN networks when Pf = 0.1.
However, the CNN + LSTM networks perform 0.5dB-1dB
better than the CNN networks when Pf = 0.05. Our exper-
iment also found that the training time of CNN + LSTM
networks is 10 times that of CNN networks, so pure CNN
networks is also efficient if a little performance degradation
is acceptable. Pure LSTM networks are generally not used,
since the training complexity is unacceptable.

We also analyzed the influence of different length of CNN
kernels, because we believe that the size of receptive field
can impact the performance of the whole networks, especially
those of the first few layers.We compared performance of two
networks with different hyper parameter settings in terms of
the field. The hyper parameter settings are shown in Tab. 2.
The only difference between the two is the length of the CNN
kernels. The result can be seen in Fig. 10, and it gives the
information that networks with a smaller receptive field in
the first two layers perform about 1dB better than those with
a lager receptive field do when Pf = 0.05, but performance
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TABLE 2. Hyper parameter settings of two kinds of network.

FIGURE 10. Performance under different hyper parameters.

of the both two different hyper parameter settings is similar.
The result proves that as the data goes through more layers,
the original signal information will be gradually lost and a
smaller receptive field in the first few layers can keep more
original signal information, especially with the max pooling
layer after each convolution layer.

B. ANALYSIS AND DISCUSSION
We found that CLDNN-based method significantly improves
the performance of signal detection in a poor SNR environ-
ment. We also analyzed the structure of the CLDNN and
found that there are three features of CLDNN that help the
signal detection problem.

Locality: the communication signal has locality charac-
teristics along the frequency axis. As a result, filters that
work on a local frequency region will provide an efficient
way to represent these local structures and their combina-
tions along the entire frequency axis, which may be even-
tually used to distinguish between signal and noise. CNN
is capable of modeling these local frequency structures by
allowing each neuron of the convolutional layer to receive
input only from features representing a limited bandwidth
of the whole spectrum. The spectrum of input signal with

FIGURE 11. The spectrum of input signal.

FIGURE 12. FFT of the First CNN layer’s output.

SNR = −15dB is shown in Fig. 11, the spectral peak of target
signal is not obvious enough. After being fed into CNN layer,
the outputs of the first CNN layer are shown in Fig. 12.
These two figures illustrate that the output features of CNN
are more likely to concentrate in a local area of the whole
spectrum.

Max-pooling: communication signals have many local fea-
tures; these features are distributed on the frequency axis,
where every feature centers around a particular frequency that
varies in a limited range. Thus, there are a lot of shape changes
and displacements due to errors caused by transmitting and
intercepting signals. To deal with the problem of variability
in CNN, max-pooling layers are introduced into the network
structure. As shown in Fig. 13, the input of everymax-pooling
layer is the output of a previous convolution layer, and the
output of three different signals are the same after convolu-
tion and max-pooling, which is called translation invariance.
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FIGURE 13. Translation invariance of max-pooling.

Translation invariance enables convolution layers to extract
useful information of signal within a limited error.

Integration of temporal information: after modeling the
local features of the original signal via CNN, LSTM then
uses its own feedback characteristics to conduct time-domain
feature modeling for the output features of CNN. Finally,
the information contained in the continuous phase of a com-
munication signal is discovered.

IV. CONCLUSIONS
In this paper, we proposed a CLDNN based method for
signal detection in low-SNR environment. The results show
that using CLDNN significantly improves the detection per-
formance. Simulation results show that the DL method uti-
lizes more information of than the ED method, which has
a 4.5dB-5dB performance increase under the similar condi-
tions. Thus, DLmethods need little-to-no data preprocessing,
except for some labels, since features can be automatically
extracted by the neural networks. Future work includes
research about our method’s ability to be generalized.Wewill
also examine the detection performance for cooperative
communication.
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