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ABSTRACT A home energy management system (HEMS) can potentially enable demand response (DR)
applications for residential customers. This paper presents a detailed pricing-based DR for a smart home
with various types of household appliances considering customer satisfaction. A wide variety of household
appliances with different characteristics, together with energy storage units (ESUs) and distributed energy
resources (DERs) can be flexibly incorporated in the proposed scheme. Besides, with a developed satisfaction
model suitable for different types of household appliances, the proposed HEMS can provide multiple flexible
solutions with different user satisfaction levels to occupants. In addition, other different DR strategies
such as demand-limit-based DR and injection-limit-based DR can be easily adapted to the formulated
scheme in this work. The numerical results reported in this paper demonstrate the effectiveness of the
proposed scheme. The proposed scheme is generally applicable and valuable for any other kinds of the
smart home.

INDEX TERMS Demand response (DR), distributed energy resource (DER), energy storage units (ESUs),
home energymanagement system (HEMS), roof-mounted photovoltaic (PV), smart home, smartmeter, smart
grid.

LIST OF ABBREVIATIONS
t Index of time periods.
i Index of household appliances.
T Set of time periods.
A Set of household appliances,

A = Ain ∪Anon ∪Ather
Ain Set of interruptible household appliances.
Anon Set of non-interruptible appliances.
Ather Set of thermostatically controlled appliances.
$1 The weight corresponds to J1
$2 The weight corresponds to J2.
λbuy Price of electricity purchased from the

grid (cents/kWh).
λsell Electricity price sold back to the grid (cents/kWh).
1t Length of time step (h).
ζi Customer dissatisfaction associated with the

appliance i.

The associate editor coordinating the review of this manuscript and
approving it for publication was Salvatore Favuzza.

εi Coefficient representing the importance of
appliances.

TL,i Time length of appliance i used from start to end.
Li Allowed the beginning time of the task for the

appliance i.
Ui Allowed the deadline of the task for the

appliance i.
NT Number of all the time steps of a day.
PAPPR,i Rated power of the appliance i.
EAPP
i The required total energy of the task of the

appliance i.
λ Constant (1/3600000) for unit conversion.
cw Specific heat of water (J

/
kg
/
◦C).

ρwh Demand for hot water drawn (kg).
Tc,i The most comfortable temperature of the

thermally controlled appliance i determined
by the user.

Tcold Temperature of inlet cold water (◦C).
θdni Minimum desired temperature (◦C).
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θ
up
i Maximum desired temperature (◦C).
M Mass of water in full storage (kg).
T0 Initial water temperature in the water heater

storage (◦C).
η,γ Coefficient denoting the thermal condition

surrounding the air conditioner.
Wout Outdoor temperature (◦C).
ηdESS Discharging efficiency of the ESUs.
ηcESS Charging efficiency of the ESUs.
RdESS Maximum charging rate of the ESUs.
RcESS Maximum discharging rate of the ESUs.
S iniESS Initial state-of-energy of the ESUs (kWh).
Smin
ESS Minimum allowed state-of-energy of the

ESUs (kWh).
Smax
ESS Maximum allowed state-of-energy of the

ESUs (kWh).
PPV Forecasted power generation from

PV system (kW).
N1,N2 Positive integer value.
Pmust Power of the non-controllable household

appliances must run (kW).
J1 Operation cost of HEMS (cents/kWh).
J2 Objective function of the user’s dissatisfaction

level.
Pbuy Power when buying electricity from the

grid (kW).
Psell Power when selling electricity back to the

grid (kW).
Fi Finishing time of the appliancei.
uAPPi Binary variable: 1 if the appliance is on, 0 else.
PAPPi Power consumption of the appliance i.
Tu,i Temperature (air, water, etc.) determined by the

schedule plan and directly perceived by the
user for the appliance i (◦C).

PuseESS Power used to satisfy appliances from
ESUs (kW).

PsellESS Power injected to grid from ESUs.
µESS Binary variable: 1 if ESUs is charging, 0 else.
PdESS Discharging power of the ESUs (kW).
PcESS Charging power of the ESUs (kW).
SESS State-of-energy of the ESUs (kWh).
PusePV Power use to satisfy household loads from

PV (kW).
PsellPV Power injected to grid from PV (kW).
µgrid Binary variable: 1 if grid supplying power, 0 else.

