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ABSTRACT Recent compressed sensing (CS) approaches to utilize the similarity and redundancy of
magnetic resonance (MR) image patches to enable reconstruction from sparse k-space measurements. In this
paper, the patches’ similarity and redundancy are exploited by applying the low-dimensional manifold
model (LDMM). The basic assumption of the LDMM is that the image patches sample a manifold whose
intrinsic dimensions are much lower than the high-dimensional ambient space. MR images also exhibit a
low-dimensional patch-manifold structure. Based on this assumption, the dimension of the patch-manifold
is used as a regularizer in a variational formulation. The MR image is then reconstructed by keeping
the dimension of the patch manifold as small as possible. The proposed algorithm significantly increases
the quality of the reconstructed images. The algorithm is evaluated on two datasets containing 100 MR
images each. The reconstruction quality of the algorithm, gauged using three quality metrics: peak signal-
to-noise ratio, structural similarity index measure, and normalized root-mean-square error, is better than the

comparison methods.

INDEX TERMS MRI reconstruction, sparse recovery, compressed sensing, manifold learning.

I. INTRODUCTION

Magnetic resonance imaging (MRI) enables the visualization
of anatomical structures and the physiological processes of
the internal body. It is a noninvasive imaging technique and
is widely used in medical diagnosis and research. However,
the acquisition speed of MRI is slow as the MRI data is
obtained by sequentially traversing curves in the multidi-
mensional k-space. In spite of the advances in hardware,
the traversal speed is constraint by a combination of physical
and physiological conditions [1]. Various approaches have
been used to accelerate the MRI acquisition process. Parallel
imaging (PI) [2] is a hardware-based approach that combines
the signals received from several receiver coils with different
sensitivities to reconstruct the images. Another approach is
to apply the compressed sensing (CS) [3] theory to MRI
reconstruction [4], [5]. The basic idea of CS-MRI is to recon-
struct MR images from significantly fewer measurements
by utilizing the sparsity of MR images in an appropriate
transform domain. Three requirements must be fulfilled for
successful CS application [5]: transform sparsity, incoherent

The associate editor coordinating the review of this manuscript and
approving it for publication was Trivikram Rao Molugu.

88072

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

under-sampling, and a nonlinear reconstruction method. Con-
ventional CS-MRI reconstruction methods use universal spar-
sifying transforms, such as Total Variation (TV), Fourier
transform and wavelet transform [4], [6], [7]. Total variation
regularization exploits the sparsity of the gradients and is
often included in the objective function even when other
sparsifying transforms are present [4]. CS-MRI has also
been applied to dynamic MRI [8]-[12], which are sparse
in both the space and time domain. The main disadvan-
tage of applying universal global transforms is that they
are not specific to the image and the reconstruction may
suffer when the data is highly under-sampled because of
insufficient sparse representation [13]. This has led to the
use of patch-based sparsifying methods that can generate
data specific dictionaries, which can better capture the local
image features and thereby favoring better sparsities at much
higher under-sampling rates [13]-[17]. In [17], convolutional
sparse coding is successfully applied for MRI reconstruc-
tion. Patch-based non-local methods have also been used to
sparsify the MR images by using the similarity and redun-
dancy of Non- local patches [18]-[23]. Non-local methods
have been shown to preserve the image quality better than
the conventional CS construction [20]. Deep learning-based
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methods have also been applied to MRI reconstruction such
as [24], [25]. However, these methods require many training
examples which may not be possible to obtain in all situa-
tions, especially in medical images.

Recently [26] proposed a patch-based low dimensional
manifold model (LDMM) for image inpainting and denois-
ing. The basic assumption of LDMM is that the image patches
sample a manifold whose intrinsic dimensions are much
lower than the high dimensional ambient space. Based on this
assumption, the image is recovered by keeping the dimension
of the patch-manifold as small as possible. Split Bregman
iteration [27] is used to solve the optimization problem. The
key step requires solving a Laplace-Beltrami equation, which
is solved via the point integral method (PIM) [28], [29].

FIGURE 1. Patch manifold dimensions. [Left] an MR image.
Patch-manifold is constructed from patches of size 16 x 16. [Right]: local
dimension of the patch manifold color coded on the image. The local
dimensions of the patch-manifold do not exceed 12, which shows that
image has low dimensional structure while accommodating rich
structural information.

