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ABSTRACT First-order gradient-based optimization algorithms have been of core practical importance in
the field of deep learning. In this paper, we propose a new weighting mechanism-based first-order gradient
descent optimization algorithm, namely NWM-Adam, to resolve the undesirable convergence behavior of
some optimization algorithms which employ fixed sized window of past gradients to scale the gradient
updates and improve the performance of Adam and AMSGrad. The NWM-Adam is developed on the basis
of the idea, i.e., placing more memory of the past gradients than the recent gradients. Furthermore, it can
easily adjust the degree to which howmuch the past gradients weigh in the estimation. In order to empirically
test the performance of our proposed NWM-Adam optimization algorithm, we compare it with other popular
optimization algorithms in three well-known machine learning models, i.e., logistic regression, multi-layer
fully connected neural networks, and deep convolutional neural networks. The experimental results show
that the NWM-Adam can outperform other optimization algorithms.

INDEX TERMS Deep learning, optimization algorithm, learning rate, neural network training.

I. INTRODUCTION
Recently, deep learning has become a significant part of
information science research [1]–[4]. And deep learning
has achieved outstanding performance in many fields, such
as image classification [5]–[7], action recognition [8], [9],
image captioning [10], and target localization [11]–[13]. The
performance of a deep neural network is mainly determined
by the structure of its model and its corresponding optimiza-
tion algorithm. Therefore, a good optimization algorithm can
improve the performance of the deep neural network under
circumstance of fixed network architecture.

At present, first-order based optimization algorithms play
an important role in deep learning on account of their effi-
ciency and effectiveness in dealing with large-scale optimiza-
tion problems [14]. In these algorithms, stochastic gradient
descent (SGD) [15]–[19] is the representative method to
train deep neural networks, in which it iteratively moves in
the direction of the negative gradient to update parameters
until convergence. Successively, some variants of SGD were
proposed, which can automatically adjust the learning rate
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by using the square root operation of some form of averag-
ing of the squared elements in the past gradients. Adagrad
[20], as the first variant, works well for dealing with sparse
data. However, this method uses all the past gradients, which
can result in fast shrinkage of the learning rate. In order to
resolve this problem, some algorithms, e.g., Adadelta [21],
RMSprop [22], and Adam [23], were proposed by using
the exponential moving average of past squared gradients.
Although these optimization methods have achieved good
performance in many applications, they can lead to unde-
sirable convergence behavior. AMSGrad [24] was proposed
to guarantee convergence by employing the idea, i.e., long-
term memory of the past gradients. However, when the new
gradients oscillate, AMSGrad may lead to the undesirable
estimation. The defects of these existing methods motivate us
to find a newway to resolve the problems and further improve
the optimization performance.

In this paper, we present a new first-order gradient descent
optimization algorithm that includes a more flexible weight-
ing mechanism, which can resolve the undesirable con-
vergence behavior and improve the performance of Adam
and AMSGrad. Unlike most of methods, our proposed new
weighting mechanism uses a dynamic exponential decay rate
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for second moment estimate instead of a preconfigured and
fixed one. In addition, our method can easily adjust the degree
towhich howmuch the past gradients weigh in the estimation.
The proposed new exponential moving average variant is
developed on the basis of the idea, i.e., putting more memory
of the past gradients than the recent gradients. The analysis
indicates that our method can guarantee convergence, at the
same time, the experimental results show that our method can
further improve the performance. In the sequel, our method
will be referred to as NWM-Adam.

The remainder of this paper is arranged as follows.
In Section II, we will present the related works including
the most common optimization algorithms. Subsequently,
in Section III, we will describe our proposed NWM-Adam
algorithm. Next, we provide the convergence analysis of our
method in Section IV. Afterwards, in Section V, we will give
the description of the experimental design and discusses the
results. Finally, in Section VI, we will conclude our work and
discuss some future works.

II. RELATED WORK
Optimization problem is one of the most important research
directions in computational mathematics [25]. In the field
of deep learning, the selection of optimization algorithms
remains top priority in one model. Even if the data sets and
model architectures are identical, different optimization algo-
rithms are likely to result in dramatically different training
effects. In this section, we will outline some optimization
algorithms that are widely used in deep learning.