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
Smart grid is the vision for enhancing the efficiency
of electricity utilization from the production to end-user
points, together with effectively all generations and enabling
consumer participation in demand response (DR) pro-
gram [1], [2]. DR has been envisioned to deal with supply-
limit events by selectively curtailing system loads, whereby
regaining balance between power demand and supply.

Through the two-way flow of information between suppli-
ers and consumers, the grids can encourage users’ partic-
ipation in energy savings and cooperation through a DR
mechanism [3]. Although the utilization of DR strategies
can be considered mature for industrial customers, it is a
relatively new concept for residential households responsible
for approximate 40% of energy consumption in the world [4].

Smart meter and home energy management sys-
tem (HEMS) has a leading role in managing DR activities in
residential areas [5]. A HEMS is responsible for monitoring
and controlling the operation of in-home appliances and
providing load shifting and shedding according to a specified
set of requirements [6]. Developing efficient DR model
and efficient optimization algorithms for coordinating their
operations are two critical problems in a HEMS in a smart
home, which have received considerable attention recently.

There are various types of household appliances that
pro-vide several pros and cons in terms of effective
HEMS-based operating strategy. Home appliances can be
classified into controllable appliances and non-controllable
appliances according to the controllability [7]. According
to the operational characteristics, controllable home appli-
ances are divided into three types: (1) non-interruptible appli-
ances (NIA), such as dishwasher (DW), rice cooker (RC),
washing machine (WM), etc.; (2) interruptible appli-
ances (IA), such as electric vehicle (EV), pool pump (PP),
etc.; (3) thermostatically controlled appliances (TCA), such
as water heater (WH), air conditioner (AC), etc.; The NIA
are required to follow predefined steps of operation, and the
operation has to be run to completion once it starts. Unlike
the NIA, the IA is allowed to operate at any time within a
user’s defined time interval, and it can be shut down during
operation. However, the operation of the TCA depends on the
thermal inertia of the water or the air inside the house.

In recent years, distributed energy resources (DERs) such
as roof-mounted photovoltaic (PV) and small wind turbine,
have become another import energy source of the smart home.
Although distributed generation poses significant challenges
to HEMS operation due to the randomness power output,
it presents more demand flexibility to end users. Energy stor-
age units (ESUs) can be applied to deal with such challenges.
The ESUs can not only store the surplus energy produced
by distributed generations but also provide an opportunity to
make a profit from electricity trade with the grid, by buying
and storing electricity at a low electricity rate and sells it back
to the grid at a desired high electricity rate.

To capture the benefits of the above-demonstrated aspects
as well as to cover the customers’ desired comfort prefer-
ences and lifestyles, an effective HEMS structure is strongly
required.

B. RELATED WORKS
Considerable previous publications on designing HEMS for
scheduling target appliances, such as WM, DW, and tumble
dryer, have been reported [5], [6]. A control strategy of
freezer and refrigerator cycles is proposed in [7] to reduce
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the peak load. Several studies in the literature propose HEMS
with priced-based DR programs for minimizing the total elec-
tricity payment, by shifting the consumption to the periods
of relatively low electricity prices. Authors of [8] present a
HEMS framework for automatically and optimally operating
appliances in a household while considering the tradeoff
between minimum electricity bill and maximum consumer’s
utility.

In [9], a DR program based on ‘‘user-expected price’’ for
a smart household aiming at lowering the total electricity
cost by charging and discharging the ESUs at off-peak and
peak price periods, respectively. Also, with an introduction
of EV in residential markets, EV load can be performed
within a home for peak clipping in certain periods when it is
at home. A collaborative evaluation of dynamic-pricing and
peak power limiting-based DR strategies with a bi-directional
utilization possibility for EV and ESUs is investigated in [1].

In recent years, multiple researchers have done some work
to tackle PV integration issues in household operation with
DR program. Authors of [10] apply a HEMS based on neural
networks with experimental results for a household, includ-
ing PV and ESUs. However, this study does not consider
the impacts of varying prices as well as other types of DR
strategies.

Depending on load types and requirements of DR pro-
grams available in different regions, different algorithms and
models can be applied [5], [11]–[13]. Several thermal loads
such as ACs and WHs that have an essential role in customer
satisfaction are neglected inmost of the above studies. In [13],
issues of optimal appliance scheduling to minimize the elec-
tricity bill is studied. However, such programming will cause
a wait time for operation of each appliance.

