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ABSTRACT The wavefront measurement of a light beam is a complex task, which often requires a series
of spatially resolved intensity measurements. For instance, a detector array may be used to measure the
local phase gradient in the transverse plane of the unknown laser beam. In most cases, the resolution of
the reconstructed wavefront is determined by the resolution of the detector, which in the infrared case is
severely limited. In this paper, we employ a digital micro-mirror device (DMD) and a single-pixel detector
(i.e., with no spatial resolution) to demonstrate the reconstruction of unknown wavefronts with excellent
resolution. Our approach exploits modal decomposition of the incoming field by the DMD, enabling
wavefront measurements at 4 kHz of both visible and infrared laser beams.

INDEX TERMS Adaptive optics, holographic optical components, micromirrors, optical sensors.

I. INTRODUCTION
Wavefront sensing, preservation and/or correction is essential
in many optical systems, including in astronomy with low
intensity point-like sources of rays, tightly focussed medium-
intensity laser beams in microscopy and imaging, and for the
delivery without aberrations of high-power laser beams for
materials processing [1]–[4]. Implicit in this is the under-
standing that most optical processes are phase rather than
intensity dominant, thus phase and wavefront knowledge is
paramount [5]. It may be useful to point out that unlike
object reconstruction by digital holography [6] or compu-
tational imaging [7], here there is no object, no structured
illumination, and no reference beam - it is the primary beam
itself that must be probed and analyzed by some in-line and
preferably real-time device. Often the outcome of such a
wavefront measurement is a means to correct it, perhaps by
adaptive optics. Such wavefront sensing techniques rely on
the ability to measure the phase of light which can only be
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indirectly inferred from intensity measurements. Methods to
do so include ray tracing schemes, intensity measurements at
several positions along the beam path, pyramid sensors, inter-
ferometric approaches, computational approaches, the use of
non-linear optics, computer generated holograms (CGHs),
meta-materials and polarimetry [8]–[21]. Perhaps the
most well-known is the Shack-Hartmann wavefront sensor
[22], [23]. Its popularity stems from the simplicity of the
configuration as well as the fact that the output can easily
be used to drive an adaptive optical loop for wavefront
correction. More recently a modal approach to beam analysis
has been demonstrated [24]–[31]. Using both hard-coded
CGHs and digital holograms on spatial light modulators
(SLMs) (see [32] for a review), the technique was shown to be
highly versatile and accurate. These approaches to wavefront-
sensing and corrections still suffer from slow refresh rates,
often limited to 100s of Hz, are usually expensive (especially
for non-visible applications), and are limited both in terms of
spatial resolution and operational wavelength-range.

In this work we demonstrate a wavefront-sensor that is
broadband (spanning over 1000 nm, from the visible to
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the mid-IR), fast (with a refresh rate in the kHz range), and
inexpensive (100s of US dollars). We achieve this by building
our wavefront-sensor around a digital micro-mirror device
(DMD). This enables the rapid production of reconstructed
intensity and phase-maps with an ‘‘unlimited’’ resolution,
even though the employed detector is a single-pixel ‘‘bucket-
detector’’. We demonstrate the technique using both a visible
andNIR laser programmatically deterioratedwith aberrations
typical of moderately distorted beams, e.g., as would be
experiencedwith thermally distorted high-power laser beams,
propagation through a moderately turbulent atmosphere, and
optically distorted beams due to tight focusing or large aper-
tures. We demonstrate excellent wavefront reconstruction
with measurement rates of 4000 Hz, fast enough to be con-
sidered real-time for most practical applications.

II. BACKGROUND THEORY
For the aid of the reader we briefly introduce the notion of
wavefront and phase, outlining how they may be extracted
from the field by a single pixel measurement with a DMD.

A. WAVEFRONT AND PHASE
The wavefront of an optical field is defined as the continu-
ous surface that is normal to the time average direction of
energy propagation, i.e., normal to the time average Poynting
vector P

w(r, z) ⊥ P(s, z), (1)

where z denotes the position of the measurement plane.
The ISO standards define the wavefront more generally as
the continuous surface that minimizes the power density
weighted deviations of the direction of its normal vectors to
the direction of energy flow in the measurement plane∫ ∫

|P|
∣∣∣∣ Pt|P| − ∇tw

∣∣∣∣2 dA→ min, (2)

where Pt = [Px , Py, 0]′. What remains then is to find the
Poynting vector P; this is computable from the knowledge of
the optical field by