Gradient descent method minimizes the objective function
J (θ ) through updating the model’s parameters θ ∈ Rd in the
direction of the negative gradient of the objective function
−∇θJ (θ ) with regard to the parameters θ . The updating step
in every moment is determined by the learning rate η.

Batch gradient descent, i.e., vanilla gradient descent,
employs the whole training dataset to compute the gradient
of the objective function with regard to the parameters θ .
However, this method conducts only one update, which can-
not update the parameters online. SGD uses each training
example to conduct a parameter update, which could be used
to learn online. Of course, frequent update of SGD may
result in heavy fluctuation of the objective function. This
phenomenon is likely to prevent SGD from converging to the
exact minimum. Mini-batch gradient descent is the typical
method to train neural networks today, in which every mini-
batch of training dataset is processed to perform an update.

θ = θ − η · ∇θJ (θ ) (Batch) (1)

θ = θ − η · ∇θJ (θ; x(i); y(i)) (Stochastic) (2)

θ = θ − η · ∇θJ (θ; x(i:i+n); y(i:i+n)) (Mini− batch) (3)

SGD is prone to oscillations when meeting ravines [18].
Therefore, momentum [26] is employed, which can speed up
SGD in the correct direction and restrain oscillations.

mt = γmt−1 − η · ∇θJ (θ ) (4)

θ = θ − mt (5)

On the basis of the original step size, SGD-Momentum
adopts the past time step γmt−1, in which the coefficient
γ is usually around 0.9. In this algorithm, the direction of
parameters update is not only determined by the current gra-
dient, but also related to the previous descent direction. When
using momentum in SGD, the dimensions whose gradient
directions are similar will get faster updates, at the same
time, the dimensions whose gradient directions have large
variations will gain small updates. Therefore, we can speed
up convergence and reduce oscillations by using this method.

Deep learningmodels often involve lots of parameters. Dif-
ferent types of parameters have different update frequency,
which means larger update steps for infrequently updated
parameters and smaller steps for frequently updated param-
eters. Adagrad [20] is an algorithm which can achieve this
effect. This algorithm introduces the second moment.

Gt = diag(
t∑
i=1

g2i,1,
t∑
i=1

g2i,2, · · · ,
t∑
i=1

g2i,d ) (6)

whereGt ∈ Rd×d is the diagonal matrix, in which its element
Gt,ii is the sum of squared gradients with respect to θi from
the initial moment to time t . The update for every parameter
θi at each time step t is:

θt,i = θt−1,i −
η√

Gt−1,ii + ε
· gt−1,i (7)

where ε is usually set to 1e − 8, which can avoid division
by zero. gt−1,i is the gradient of the objective function with
regard to the parameter θi at time step t − 1:

gt−1,i = ∇θJ (θi) (8)

Adagrad can help us adapt the learning rate to the parame-
ters, which has no need of manually tuning the learning rate.
However, the continual accumulation of the squared gradients
in the denominator will result in the learning rate shrinking.
In the end, the learning rate will become especially small,
which means that we cannot get any knowledge.

Adadelta [21] modifies the calculation method of the sec-
ond moment, which resolves the phenomenon that the learn-
ing rate of Adagrad changes aggressively. With Adadelta,
we implement the accumulation as an exponentially decay-
ing average of past squared gradients. The update rule of
Adadelta is:

1θt−1 = −

√
E
[
1θ2

]
t−2 + ε√

E
[
g2
]
t−1 + ε

gt−1 (9)

θt = θt−1 +1θt−1 (10)

E
[
g2
]
t−1
= γE

[
g2
]
t−2
+ (1− γ )g2t−1 (11)

E
[
1θ2

]
t−2
= γE

[
1θ2

]
t−3
+ (1− γ )1θ2t−2 (12)

RMSprop [22] also confines the window of accumulated
past squared gradients to some fixed size instead of accumu-
lating all past squared gradients, which is similar to Adadelta.
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This algorithm divides the learning rate by an exponentially
decaying average of past squared gradients.