As surveyed in this paper, most of the mentioned papers
fail in addressing the customers’ desired comfort preferences
and lifestyles. In [14] and [15], the users’ satisfaction in the
DR programs is considered. However, the model cannot be
used to measure the satisfaction on the thematically con-
trolled appliances, and only a single optimum solution can
be provided to occupants by using the method.

C. CONTRIBUTIONS
This paper presented a detailed pricing-based demand
response model for a smart homewith various types of house-
hold appliances, considering customer satisfaction. In the
scheme, a wide variety of household appliances are divided
into different kinds of devices according to their characteris-
tics. Then amulti-objective optimization problem is built with
the user satisfaction level being considered. Furthermore,
a PV-based DER, EV, ESUs, and all types of both thermostat-
ically and non-thermostatically controllable appliances are
taken fully into consideration in the proposed scheme.

To the best of the author’s knowledge, this is the first
study in the literature combining all aforementioned oper-
ational possibilities in a single MILP-based HEMS frame-
work. A wide variety of household appliances with different
characteristics, together with energy storage units (ESUs) and

distributed energy resources (DERs) can be flexibly incor-
porated in the proposed scheme. Besides, with a developed
satisfaction model suitable for to different types of household
appliances, the proposed HEMS can providemultiple flexible
solutions with different user satisfaction levels to occupants.

Table 1 shows the taxonomy of methodologies for design-
ing DR-Based HEMS.

TABLE 1. Taxonomy of the model used for designing DR-based HEMS.

D. ORGANIZATION
The following paper is organized as follows. Section II pro-
vides the methodology employed in this paper. Section III
presents the case study. Discussions and conclusions are pro-
vided in Section IV and V, respectively.

II. METHODOLOGY
The block diagram of the designed HEMS is presented in
Fig. 1. As shown in Fig. 1, the HEMS regulates the operation
of smart household considering price-based, and other signals
from the power company owned a smart meter, the fore-
casted output from distributed generations, etc., together with
load priority and comfortable level set by the customer. The
schematic diagram of the optimization problem is shown
in Fig. 2.

FIGURE 1. Block diagram of the designed HEMS.

Firstly, 24h day-ahead hourly electricity load and PV out-
put are forecasted based on historical data and weather fore-
cast information. Next, the optimization problem of DR is
formulated based on the input data of predicted PV output
and electricity load, electricity price from the Load Serving
Entity (LSE), initial state-of-energy (SOE) of ESUs, together
with the user desired input by the house-owner. The rest of
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FIGURE 2. The multi-objective optimization problem for HEMS.

this section describes the proposed MILP-based model in
details.

A. MULTI-OBJECTIVE FUNCTION
The multi-objective problem demonstrated in Fig. 2 is pre-
sented as a single objective function by using weights
attached to the two different objective functions, as shown
in Equation (1):

min $1J1 +$2J2 $1 +$2 = 1, $1, $2 ∈ [0, 1] (1)

The expression of Equation (1) provides an opportunity for
the customers to decide the combinations that better fit their
interests and meet their requirements, by adjusting ω1 and
ω2 · $2. σ2 can reflect the desired user satisfaction level.
The higher $2 is, the greater the need there is for satisfac-
tion. J1 and J2 in Equation (1) are expressed as (2) and (3),
respectively.

J1 =
∑
t∈T

[
λbuy · Pbuy(t) ·1t − λsell · Psell(t) ·1t

]
(2)

J2 =
∑
i∈A

ζi (3)

The model of J2 which is expressed by a summation of
weighted comfort of all appliances will be depicted later.

B. CONSTRAINTS OF HOUSEHOLD APPLIANCES
The limitations for household appliances scheduling are
about operation limits and user comfort demand for differ-
ent types of controllable appliances. The limitations for the
controllable household appliances are presented as follows:

1) NON-INTERRUPTIBLE APPLIANCES
The NIAs are required to follow predefined steps of oper-
ation, and the operation has to be run to completion once
it starts. The power consumption of the non-interruptible
appliance i is considered to be constant, and the duration of
the task lasts for as long as TL,i. Assuming [Li,Ui] ∈ T is
the preferred time interval in which the NIAs i is expected

to be used. It denotes that the household i should be started
later than Li, and should be finished earlier than Ui. It can be
easily obtained that Fi ∈

[
Li + TL,i,Ui

]
. Note that Ui − Li

should be no less than TL,i. An illustrative example of the
non-interruptible appliance with TL,i = 4h is shown in Fig. 3.