LDMM has been applied to general image processing [26],
scientific data interpolation [30] and hyperspectral image
reconstruction [31], where it has achieved state-of-the-art
results. MR images also exhibit low dimensional patch mani-
fold structure. As an example, we extract patches of size 16 x
16 from an MR image shown in Figure 1. The patches form
a point cloud, which sample a manifold embedded in R>°.
The local dimension of the point cloud is computed using the
technique described in [32]. The obtained piecewise dimen-
sions are color coded on the image as shown in Figure 1. The
dimension of the patch manifold does not exceed 12, which
shows that image has low dimensional structure while accom-
modating rich structural information. Inspired by the low
dimensional manifold model and non-local methods, we use
LDMM regularization to reconstruct MR image from highly
under-sampled k-space measurements. However, it should be
noted that MR image formation process is fundamentally
different as the MR data is partially available in k-space
rather than in the image space. In the context of dynamic
MRI reconstruction, manifold learning techniques [33] have
been used before. However, these approaches apply mani-
fold learning-based techniques to whole image and not to
image patches and thus fail to utilize the similarity and
redundancy of local patches of the MR images. For exam-
ple, in [34], [35], manifold learning is used to generate the
self-gating signal. Similarly, Chen et al. [36] employ locally
linear embedding [37] to learn a multidimensional self-gating
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signal, which is then used to group the k-space profiles.
The reconstruction is then performed using non-linear FFT
on the grouped profiles. Podder and Jacob [35] use graph
Laplacian-based regularization formulation to recover the
dynamic MR images. The structure of the manifold is esti-
mated using the samples acquired at the same sampling loca-
tion for each frame.

In Section II, we briefly describe the LDMM approach
followed by the proposed method in Section III. The results
are given in Section IV. Section VI concludes the paper. This
work expands upon the work presented in a conference. !

Il. LOW DIMENSIONAL MANIFOLD MODEL

Recently, LDMM [26] was proposed for general image pro-
cessing tasks such as subsampled image reconstruction and
it showed promising results. For a given image s, let P(s) be
the collection of all patches of size \/3 X \/2 obtained from
the image. P(s) forms a point cloud in R¢. The basic idea
is that this point cloud samples a smooth low dimensional
manifold embedding in R¢. The dimensions of the patch
manifold dim(M) can be used as a regularizer. The local
dimensions of the manifold embedded in R? are calculated
using the following formula [26]

d
dim(M) = Y |V e))

j=1
where @ = {oz,-}l”.i=1 are the coordinate functions on M,
ie. ai(x) = x4,Vx = (x!,---,x9) € M. Given the

above definition, the optimization problem for the recovery
of image can be written as

d
argmin ) IV (720 + 195 —ml? ()
S,M j=1
subject to P(s) C M, 3

where ||vMaj||i2(M) = [\ IVame(x)[?dx and @ is the
measurement operator that causes some damage to the image
and m represents the acquired measurements.

The optimization (2) is solved using iterative method.
The key part of the algorithm is to use point integral
method (PIM) [28] to solve the Laplace-Beltrami equation on
the patch point cloud, and it has shown much better results as
compared to using graph Laplacian. The details are presented
in the next section, where we explain the procedure with
respect to MR image reconstruction.

lll. PROPOSED MIETHODOLOGY
The under-sampled MRI data (k-space measurements) can be
modeled as:

m=F,s+n, 4

where s € R" is the MR image to be reconstructed, m € C" is
the acquired k-space data and F,, = UF is the under-sampled
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Fourier transform, where U is the m x n undersampling
matrix. Inspired by the LDMM framework [26], we assume
that the patches of the MR image s sample a smooth low
dimensional manifold M embedded in a high dimensional
space R?. Let P(s) be a collection of all such patches, such
that each pixel of the image s appears with same frequency in
different patches. This overlapping strategy for the generation
of patches will allow faster computations in the reconstruc-
tion algorithm [22] (See Equation (13)). P(s) can be thought
of as a matrix of size d x n, where d and n are the patch and
image sizes in pixels, respectively. Each column of the matrix
P(s) represent one patch and rows of the patch matrix can be
seen as shifted version of the image. Using dimension of the
patch manifold as regularizer, the optimization problem for
the recovery of MR image can be written as:

d
argmin Y |V A1jll7a ) + AIFus —ml®, (5)
S,M /:1
subjectto P(s) C M,

An iterative procedure is used to solve the above optimiza-
tion problem. In each iteration, first we update the image and
manifold coordinate functions «;, while keeping the manifold
fixed. Later, the manifold is updated. Update of M is straight
forward (M = {a1(x), --- , ag(x) : x € M}). The difficult
part is to solve Equation (5) for image and coordinate func-
tions for which split-Bregman iteration is used [27]:

d
ot = = arg min Y IVl 2 g+l (Ps)) = P(s) + O
j=1
(6)
s* = argmin A|Fys — m|* + plla(P(s)) — Ps) + QI* (7)
0" = 0+ a(P(s)) — P(s)
a1(P(s))
where a(P(s)) = : € R i(P(s) =
ay(P(s))

(@i(x))xeP(s) and p is the penalty parameter.

The solution of Equation (6) by standard variational meth-
ods is given by the following Laplace-Beltrami equations
over the manifold

Apu) + 1Y~ 8 — ) —v(y) =0, xeM
yeP(s)
a(u)

—()— x e oM,

®)

where u is any one of the «;s, v is the given function on the
manifold, (M) is the boundary of M, and n is the outward
normal.

If the manifold is represented by a mesh, the finite element
method is quite effective in solving the above PDE. However,
for a unstructured manifold, it is very difficult to solve (8).
Usually, graph Laplacian operator is used to approximate the
Laplace-Beltrami of the manifold. However, as pointed out
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in [26], graph Laplacian is an inconsistent method due to the
lack of boundary correction. In [26], the authors solve the
Laplace-Beltrami equation using the Point Integral Method
(PIM) [28], [29]. The PIM approximates (8) with an integral
equation which can be easily discretized. In PIM, the solution
to Equation (8) can be well approximated by the solution of
the following integral equation [26], [28]

/ (u(x) = VDR, (x, y)dy 4+ put Y RiCx, u(y) — v(y)=0
yeP(s)

©))

where R;(x, y) = Crexp(—7— 'x ) The integral equation can be

discretized easily as:

|M| ZRz(xl,xj (u(x;) — u(xy)) + ut Z

J=1 j=1
R (xi, xpuxj) —v(x)) =0 (10)

where | M| is the volume of M.
Using matrix notation, Equation 10 can be written as:

L+ pWiu = pWy, (11)

where u = (u(xy), - - -, u(xy))7, v is the corresponding row if
(P(s) — Q) and W is a n x n weight matrix with entries W;; =
R:(x;, xj). D is a diagonal matrix with d; = Z]'-Ll W;; and
L = D—W . The linear system in Equation (11) is asymmetric
and is solved using generalized minimum residual method.

The second equation of the Bergman iteration (7) is a least
square problem. The solution is given by

(AFF, + uP*P)s = AF*m + uP*AT + Q) (12)

where AT = «(P(s)) and the superscript * indicates the
adjoint of the given operator. P*P is a diagonal matrix and
if every pixel appears with same frequency (A) in different
patches, then P*P = AI. FF, canbe expressed as F*U*UF,
where U*U is also a diagonal matrix. Using above, Equa-
tion (12) can be rewritten as:

(AF*U*UF + uAIF*F)s = AF;m + MP*(AT) + 0),
which leads to direct analytical solution for s:
s = F*QU*U + pAD”'U*m + nFP* AT + 0)). (13)

If the sampling strategy for the generation of patches is
such that pixels don’t appears with same frequency in dif-
ferent patches, then (AF'F, + pwP*P) cannot be diagonal-
ized and Equation 7 needs to be solved using conjugate
gradient descent algorithm. The overall algorithm is given in
Algorithm 1.

A. IMPLEMENTATION

The algorithm was implemented in Matlab on a Ubuntu work-
station with Intel core i7-6700K processor and 16GB RAM.
The weight matrix W contains values to 25 nearest neigh-
bors. VLFeat package [38], which implements a randomized
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FIGURE 2. Sample images from the datasets. [First two]: Sample images from IXI dataset [40] [Middle two]: Sample images from the Knee
dataset [41] [Last two]: Sampling radial masks used in the experiment corresponding to 10% and 30% sampling rates.