E
[
g2
]
t−1
= 0.9E

[
g2
]
t−2
+ 0.1g2t−1 (13)

θt = θt−1 −
η√

E
[
g2
]
t−1 + ε

gt−1 (14)

Adam [23] can be considered as the combination of
RMSprop and momentum. In addition to using an expo-
nentially decaying average of past squared gradients like
RMSprop, Adam as well applies an exponentially decaying
average of past gradients like momentum.

mt = β1mt−1 + (1− β1)gt (15)

vt = β2vt−1 + (1− β2)g2t (16)

where β1 and β2 are usually set to 0.9 and 0.999, respectively.
During the initial stage, mt and vt are easily biased towards
starting value. Therefore, bias-correction should be computed
for the first and second moment.

m̂t =
mt

1− β t1
(17)

v̂t =
vt

1− β t2
(18)

Finally, the update rule of Adam is:

θt+1 = θ t −
η√
v̂t + ε

m̂t (19)

Zhang et al. [27] designed an adaptive exponential decay
rate βt for Adam, i.e., AEDR-Adam, in which this exponen-
tial decay rate for the first moment estimates and the second
raw moment estimates to increase when a large step is taken
and to decrease when a small step is taken.

βt = 1−
1
ιt

(20)

ιt = (1−
mt−1
√
vt−1

)ιt−1 + 1 (21)

Reddi et al. [24] pointed out the problem which exists in
the proof of convergence of the Adam algorithm. At the same
time, the authors showed an example of convex optimization
problem, in which the Adam algorithm cannot converge to
an optimal solution. In order to resolve this issue, the authors
proposed to modify the Adam algorithm where the idea of
‘‘long-term memory’’ of past gradients is employed. The
modified Adam is termed as AMSGrad. The main difference
of AMSGrad with Adam is that AMSGrad uses the ‘‘max’’
operation to all vt until the present time step and employs this
maximum value to the running average of the gradient instead
of using original vt in Adam.

III. NWM-ADAM
In this section, we describe our proposed NWM-Adam algo-
rithm. The proposed NWM-Adam algorithm uses a dynamic
exponential decay rate for second moment estimate instead
of a preconfigured and fixed one. Firstly, we provide an

universal update rule which can cover many gradient descent
optimization algorithms.

θt = θt−1 −
ηt−1
√
Vt−1

mt−1 (22)

mt−1 = φt−1(∇J1(θ1), . . . ,∇Jt−1(θt−1)) (23)

Vt−1 = ψt−1(∇J1(θ1), . . . ,∇Jt−1(θt−1)) (24)

where φt−1 and ψt−1 denote the averaging functions, ηt−1 is
the step size, and ηt−1√

Vt−1
is the learning rate.

Reddi et al. [24] proved that the Adam algorithm cannot
converge to an optimal solution even in the simple one-
dimensional convex settings, which refutes the convergence
of Adam given in [23]. In fact, this fundamental flaw also
exists in some most-widely used exponential moving aver-
age methods, i.e., RMSprop, Adadelta. The main problem is
related to the following quantity.

0t =

√
Vt
ηt
−

√
Vt−1
ηt−1

(25)

The above quantity denotes the change of the inverse of the
learning rate with regard to each iteration. The update rules
of SGD andAdagrad usually result in non-increasing learning
rates. On the basis of the update rules of SGD and Adagrad in
the previous section, we can observe that 0t � 0 with respect
to all t ∈ [T ]. However, the positive semi-definiteness of the
0t cannot be guaranteed with regard to the algorithms which
employ exponential moving average to estimate the square of
gradient, i.e., RMSprop, Adadelta and Adam. This problem
will result in non-convergence.

In order to resolve the aforementioned convergence prob-
lem, Reddi et al. [24] proposed to employ an idea, i.e., long-
term memory of past gradients, to the original Adam algo-
rithm. In this paper, NWM-Adam, i.e., the proposed new
exponential moving average variant, is also developed on the
basis of this idea, which puts more memory of the past gra-
dients than the recent gradients. In other words, our method
employs larger weights on the past gradients than the recent
gradients. Our proposed NWM-Adam can make the quantity
0t positive semi-definite and guarantee convergence, at the
same time, our algorithm can further improve the perfor-
mance of Adam and AMSGrad.