FIGURE 3. An illustrative example of non-interruptible appliances.

Given the above, the limits for the non-interruptible appli-
ance throughout the scheduling horizon should satisfy (4)
and (5). Limit of (6) which has been used in the unit commit-
ment optimization problem [19] for ensuring the minimum
on-line time of generations has been employed here to satisfy
the non-interruptibility of the appliances.

uAPPi (t) = 0 ∀t ∈ [1,Li) ∪ (Ui, NT] , ∀i ∈ Anon (4)

PAPPi (t) = uAPPi (t) · PAPPR,i ∀t ∈ [Li,Ui] , ∀i ∈ Anon (5)
j+TL,i−1∑

t=j

uAPPi (t) ≥ TL,i ·
(
uAPPi (j)− uAPPi (j− 1)

)
∀j ∈

(
Li,Ui − TL,i + 1

]
, ∀i ∈ Anon (6)

To reflect the satisfaction of customers in the scheduling
programs, a weighted L1 regularization term [20] which is
commonly used in automatic model selection is employed to
model the customer dissatisfaction on the NIA, as expressed
in Equation (7):

ζi =

Ui∑
t=Li

(1+ εi · t) · uAPPi (t) ∀i ∈ Anon (7)

Note that Ei in Equation (7) is positive constants. Considering
Equation (6) ensures the duration of the task lasting for as
long as TL,i, minimizing ζi means that the time slots are
enforced to be as small as possible. In this case, the task of
the NIA can be completed as earlier as possible, which is
favorable to the customer.

2) INTERRUPTIBLE APPLIANCES
As the NIAs, the IA is considered to work between Li andUi.
Unlike the NIAs, the IAs, such as EVs (In this paper, we treat
EV as a charging load, that is, we do not consider the situation
that the EV feed the energy back to the power grid) and PPs,
can change the power in a range

[
0,PAPPR,i

]
continuously.

But they should be provided with the required energy during
the whole operation cycle. An illustrative example of the
interruptible appliance with the required energy of 3h · PAPPR,i
is shown in Fig. 4.

Given the above, the limits for the interruptible appli-
ance i throughout the scheduling horizon should satisfy the
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FIGURE 4. An illustrative example of interruptible appliances.

constraints of (8)-(11). Equation (11) is used for measuring
the dissatisfaction on the interruptible appliance.

PAPPi (t) = 0 ∀t ∈ [1,Li) ∪ (Ui,NT] , ∀i ∈ Ain (8)

Ui∑
t=Li

PAPPi (t) ·1t ≥ EAPP
i ∀i ∈ Ain, ∀t ∈ T (9)

0 ≤ PAPPi (t) ≤ PAPPR,i ∀t ∈ T, ∀i ∈ Ain (10)

ζi =

Ui∑
t=Li

(1+ εi · t) · uAPPi (t) ∀i ∈ Ain (11)

3) THERMOSTATICALLY CONTROLLED APPLIANCES
Typical TCAs including AC, WH, and FR, etc., in which
the temperature can be adjusted by the amount of electrical
energy consumed. In this study, WH and AC, which are the
most critical TCAs in a smart home, are modeled in detail.
The model of WH can be expressed as constraints (12)-(16).
Constraints in (12) ensure the power of WH change in a
permitted range. Constraint (13) and (14) state that the WH
should satisfy the users’ demand at each step. Constraint
(15) ensures that the heat storage at each time step must not
exceed the maximum limit of the water storage. Limitation
(16) presents the boundaries of the temperature range.

0 ≤ PAPPi (t)≤PAPPR,i ∀t ∈T, ∀i∈WH (12)

t∑
k=1

PAPPi (k) ·1t ≥
t∑

k=1

ρwh(t) ∀t ∈ T, ∀i ∈WH (13)

ρwh(t) = λ · m(t) · cw ·
(
Tu,i(t)− Tcold

)
∀t ∈ T, ∀i ∈WH (14)

t∑
k=1

PAPPi (k) ·1t ≤ λ ·M · cw ·
(
θ
up
i − T0

)
+

t∑
k=1

ρwh(k) ∀t ∈ T, ∀i ∈WH (15)

θdni ≤ Tu,i(t) ≤ θ
up
i ∀t ∈ T, ∀i ∈WH (16)

The constraints for the AC are presented as (17)-(19).
Constraint (17) is imposed on the power of AC to specify
its possible operating range. Constraint of (18) presents the
relation between the indoor temperature and the energy con-
sumption of AC. Constraint (19) gives the limits of the desired
room temperature.