Algorithm 1 Proposed Compressed Sensing MRI Recon-
struction Algorithm

Input : Initial guess of the MR image s°, Q° =0
Output: Restored MR image s

1 while ||s*T1 — s%||/||s%|| > tol do

2 Compute the N x N weight matrix W from P(s%)

12
—llx;ﬂx_,l\ ), Xi, Xj € P(s%) and

with Wj; = exp(
N = |P(s)l;

3 Compute the matrix L = D — W, where D is
diagonal matrix with D; = Zf\]:l Wi

4 Solve the linear system (L + uW)U = uWV, where
V= (Pe - oH;

5 Update the image s ! using Equation (13) or
Equation 14;

O = Qf + AT — P(s*Y;

7 end

and approximate k-d forest [39], is used to search the near-
est neighbors. This enabled fast nearest neighbor queries in
high dimensional data points. The linear system in Equa-
tion (11) is asymmetric and is solved using Matlab implemen-
tation of generalized minimum residual method (GMRES).
On average the algorithm took about 12 seconds/image
to converge. The convergence condition is [|sKH1 — sK1/
15| < tol.

If we assume that the k-space measurements are obtained
noise free, i.e m = Fys, then the solution to (7) can be
obtained by the following equation,

1~ -
s = F*(XU*UFP*(AT + Q)+ U*m), (14)

where U is the binary inversion of the undersampling
mask U.

IV. RESULTS

We evaluated the performance of our algorithm on two pub-
licly available datasets of MR images (1) IXI database (the
brain dataset) [40] and (2) Knees dataset [41]. We randomly
selected 100 MR images from both the datasets for eval-
uation. The evaluations are carried out at sampling rates
of 10% and 30% corresponding to 10x and 5 x acceleration
rates. Radial trajectories are used to sample the k-space. The
radial trajectories are less sensitive to motion and therefore
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are preferred choice [42], [43]. Figure 2 shows some sample
images from the two datasets and the radial sampling masks
used in the experiment.

It is important to note that our experimental datasets are
real-valued MR images and the K-space data is generated
by taking the Fourier transform of the images. Experiment
on complex-valued data is performed in Section V-B. The
reconstruction error is gauged using three image quality met-
rics: normalized root-mean-square error (NRMS), structural
similarity index measure (SSIM) and peak signal-to-noise
ratio (PSNR). NRMSE is defined as:

lls — 5l
511

NRMS(s) = (15)
where s and § are the reconstructed and the fully sampled MR
images. SSIM is a perceptual metric that quantifies image
quality degradation with reference to the original image. The
PSNR is defined as

peakval®

PSNR(s) = 10 log 1ot ®
) 2810 MSE(s, §)

(16)
where peakval is the maximum value of the signal, which in
our case is 1. MSE(s, 5) is the mean-squared-error between
the reconstructed and the fully sampled image. Lower values
of NRMS and higher values of SSIM and PSNR indicate
good reconstruction quality. Matlab functions were used to
compute the three quality metrics with default parameters.
The proposed method is compared against shift-invariant
discrete wavelet transform based conventional CS-MRI
method (SIDWT) [44], a dictionary learning-based method
(DLMRI) [13] and a graph-based redundant wavelet trans-
form method (GBRWT) [22]. Both DLMRI and GBRWT use
overlapping images patches to sparsely represent the MR
images. The default parameters for these methods are used
in the image reconstruction.

Figure 3 shows the PSNR, SSIM and NRMS error graphs
of the proposed and the comparison methods on 100 ran-
domly chosen MR images from IXI brain dataset. Figure 5
shows a representative reconstruction of one MR image from
the dataset at 10% and 30% sampling rate along with the
error map of the zoomed in portion of the image. Simi-
larly, Figure 4 shows the error graphs for the knee dataset
and a representative reconstruction is shown in Figure 6.
Overall, the proposed algorithm was able to reconstruct
MR images with better PSNR, SSIM and NRMS than the
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FIGURE 4. Evaluation on Knee dataset [41].

comparison methods. Only at 10% sampling rate, the SSIM
of the proposed method on the IXI Brain dataset is slightly
worse than the GBRWT method. But even in this case,
the PSNR and NRMS are better than GBRWT.