The following presents the details of our proposed
NWM-Adam. Eqs. 22, 23 and 24 are the main component
of our proposed algorithm. Suppose mt is the first moment
estimate of gradient and vt is the second moment estimate of
gradient. These two estimates are computed as follows.

mt = β1mt−1 + (1− β1)gt (26)

vt = β2,tvt−1 + (1− β2,t )g2t (27)

where gt denotes the gradient of the objective function J in
which cross entropy is used as the objective function. In this
algorithm, β2,t changes over time step t , which is designed as
follows.

β2,t =
(tλ − 1)
tλ

(28)
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Therefore, NWM-Adam can easily adjust the degree to
which how much the past gradients weigh in the estimation.
The key difference of NWM-Adam from Adam is that it
employs a changing β2,t for controlling the exponential decay
rate of moving average of the squared gradient instead of con-
stant β2 in Adam. By doing this, our proposed NWM-Adam
algorithm can realize that 0t is positive semi-definite, which
can resolve the convergence issue of Adam. The pseudo-
code of our proposed algorithm NWM-Adam is presented in
Algorithm 1.

Algorithm 1 NWM-Adam, Our Proposed Algorithm for
Stochastic Optimization. gt Denotes the Gradient and g2t
Represents the Element Wise Square gt � gt . ε is to 10−8,
Which Can Avoid the Denominator is Zero.
η: Step size
β1: A hyper-parameter for controlling the exponential
decay rate of moving average of the gradient mt
β2,t : A hyper-parameter for controlling the exponential
decay rate of moving average of the squared gradient vt

m0← 0: Initialize 1st moment vector
v0← 0: Initialize 2nd moment vector
For t ∈ [1, 2, . . . ,T ]
do

Get gradients with regard to objective function at time
step t

gt = ∇θJt (θt )
Get the hyper-parameter β2,t
β2,t = (tλ − 1)/tλ

Update first moment estimate
mt ← β1mt−1 + (1− β1)gt
Update second raw moment estimate
vt ← β2,tvt−1 + (1− β2,t )g2t
Update parameters
θt+1← θt − ηmt/(

√
vt + ε)

End
UntilMeet the stopping criterion

Next, we give an explanation of the weighing scheme of
the gradients in NWM-Adam. Let us revisit the Eq. 22, this
equation can also be rewritten as follows.

θt = θt−1 −
ηt−1√
E
[
g2
]E [g] (29)

With regard to the estimation of E
[
g2
]
, methods using

exponential moving average may make this estimation unsta-
ble when the gradient magnitude varies a lot from batch to
batch. The weighing strategy in NWM-Adam can provide
more stable estimation than AMSGrad and Adam. Namely,
the weighing scheme of our proposedNWM-Adam algorithm
can stabilize the estimation when the new gradients oscillate.

IV. CONVERGENCE ANALYSIS
In this section, we give the convergence analysis of our
proposed method. Suppose the unknown sequence of convex

objective functions J1(θ ), J2(θ ), . . . , JT (θ ). At each time
step t , predicting the parameter θt and evaluating the objec-
tive function Jt is our purpose. On account of the unknown
sequence in advance, we employ the regret to evaluate our
method, which is the summation of all previous difference
value between the prediction Jt (θt ) and the best value Jt (θ∗).
Then, the defined regret is given as follows.

R(T ) =
∑T

t=1

[
Jt (θt )− Jt (θ∗)

]
(30)

where θ∗ = argmin
∑T

t=1 Jt (θ ). Assume that ‖∇Jt (θ )‖∞ ≤
G∞, and ‖θn − θm‖∞ ≤ D∞ for all t ∈ [T ] and
∀m, n ∈ 1, 2, . . . ,T . At the same time, let ηt = η/

√
t

and β1,t ≤ β1 for all t ∈ [T ]. We employ g1:t,i =[
g1,i, g2,i, . . . , gt,i

]
to represent a vector which is the ith

dimension of the gradient sequence over all steps till time
step t .