P(s) =
1
2
<

[
i
ωε0

ε−1(s)[∇ × U(s)]× U∗(s)
]
, (3)

where < denotes the real component, for vector fields U,
and by

P(s) =
ε0ω

4

[
i(U∇U∗ − U∗∇U )+ 2k|U |2ez

]
(4)

for scalar fields U , where ω is the angular frequency, ε0 the
vacuum permittivity, ε the permittivity distribution. In the
simple case of scalar, i.e. linearly polarized beams, the wave-
front is equal to the phase distribution8(s) of the beam except
for a proportionality factor

w(s) =
λ

2π
8(s) =

λ

2π
arg{U (s)}, (5)

where λ is the wavelength. It is important to note that this
expression is only valid so long as there are no phase jumps or

phase singularities, because the wavefront is always consid-
ered to be a continuous surface. Nevertheless, this facilitates
easy extract of the wavefront by a phase measurement.

From these expressions it is clear that if the optical field
is completely known then the wavefront may readily be
inferred. Here we outline how to do this by a modal expan-
sion into a known basis, commonly referred to as modal
decomposition.

B. MODAL DECOMPOSITION
Any unknown field, U (s), can be written in terms of an
orthonormal basis set, 9n(s),

U (s) =
∞∑
n=1

cn9n(s) =
∞∑
n=1

|cn|eiφn9n(s), (6)

with complex weights cn = |cn|eiφn where |cn|2 is the power
in mode 9n(s) and φn is the inter-modal phase, satisfying∑
∞

n=1 |cn|
2
= 1. Thus, if the complex coefficients can be

found then the optical field and its wavefront can be recon-
structed, usually requiring only a small number of measure-
ments, especially in the case of common aberrations. Note
that the resolution at which the wavefront may be inferred
is not determined by the resolution of the detector. In other
words, whereas only a few complex numbers are measured,
the reconstructed resolution is determined by the resolution
of the basis functions, which are purely computational.

The unknown modal coefficients, cn, can be found by the
inner product

cn = 〈9n|U〉 =
∫
9∗n (s)U (s)ds, (7)

where we have exploited the ortho-normality of the basis,
namely

〈9n|9m〉 =

∫
9∗n (s)9m(s)ds = δnm. (8)

This may be achieved experimentally using a lens to exe-
cute an optical Fourier transform, F. Accordingly we apply
the convolution theorem

F{f (s)g(s)} = F(k) ∗ G(k) =
∫
F(k)G(s− k)dk (9)

to the product of the incoming field modulated with a trans-
mission function, Tn(s), that is the conjugate of the basis
function, namely,

W0(s) = Tn(s)U (s) = 9∗n (s)U (s), (10)

to find the new field at the focal plane of the lens as

Wf (s) = A0 F{W0(s)} = A0

∫
9∗n (k)U (s− k)dk (11)

Here A0 = exp(i4π f /λ)/(iλf ) where f is the focal length of
the lens and λ the wavelength of the light. If we set s = 0,
which experimentally is the on-axis (origin) intensity in the
Fourier plane, then Eq. (11) becomes

Wf (0) = A0

∫
9∗n (k)U (k)dk (12)
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which is the desired inner product of Eq. (7). Therefore we
can find our modal weightings from an intensity measure-
ment of

In = |Wf (0)|2 = |A0|2|〈9n|U〉|2 = |cn|2. (13)

This is not yet sufficient to reconstruct the wavefront of
the field as the inter-modal phases are also needed. The inter-
modal phases 1φn for the modes 9n cannot be measured
directly, however, it is possible to calculate them in relation
to an arbitrary reference mode 9ref. This is achieved with
two additional measurements, in which the unknown field
is overlapped with the superposition of the basis functions
[27], [33], effectively extracting the relative phases from the
interference of the modes. Thus, in addition to performing
a modal decomposition with a set of pure basis functions,
9n, we perform an additional modal decomposition with
each mode and a reference, described by the transmission
functions

T cos
n (s) =

[
9∗ref(s)+9

∗
n (s)

]
√
2

(14)

and

T sin
n (s) =

[
9∗ref(s)+ i9

∗
n (s)

]
√
2

. (15)

It is worth noting that, while in principle one measurement is
sufficient for an inter-modal phase, two ensure that the phase
value is not ambiguous. If the resulting intensity measure-
ments are I cosn and I sinn , then the inter-modal phase can be
found from

1φn = − arctan
[
2I sinn − In − Iref
2I cosn − In − Iref

]
∈ [−π, π]. (16)

Importantly, in order to reduce the error in the estimation of
the inter-modal phase, the reference mode should return an
intensity comparatively high to the average intensity of the
other modes in the basis.