0 ≤ PAPPi (t) ≤ PAPPR,i ∀t ∈ T, ∀i ∈ AC (17)

Tu,i(t) = Tu,i(t − 1)+ η
[
Wout(t)− Tu,i(t − 1)

]
+γ · PAPPi (t)·1t ∀t > 1, t ∈ T, ∀i ∈ AC

(18)

θdni ≤ Tu,i(t) ≤ θ
up
i ∀t ∈ T, ∀i ∈ AC (19)

The following linear piecewise function shown in Fig. 5 is
applied to measure the user’s satisfaction for the TCA. It can
be seen that deviation from Tc,i will incur a penalty to the
objective function.

FIGURE 5. Dissatisfaction function for thermostatically controlled
appliances.

By adding some variables and constraints in (20), the dis-
satisfaction function is shown in Fig. 5 can be modeled in
MILP problem as Equation (21) and (22).

w1,i ≤ z1,i, w2,i ≤ z1,i + z2,i, w3,i ≤ z2,i
w1,i + w2,i + w3,i = 1, wk,i ≥ 0(k = 1, 2, 3)

z1,i + z2,i = 1, zk,i = 0 or 1(k = 1, 2) (20)

Tu,i(t) = θdni · w1,i+Tc,i · w2,i+θ
up
i · w3,i ∀i ∈ Ather (21)

ζi = w1,i · εi + w3,i · εi ∀i ∈ Ather (22)

In summary, the above framework is very general, and it is
suitable for most of TCA.

C. CONSTRAINTS OF ENERGY STORAGE SYSTEM
The constraints that model the operation of the ESUs are
given as (23)-(28).

PusedESS (t)+ P
sold
ESS(t)

= ηdESS · P
d
ESS(t) ∀t ∈ T (23)

0 ≤ PcESS(t) ≤ R
c
ESS · µESS(t) ∀t ∈ T (24)

0 ≤ PdESS(t) ≤ R
d
ESS · (1− µESS(t)) ∀t ∈ T (25)

SESS(t) = SESS(t − 1)+ ηcESS · P
c
ESS ·1t

− ηdESS · P
d
ESS ·1t ∀t > 1, ∀t ∈ T (26)

SESS(t) = S iniESS(t), if t = 1 (27)

Smax
ESS (t) ≤ SESS(t) ≤ Smax

ESS (t) ∀t ∈ T (28)

Equation (23) enforces the power provided by the ESUs
discharge can be injected back to the grid or used to cover
a portion of the house demands. Constraint (24) and (25)
present the limits on the charging/discharging power of
the ESUs. Constraint (26) and (27) describe the relationship
between the current SOE and the SOE at the previous time
interval. Constraint (28) prevents the deep discharge or full
charge of the ESUs.
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D. PV MODELLING
Equation (29) enforces the fact that the actual generated
power from PV can be injected back to the grid or used by
the household appliances.

PusePV(t)+ P
sell
PV (t) = PPV(t) ∀t ∈ T (29)

E. POWER BALANCE CONSTRAINT
Equation (30) states that energy consumption needs within
the household are either satisfied by the grid or by the com-
bined procurement of energy by the ESUs and the PV.

Pbuy(t)+PusePV(t)+P
use
ESS(t)=P

c
ESS(t)+

∑
i∈A

PAPPi (t) ∀t ∈T

(30)

F. TOTAL POWER INJECTED TO THE GRID
The total amount of power injected to the grid can be
expressed by Equation (31):

Psell(t) = PsellPV (t)+ P
sell
ESS(t) ∀t ∈ T (31)

G. GPOWER TRANSACTION RESTRICTIONS
Constraints (32) and (33) implement the logic of power
exchange, ensuring that the drawing power from the grid and
injecting power to the grid can’t happen simultaneously.

Pbuy(t) ≤ N1 · µgid(t) ∀t ∈ T (32)

Psell(t) ≤ N2 ·
(
1− µgid(t)

)
∀t ∈ T (33)

TABLE 2. User’s desired comfort preferences.