The changing schedule of β2,t satisfies the following two
conditions:

(1) η−1t−1
√
vt−1,i ≤ η

−1
t
√
vt,i, t ∈ 2, 3, . . . ,T ;

(2) δ−1(
t∑

p=1
g2p,i)

0.5
≤η−1T (

t∑
p=1

t−p∏
q=1

β2,(t−q+1)(1−β2,p)g2p,i)
0.5,

t ∈ [T ].
In order to show that our optimization algorithm has a

regret bound, we start with the following:

θt+1 =
∏
F,
√
Vt

(θt − ηtVt−0.5mt )

= min
x∈F

∥∥∥Vt0.25(θ − (θt − ηtVt−0.5mt ))
∥∥∥ (31)

Based on the theory in [28], we can obtain the following:∥∥∥V 0.25
t (θt+1 − θ∗)

∥∥∥2
≤

∥∥∥V 0.25
t (θt − θ∗)

∥∥∥2 + η2t ∥∥∥V−0.25t mt
∥∥∥2

− 2ηt
〈
β1,tmt−1 + (1− β1,t )gt , θt − θ∗

〉
(32)

Then, we can get the following:〈
gt , θt − θ∗

〉
≤ 0.5ηt (1− β1,t )−1

∥∥∥V−0.25t mt
∥∥∥2

+ 0.5η−1t (1− β1,t )−1[
∥∥∥V 0.25

t (θt − θ∗)
∥∥∥2

−

∥∥∥V 0.25
t (θt+1 − θ∗)

∥∥∥2]
+ 0.5β1,t (1− β1,t )−1η−1t

∥∥∥V 0.25
t (θt − θ∗)

∥∥∥2
+ 0.5β1,t (1− β1,t )−1ηt

∥∥∥V−0.25t mt−1
∥∥∥2 (33)

T∑
t=1

Jt (θt )−Jt (θ∗)

≤

T∑
t=1

〈
gt , θt − θ∗

〉
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≤

T∑
t=1

[0.5ηt (1− β1,t )−1
∥∥∥V−0.25t mt

∥∥∥2
+ 0.5η−1t (1− β1,t )−1[

∥∥∥V 0.25
t (θt − θ∗)

∥∥∥2
−

∥∥∥V 0.25
t (θt+1 − θ∗)

∥∥∥2]
+ 0.5β1,t (1− β1,t )−1η−1t

∥∥∥V 0.25
t (θt − θ∗)

∥∥∥2
+ 0.5β1,t (1− β1,t )−1ηt

∥∥∥V−0.25t mt−1
∥∥∥2] (34)

We need some intermediate results for further bounding
this inequality.

T∑
t=1

ηt

∥∥∥V−0.25t mt
∥∥∥2 = T−1∑

t=1

ηt

∥∥∥V−0.25t mt
∥∥∥2

+ ηT

d∑
i=1

m2
T ,i(vT ,i)

−0.5 (35)

Then, we can get the following inequality.
T∑
t=1

ηt

∥∥∥V−0.25t mt
∥∥∥2 ≤ T−1∑

t=1

ηt

∥∥∥V−0.25t mt
∥∥∥2 + δ(1− β1)−1

d∑
i=1

T∑
j=1

β
T−j
1 g2j,i(

T∑
j=1

g2j,i)

−0.5

≤ 2δ(1− β1)−2
d∑
i=1

∥∥g1:T ,i∥∥2 (36)

Next, we can get the following:
T∑
t=1

Jt (θt )−Jt (θ∗) ≤ 2δ(1− β1)−3
d∑
i=1

∥∥g1:T ,i∥∥2
+ 0.5η−11 (1− β1)−1

d∑
i=1

√
v1,i(θ1,i − θ∗i )

2

+ 0.5(1− β1)−1
T∑
t=2

d∑
i=1

(θt,i − θ∗i )
2[η−1t

√
vt,i

− η−1t−1
√
vt−1,i]

+ 0.5(1− β1)−1
T∑
t=1

d∑
i=1

β1,t (θt,i − θ∗i )
2
η−1t
√
vt,i (37)

When η−1t
√
vt,i − η

−1
t−1
√
vt−1,i is positive semi-definite,

we can get the following regret bound for the sequence θt
generated using our proposed NWM-Adam algorithm.