In the present context, the transmission functions are
implemented as computer generated holograms (CGHs), and
displayed on a DMD spatial light modulator. As a note,
the amplitudes of the respective transmission functions are
normalized to satisfy the condition that the encoded trans-
mission function, T̃n, is |T̃n| ∈ [0, 1]. As a result, generated
or detected modes are still orthogonal but are no longer
orthonormal, with deleterious effects for modal decomposi-
tion [24]. It has been shown that it is paramount to re-scale the
measured intensities before normalizing the measurements
for

∑
n In = 1 [24]. This correction must be done for each

CGH in the system by simply multiplying in the additional
factors, with the equations below for a single CGH:

In = Imeas.〈T̃CA
n |T̃

CA
n 〉
−1 (17)

In = Imeas.|T̃ PO
n |
−1 (18)

where Imeas. is the measured intensity which is re-scaled to
result in In, depending on whether a Complex-Amplitude
(CA) or a Phase Only (PO) CGH is used.

C. DMD ENCODING
In order to encode the phase and amplitude of the desired
transmission functions for implementation with a binary
amplitude DMD, the following conditioning of the hologram
is required [34], [35]

T̃n(s) =
1
2
+

1
2
sign [cos (p(s))+ cos(q(s))] , (19)

where

p(s) = arg(Tn(s))+ φg(s) (20)

q(s) = arcsin
(
|Tn(s)|
|Tn(s)|max

)
(21)

and Tn is the desired function to be encoded (for example
Eqs. (14), (15) and (22)) and φg is a linear phase ramp
which defines the period and angle of the resulting grating.
The target field will occur in the first order diffraction spot.
Due to the nature of a binary amplitude-only hologram, the
efficiency is low in comparison to a phase-only hologram on a
SLM. Efficiencies on the order of 1.5% are expected, but this
issue can be mitigated by using a sensitive detector, or seen as
a benefit if higher incoming laser powers are expected [36].

In this work we use the Laguerre-Gaussian (LG) basis
as our expansion with basis functions in two indices given
as [37]

9LG
p,` (r, θ)

=

√
2p!

π (p+|`|)!

(
r
√
2

w0

)|`|
L |`|p

(
2r2

w2
0

)
exp

(
−
r2

w2
0

)
exp(−i`θ)

(22)

where w0 is the Gaussian beam waist and L |`|p (·) is the gen-
eralised Laguerre polynomial with azimuthal index ` and
radial index p. While the choice of basis is arbitrary there is
always an optimal basis to minimize the number of modes
in the expansion. For example, if the measured mode has a
rectangular shape then it is likely that the Hermite-Gaussian
basis will be more suitable as it will require fewer terms in
Eq. (6) for an accurate reconstruction.

III. EXPERIMENTAL SETUP AND METHODOLOGY
A schematic of the experimental setup is shown in Fig. 1,
which includes a DMD to display the CGH (the transmission
function in Sec. II), a Fourier lens and a pinhole with a photo-
detector to measure the on-axis intensity for the inner product
outcome. The photodiode can be either fiber-coupled (using a
single-mode fiber) or paired with a precision pin-hole (5µm).
In either case this represents a single pixel detector.

In this work we tested two DMD devices. The first,
a DLP6500FYE-based development kit (1920×1080mirrors,
6.5 µm pitch, and a refresh rate of 9.5 kHz), whose larger
chip is on the one hand useful in displaying high order modes,
but on the other hand is more affected by strain-induced cur-
vature of the micromirror chip. Consequently, the results in
this paper were primarily produced using the second device,
a DLP3000 (also on a development kit), due to its smaller
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FIGURE 1. Schematic representation of the experimental setup showing
(a) mode (aberration) creation using a SLM and (b) modal decomposition
using a DMD. When used as a wavefront measurement tool, part (a)
would not be present and the incoming beam would shine directly onto
the DMD. As an illustrative example, a modal decomposition of a defocus
aberration to LGp∈[0,3]

`=0 is shown in (c), with modal weightings above each
mode.

and thus optically flatter chip. This model has 608 × 684
mirrors (7.6 µm pitch, arranged in a diamond pattern) and
a refresh rate of 4 kHz when switching through on-board
memory patterns.

We imposed a known primary aberration onto an incoming
Gaussian beam and directed it towards the DMD wavefront
sensor. For tests in the visible (λ = 635 nm) a camera
was used as the detector and the intensity at origin (‘‘single
pixel’’) used, while for the NIR (λ = 1550 nm) a single mode
fiber coupled InGaAs photodiode was used. A custom trans-
impedance amplifier converted the photodiode current into a
voltage that was then measured by the 12 bit Analogue-to-
Digital Converter (ADC) of an Arduino Due, and sent to a
computer. In order to operate the DMD at its fastest rate, the
holograms were loaded onto its on-board flash memory. The
ADC on the Microchip SAM3X8E micro-controller which is
used on the Arduino Due supports up to 2 MSample/s, and
can be synchronized to the DMD for accurate measurements.