The parameter values of the proposed algorithm are
adjusted by first running the algorithm on few examples not
present in the evaluation set with various parameter settings.
The parameters giving the best reconstruction are then cho-
sen. For IXI brain dataset, the © = 1, patches of block
size 8 x 8 are used, with the stride of 1 x 1. The weight
matrix is truncated to the 25 nearest neighbors. During the
parameter adjustment phase, we noticed that for a highly
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undersampled reconstruction, a relatively higher o value is
required for the Gaussian weight function. We think that this
allows for the neighboring patches to have a greater effect on
the reconstruction of the patches. Therefore, o is set to 0.3
and 0.1 for the sampling rates of 10% and 30%. For the Knee
dataset, u = 1, patches of block size 24 x 24 are used, with
the stride of 2 x 2. The o is set to 0.6 and 0.3 for the sampling
rates of 10% and 30%. These parameter values are then kept
fixed for the whole dataset. The trade-off between fitting the
observations and reducing the model complexity is handled
by the parameter A. For both datasets in this section, however,
we assume that the k-space measurements m are noise free,
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Fully Sampled Zero Filled

SIDWT

i ™

10% sampling

Error Map Zoomed in

30% Sampling

Zoomed in

Error Map

GBWRT PROPOSED

FIGURE 5. Visual image quality comparison on the IXI brain dataset at a sampling rate of 10% and 30%. The red box is zoomed-in in the

subsequent row along with the error map compared to full reconstruction.

hence Equation (14) is used to update the current estimate
of image (line no 5 of Algorithm 7). Note, that (14) does
not include the parameter A, as only the unobserved part of
k-space is updated.

We used the output of SIDWT as initial guess s” in Algo-
rithm 7. We noted that for the sampling rate of 10%, using
either SIDWT or zero-filled reconstruction as s” gave same
performances. However, for 30% sampling rate, the recon-
struction was better with SIDWT as s” than zero-filled recon-
struction. It should be mentioned that the comparison method
GBRWT also uses SIDWT as initial guess. In Section V,
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we evaluate the effect of the initial image on the recon-
struction of the proposed method. At 30% sampling rate,
the weight matrix computation (Line 2 of Algorithm 7) can
be moved outside the while loop, i.e weight matrix W is com-
puted once and then kept fixed. This did not compromise the
accuracy but reduced the computational time of the algorithm.
On average, the algorithm took 20 seconds/image to converge
on IXI brain dataset and 4 seconds on Knee dataset. On knee
dataset, the algorithm required fewer iterations to converge
to the solution. This may be due to the bigger patch block
size.
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Fully Sampled Zero Filled SIDWT

10% sampling

Error Map Zoomed in

30% sampling

Zoomed in

Error Map

.

DLMRI GBWRT PROPOSED

FIGURE 6. Visual image quality comparison on the Knee dataset at a sampling rate of 10% and 30%. The red box is zoomed-in in the subsequent

row along with the error map compared to full reconstruction.

V. DISCUSSION

A. EFFECT OF INITIAL REFERENCE IMAGE

In the proposed algorithm the weight matrix W is com-
puted using the patches from the current estimate of the
MR image. If a good initial reference image is available
then the weight matrix can be computed from the ground
truth image once and not updated in each iteration. This
significantly improves the image reconstruction quality and
computation time. To evaluate the effect of the initial ref-
erence image, a fully sampled image and SIDWT-based
image is used as reference image for both the proposed and
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GBRWT method [22]. For the proposed method, the weight
matrix is computed once from the initial reference image
and not updated again. Figure 7 shows the reconstruction of
an MR image of 3DMR chest at 10% sampling rate using
SIDWT-based and a fully sampled image as initial guess. The
reconstruction is compared against GBRWT [22], where also
a SIDWT and a fully sampled image is used as a reference
image. The error maps are also shown with different colorbars
for the two different initializations. Table 1 lists the values of
the three quality metrics for both initializations, which shows
that the proposed method outperforms GBRWT in both cases,
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SIDWT-based reference image
Proposed

GBWRT

Fully sampled reference image
GBWRT

FIGURE 7. 3DMR Chest reconstruction at 10% undersampling rate using SIDWT and fully sampled image as reference. Bottom row shows the error
map. The proposed method outperforms GBWRT in both cases, specially when better estimate for the initial image is available. See Table 1 for
qualitative comparison. The experiment indicates that the proposed method has the greater ability to use the reference image.