III. CASE STUDY
A. DESCRIPTION OF DESIGNED TEST SYSTEM
A single house with various types of household appliances
connected to HEMS is taken as a test system. Before the
HEMS operation, customers are asked to fill up a table like
Table 2, which contains the residents’ desired comfort pref-
erences and lifestyles. The parameters in the WH model and
AC model are given in Table 3 and Table 4, respectively. The
parameters of ESUs in the test system is presented in Table 5.
The hourly electricity price and forecasted PV output is
shown in Fig. 6 and Fig. 7, respectively. Fig. 8 shows the
outdoor temperature over a day. The water demand and must-
run power are given in Fig. 9 and Fig.10, respectively.

TABLE 3. Parameters in the water heater model.

TABLE 4. Parameters in the air conditioner model.

TABLE 5. Parameters of ESUs.

FIGURE 6. Time-varying price information received from the utility.

FIGURE 7. Forecasted hourly PV output.

FIGURE 8. Outdoor temperature over a day.

B. RESULTS
To demonstrate and compare, the following cases are consid-
ered in the simulation.
(1) Case 0: $2 = 0, which means that the objective is to

minimize the total daily cost without considering the
customer comfort. This case is taken as a base case in
the study.

(2) Case 1: $2 = 0.5, this case is used to compare with
Case 0, to investigate the effects on electricity bill pur-
chased by changing of user desired satisfaction level.

(3) Case 2:$2 = 1, in this case, the primary objective is to
pursue user comfort. This case is used to compare with
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FIGURE 9. Water demand over a day.

FIGURE 10. Must-run power over a day.

FIGURE 11. Forecasted PV output with a forecasting error◦.

Case 0 and Case 1, aiming to study the operational costs
further as affected by user-desired satisfaction level.

(4) Case 3: $2 = 0.5, in this case, the important factor
of WH is changed from 2 to 4.5. This case is applied
to study the scheduling results as affected by the pre-
defined importance factor of the appliances.

(5) Case 4: $2 = 0, and $2 = 0 is replaced by a
time-depended parameter. This case is to demonstrate
how other different DR strategies (e.g., demand-limit-
based DR) can be easily adapted to the formulated
scheme.

(6) Case 5: $2 = 0.5, and the predicted PV output
depicted in Fig. 7 is accompanied with a forecast-
ing error, as seen in Fig. 11. The forecasting error is
assumed as a zero-mean normally distributed random
variables. The standard deviation is considered as a
percentage (20% in this work) of the expected PV
output. This case is used to compare with Case 1 and
study how the forecasting error will affect the energy
cost and customer convenience.

The proposed MILP model is tested in GAMS [21]
v.23.7 using the CPLEX solver, and the simulation results are
presented in the following.

1) WITHOUT CONSIDERING CUSTOMER COMFORT (CASE 0)
The operational cost for case 0 is 113.83 cents. The hourly
energy injected to or sold back to the grid is presented

FIGURE 12. Hourly energy buying from or selling back to the grid for
Case 0.

FIGURE 13. Hourly energy change of ESUs over a day for Case 0.

FIGURE 14. Scheduling of household appliances for Case 0.

FIGURE 15. Expected air temperatures and water temperature for Case 0.

in Fig. 12. The hourly energy change of ESUs is given
in Fig. 13. The scheduling power of appliances and the
expected temperatures of WH and AC are shown in Fig. 14,
and Fig. 15, respectively.

As can be seen, the proposed scheme tries to achieve lowest
electricity bill by charging ESUs and buying electricity from
the grid in low-price periods, together with discharging ESUs
and selling electricity back to grid in high-price periods,
while keeping the appliances working in the lowest level of
pre-defined comfort.

2) EFFECT OF THE DESIRED SATISFACTION
LEVEL (CASE 1 AND CASE 2)
The electricity bill for Case 1, which is used to investigate the
impacts of the customer’s desired satisfaction is 133.49 cents.
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FIGURE 16. Scheduling power of appliances for Case1.

FIGURE 17. Expected hourly air temperature and water temperature for
Case 1.

FIGURE 18. Scheduling power of appliances for Case2.