IV. RESULTS
Key to the success of the DMDwavefront sensor is the ability
to create and detect spatial modes with high fidelity. We used
Laguerre-Gaussian modes with ` ∈ [−3, 3] and p ∈ [0, 3]
for the wavefront sensor. Each mode was generated and then
detected, with the results shown in Fig. 2 for a larger range,
` ∈ [−5, 5] and p ∈ [0, 5] (a). The data represents anal-
ysis of phase-only as well as amplitude-only modes through
appropriatemodulation on the DMD (which is a simple on/off
device). We note both wavelengths exhibit limited crosstalk,
confirming that the DMD approach is wavelength insensi-
tive as well as accurate across a wide range of mode types.

FIGURE 2. (a) Experimental modal decomposition verification of modal
amplitudes, |cn|, of the experimental setup where each mode is
generated and subsequently detected for both azimuthal (`) and
radial (p) modes. (b) Phase reconstruction of individual modes with
635 nm radial modes above and 1550 nm azimuthal modes below. There
are slight visible variations between the programmed modes shown in
the insets and the measured modes, due to crosstalk. (c) Verification of
the inter-modal phase measurement, φn, where a superposition of

LGp=0
`=±1 with a specific inter-modal phase was programmed and

measured for both wavelengths. The slight crosstalk and phase errors are
caused by deformations of the DMD surface.

From these results we can already use our approach to
extract the phases of the individual modes, which we show
in Fig. 2 (b). Here the reconstructed azimuthal vortex phases
are shown together with the programmed phase as insets.
Likewise, the binary phase jumps of the radial modes are also
evident. These tests serve to confirm that the DMD approach
is accurate for phase detection.
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Having tested the system with individual modes we now
move on to testing with superposition states to verify the
detection of inter-modal phases. To do this a superposition of
two LGp=0

`=±1 modes with a known phase shift between them
was programmed, i.e.,

Tn(s) = 9LG
`=−1(s)+ e

iφ9LG
`=1(s), (23)

where Tn is the encoded transmission function and φ is
the programmed inter-modal phase between the two modes.
As shown in Fig. 2 (c), the measured visible and NIR inter-
modal phases correspond well to the programmed values.
The measurements were repeated ten times as the phase
reconstruction was found to be sensitive to noise, as indicated
by the shaded error regions in the figure. The error for the
NIRmeasurements was found to be negatively affected by the
performance of our custom transimpedance amplifier used to
sample the intensities from the photodiode.

The aforementioned tests provide the necessary sanity
checks prior to reconstructing arbitrary wavefronts. In our
proof of principle tests we select well-known optical aber-
rations which we encoded onto a Gaussian beam. Using our
DMD wavefront sensor we attempt to reconstruct these, with
example results shown in Figure 3 for both wavelengths. The
simulated and measured wavefronts are in excellent agree-
ment. The slight differences of the measured wavefront with
respect to the simulated one was attributed to errors in the
inter-modal phase measurements.

V. DISCUSSION
For both the visible and NIR tests, the primary cause for
inaccuracy is the inter-modal phase measurement. This is
consistent with the verification tests in Fig. 2, where the inter-
modal phase error was also more prominent than the intensity
decomposition error. This is due to noise in the intensity
measurements, mainly caused by displacements of the beam
during the modal decomposition as a result of air-flow in the
laboratory, and to some extent to the compounding of errors
in Eq. (16).

A simple error analysis reveals that the percentage error
in the phase scales as 41I/|I9n −In|, where I

9
n is the signal in

the cosine or sin modes, I cosn or I sinn , and1I is the error due to
the detector. Consequently, the phase error will be negligible
for modes of reasonable power since 1I can be made very
small while In is high. On the other hand the phase error can
be high for modes of low modal power content (small In).
Fortuitously, our approach by very definition weights the
modes according to modal power, so it is the low power
modes that are least important in the reconstruction process.
The use of a higher resolution ADC will result in more accu-
rate reconstructions since the systematic error component of
1I will be reduced. For example, 16 and 24 bit ADCs have
dynamic ranges of 96 dB and 145 dB respectively, which
corresponds to nano-Watt intensity measurement accuracy
for incoming beams in the hundreds of milli-Watt range.
Taking this as a typical case we find the percentage error in
phase in the order of ≈10−6.