Fully Sampled FullySampled + noise

PSNR=29.04

SIDWT Recon

GBWRT Recon Proposed Recon

PSNR=29.15

PSNR=32.20

FIGURE 8. T2 Weighted Brain image reconstruction at 30% undersampling rate and Gaussian noise of o = .05. The reconstruction of the proposed
method successfully suppresses noise. See Table 2 for qualitative comparison with GBWRT at various noise levels.

TABLE 1. 3DMR Chest reconstruction at 10% undersampling rate using
SIDWT and fully sampled image as reference.

SIDWT Fully Sampled
GBWRT |Proposed GBWRT|Proposed
PSNR 23.16 | 23.23 | 31.22 | 42.66
SSIM 0.57 0.58 0.90 0.99
NRMS 0.22 0.21 0.08 0.02

Quality Metric

more so when the better estimate of the MR image is available
(PSNR of the proposed method is 42.66, while for GBWRT
it is 31.22), indicating that the proposed method has greater
ability to exploit the reference image.

B. EFFECT OF NOISE

To evaluate the effect of noise on the proposed method,
we added Gaussian noise with std of o = {.02, .05, .1} on
a fully sampled T2 weighted brain image. The reconstruction
was carried out at 30% sampling rate. The block size for

VOLUME 7, 2019

the generation of patches was set to 12 x 12 with stride
1 x 1. The weight matrix is truncated to 25 neighbors with
o = .l and u = 1. Equation 13 is used to update the
current estimate of image in line no 5 of Algorithm 7. X is
empirically determined to seek a balance between fitting
the measurements and finding a reasonably low dimensional
patch manifold. We have observed that A = 100 gives good
result in the presence of noise. The method is compared
against GBWRT. For both methods, SIDWT-based recon-
struction was used as s°. Table 2 lists the values of the
three quality metrics for three different noise levels, which
shows that the proposed method outperform in all three
quality metrics at various noise levels. Figure 8 shows the
reconstruction at noise level & = .05. The reconstruction
shows the proposed method can suppress noise much better
than GBWRT and SIDWT. The superiority of the proposed
method in noisy compressive sensing in Table 2 comes from
the low dimensional manifold model employed. As the noise
level increases, the patch-manifold dimensions also increase.
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TABLE 2. T2 weighted Brain image reconstruction at 30% undersampling
rate at various noise levels.

o =0.02 o =0.05 c=0.1
Quality Metric| GBWRT |Proposed| GBWRT|Proposed| GBWRT |Proposed
PSNR 35.05 | 35.31 | 29.15 | 3220 | 24.11 | 27.02
SSIM 0.8967 | 0.95 0.61 0.90 0.35 0.54
NRMS 0.12 0.11 0.24 0.16 0.43 0.29

By regularizing the manifold dimensions, the effect of noise
on the reconstruction is reduced. Secondly, the parameters are
kept fixed for the whole experiment, and not fine-tuned for
various noise levels.

VI. CONCLUSION

The patch manifold of MR images exhibit low dimensional
structure as illustrated in Figure 1. The low dimensionality
of the patch manifold of the MRI images is used within the
compressed sensing framework. The optimization problem is
solved using split-Bregman iterations along with point inte-
gral method (PIM). The patches are generated such that each
pixel appears with same frequency in different patches. With
this setting, the current estimate of the image can be obtained
using a direct analytical solution. The proposed method sig-
nificantly enhances the anatomical structures of the recon-
structed images. The reconstruction quality of the algorithm,
gauged using the three quality metrics: peak signal-to-noise
ratio (PSNR), structural similarity index measure (SSIM) and
normalized root mean square error (NRMS), is better than
the comparison methods. Future work will evaluate the utility
of the proposed framework for dynamic MRI and 3-D MRI
reconstruction.
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