The obtained relative scheduling power for the appliances and
expected temperatures of AC and WH are given in Fig. 16,
and Fig. 17, respectively. As can be seen, the results change
significantly compared with the base case, which is demon-
strated before. Although the user needs to pay 39.91 cents
more, some appliances such as PP and EV2 have been shifted
to an earlier time. Besides, air temperature and water temper-
ate reach the pre-defined most-desired value in more hours
compared with Case 0.

However, the cost result for Case 2 reaches as high as
173.40 cents. But in this case, the users’ comfort is max-
imized as the pre-defined most desired preferences and
lifestyles, as presented in Fig. 18, and Fig. 19, respectively.

The electricity bills for more different satisfaction levels
are calculated and shown in Fig. 20. It indicates that daily
payments of the user increase with the growth of the desired
satisfactions. This indicates that the proposed HEMS scheme
can provide multiple flexible solutions with different user
satisfaction levels to occupants.

3) EFFECT OF THE IMPORTANT FACTOR
OF APPLIANCES (CASE 3)
Within the same desired satisfaction level, it is possible
to assign an importance factor Ei to each appliance before

FIGURE 19. Expected hourly air temperature and water temperature for
Case 2.

FIGURE 20. Daily electricity bills as affected by the desired satisfaction
levels.

FIGURE 21. Scheduling power of appliances for Case 3.

FIGURE 22. Expected hourly air temperature and water temperature for
Case 3.

scheduling them. That is, the user can schedule an appliance
with higher priority by assigning a larger factor to it. To val-
idate its effectiveness, simulation for Case 3 in which the
important factor forWH is different from that of Case 2 is car-
ried out, and the results are presented in Fig. 21 and Fig. 22,
respectively. The cost result for Case 3 is 139.83 cents,
which causes an increase of 6.34 cents. However, the hours
during which the water temperature deviates from pre-
defined most-comfort value have reduced, while just result-
ing in an operation time shifting for EV2. Therefore,
adjusting Ei of the specified appliance will cause certain
impacts on the operation cost and the scheduling of other
appliances.
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FIGURE 23. Energy demand comparison of Case 0 and Case 4.

FIGURE 24. Expected hourly air temperature and water temperature for
Case 5.

FIGURE 25. Scheduling power of appliances for Case 5.

4) CONSIDERING DEMAND LIMIT RULED BY LSE (CASE 4)
In the simulation above in this work, N1 and N2 in Equa-
tion (31), (32) and (33) is considered as infinite positive
constants. However, by replacing them by time-dependent
parameters, other DR strategies can be considered as demon-
strated before. In this paper, it is assumed that a restriction
is posed by the aggregator or LSE for the end-user electrifi-
cation in the corresponding control area. The operation cost
for this case is 116.86 cents, higher than 113.83 cents for
Case 0. The optimization result for the final SOE of ESUs
for Case 4 is 0.8 kWh, which is the same as that in Case 0.
The hourly limitation of load demand in Case 4, as well
as the hourly energy supplied by the grid in Case 0 and
Case 4, are shown in Fig. 23. As can be seen in the result of
Case 4, the peak demands over the limit in Case 1 are shifted
successfully to other periods.

5) EFFECT OF THE FORECASTING ERRORS (CASE 5)
The electricity bill for Case 5 is 131.77 cents, which is lower
than the bill for Case 1, 133.49 cents. The expected hourly
air temperature, water temperature, and scheduling power of
appliances for Case 5 are depicted in Fig. 24 and Fig. 25,
respectively. As can be seen, the scheduling power for the
appliances change significantly compared with the base 1
(depicted in Fig. 16 and Fig 17). However, the expected

hourly air temperature and water temperature do not change
much when the forecasting error is taken into consideration.
From the study of Case 5, it can be concluded that the fore-
casting error associated with the uncertain output of rooftop
PVs will affect the operation cost of HEMS and customer
convenience.

IV. CONCLUSION
In this paper, a novel household load scheduling framework
for pricing-based home energy management is proposed. The
framework aims to minimize the energy expense while taking
occupants’ desired comfort preferences and lifestyles into full
consideration. In addition to the ESUs and DERs, a wide
variety of household appliances with different characteristics
are modeled in the proposed framework, which makes it easy
for practice. Besides, the proposed HEMS can provide mul-
tiple flexible solutions with different user satisfaction levels
to occupants. Furthermore, the proposed scheme is generally
applicable and valuable for any other kinds of smart home
energymanagement, considering different DR strategies such
as demand-limit-based DR and injection-limit-based DR.
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