Provided a suitable photodiode is used, these sensitivities
are possible - and may even be exceeded by careful engineer-
ing - for both visible and NIR wavelengths. A caveat is that
the lenses and other optics used in the system must also be
engineered carefully as the focal length of a lens in the visible
region is slightly different to that in the NIR, for instance.

In addition, the accuracy of the reconstructed wavefront
is dependent on the number of modes used for the decom-
position and the complexity of the aberration, as described
in Sec. II. A higher-order Zernike aberration requires more
modes to reconstruct than a lower-order aberration. It has
been shown that with only a few modes very complex
phase structures can be mapped, often requiring fewer than
10 modes [26]–[29]. Further, in many practical applications
(such as thermal aberrations of high-power laser beams or
optical aberration of delivered beams) only a few lower-
order aberrations are required to describe the beam. This is
true even for the case of low to moderate turbulence, where
the first few Zernike terms describe most of the observed
wavefront-error. We can understand this by remembering
that the rms wavefront error scales with the square of the
Zernike coefficients (the sum of the squared coefficients to
be precise), so that small coefficients become negligible.
However, in very strong scattering media such as tissue or
very strong turbulence where scintillation is experienced, we
would expect our technique to require many modes for an
accurate reconstruction with high error due to low modal
powers. Our interest is in real-time analysis for real-time
correction, and in such cases correction would be equally
problematic.

The resolution of the DMD and the size of the incoming
beam sets an upper limit to the number of modes that can be
tested and for a SLM with 1920× 1080 resolution, this is on
the order of hundreds of modes [38]. We can expect similar
performance from aDMD. The radius of an LGmode is given
by w0

√
2p+ |`| + 1 and so for instance, with w0 = 0.5 mm

and a DLP3000 DMD which has a minimum dimension of
608 pixels with pitch 7.6 µm, an LG mode with ` = 5
and p = 5 will fill the DMD. This is equivalent to more
than 60 modes whereas less than 10 modes were needed for
accurate wavefront reconstruction in this work.

One of the benefits of our technique is the potential for
real-time wavefront reconstruction. A camera was used for
the visible measurements and so the decomposition was sim-
ply scripted at low speed (≈60 Hz hologram rate) whereas
for the NIR tests a photodiode was used which allowed
for faster rates. Initial NIR tests were performed in a sim-
ilar, scripted manner but a test was performed where we
loaded the holograms into the DMDs frame buffer and took
measurements at the maximum refresh rate of 4 kHz. The
results were identical to the ‘‘slow’’ scripted version, proving
that wavefront measurements can be done quickly using this
method.

Given that multiple measurements are required to recon-
struct a single wavefront, it is pertinent to elaborate on the
achievable wavefront measurement rates of this technique.
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FIGURE 3. Simulated and measured (reconstructed) wavefront
measurements for visible and NIR wavelengths of two aberration
examples with an inset intensity comparison for the trefoil case. The
differences in the intensity of the inset images are due to camera
sensitivity.

TABLE 1. Resulting wavefront measurement rate (Hz) for different DMD
refresh rates and mode-sets. Larger mode sets will result in higher
wavefront reconstruction accuracy.

Different applications require different wavefront measure-
ment rates, for instance, thermal aberrations typically are
slowly evolving over time frames of seconds, while moderate
atmospheric turbulence changes at rates of 100s of Hz [39].

Table 1 shows calculated wavefront reconstruction rates
(wavefronts per second) for several different mode-sets.
The maximum number of measurements required for the
approach in this paper is 3N − 2 where N is the total number
of modes in the set. We see that even assuming many modes
on a low speed device we are able to do wavefront sensing at
video frame rates, whereas for realistic mode sets on better
devices the rate becomes in the order of 100s to 1000s of Hz,
fast enough to be considered real-time in most applications.
A possible future improvement to the measurement algo-
rithm could make use of compressive sensing techniques and

a more targeted measurement regime, thus requiring fewer
measurements and resulting in even faster wavefront sensing.

VI. CONCLUSION
We have demonstrated a fast, broadband and inexpensive
wavefront-sensor built around a DMD. In our approach the
resolution of the reconstructedwavefront is based on the reso-
lution of the basis functions, which are purely computational,
allowing the use of simple devices such as photodiodes to act
as ‘‘single pixel’’ detectors. The combination of the DMD
and the implementation approach facilitates high-resolution
wavefront sensing in real-time across many wavelengths in
an inexpensive manner. We expect that devices based on
this novel approach will be invaluable for wavefront sensing
of NIR wavelengths where other approaches are either too
challenging or too expensive.
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