R(T ) ≤ 2(1− β1)−3δ
d∑
i=1

∥∥g1:T ,i∥∥2
+

1
2
D2
∞

√
Tη−1(1− β1)−1

d∑
i=1

√
vT ,i

+
1
2
D2
∞(1− β1)

−1
T∑
t=1

d∑
i=1

η−1t β1,t
√
vt,i (38)

FIGURE 1. The training loss of logistic regression using different
optimization algorithms.

V. EXPERIMENTS
In this section, in order to empirically evaluate the effective-
ness of the proposed NWM-Adam algorithm, we evaluate
the proposed algorithm in three different popular machine
learning models, i.e., logistic regression, multi-layer fully
connected neural networks, and deep convolutional neural
networks. These different models are tested on the MNIST
dataset [29] and the CIFAR-10 dataset [30]. By employing
these models and datasets, we demonstrate that NWM-Adam
can effectively work out the practical deep learning problems.

The experiments in this part compare our proposed NWM-
Adam algorithm with other popular gradient descent opti-
mization algorithms, i.e., Momentum, Adagrad, RMSprop,
Adam, and AMSGrad. Same parameter initialization is uti-
lized when comparing with different optimization algorithms
and the results are showed using the best hyper-parameters.
In this section, we first introduce the details of the utilized
datasets. Then, we give the experimental results and analyze
the performance of our proposed method.

A. DESCRIPTION OF THE UTILIZED DATASETS
1) MNIST
MNIST is a large database of handwritten digits that is widely
used for training and testing in the field of machine learn-
ing. This dataset was taken from American Census Bureau
employees and American high school students. Its training
set contains 60000 grayscale images, and testing set has
10000 grayscale images. These handwritten digits have been
preprocessed, resized and centered, and the size of the images
is fixed at 28× 28. These images are divided into 10 classes,
from 0 to 9.

2) CIFAR-10
CIFAR-10 is a color image dataset which is closer to universal
objects. This dataset was established by Alex Krizhevsky,
Vinod Nair, and Geoffrey Hinton. It contains 10 classes,
including airplane, automobile, bird, car, deer, dog, frog,
horse, ship, and truck. This dataset has 50000 32×32 training
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FIGURE 2. The training loss of fully connected neural networks (100 hidden units) using
different optimization algorithms.

FIGURE 3. The training loss of fully connected neural networks
(1024-512 hidden units) using different optimization algorithms.

images and 10000 test images. Compared with handwritten
digits, CIFAR-10 contains real objects in the real world,
which is not only noisy, but also has different proportions and
features, which makes it very difficult to recognize.

B. LOGISTIC REGRESSION
For the first experiment, we evaluate our proposed algorithm
on logistic regression problem, which can investigate the
performance of the algorithm on convex problems. We per-
form this experiment using the MNIST dataset and compare
the result with some popular gradient descent optimization
algorithms, where the logistic regression problem gets one
of the 10 class labels directly on the 784 dimension image
vectors. The step size in this experiment is adjusted by 1/

√
t

decay. The minibatch size is set to 128. We report the training
loss with respect to epochs in Fig. 1. From the Fig. 1 we

FIGURE 4. The training loss of convolutional neural networks (20-layer
ResNet) using different optimization algorithms.

can observe that our proposed NWM-Adam algorithm yields
similar convergence as AMSGrad and both perform better
than Adam, RMSprop, Adagrad and Momentum. We also
report the classification accuracy over ten rounds in Table 1.
From the Table 1, we can see that our NWM-Adam is slightly
better than AMSGrad.

C. MULTI-LAYER FULLY CONNECTED NEURAL NETWORKS
Multi-layer fully connected neural network is the powerful
model with non-convex objective function. In this experi-
ment, we use two neural network models to test the effective-
ness of our proposed method in the multiclass classification
problem on MNIST dataset.

The first neural network model has one fully connected
hidden layer with 100 hidden units. The second neural net-
work model has two fully connected hidden layers with
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FIGURE 5. The training loss of convolutional neural networks (110-layer
ResNet) using different optimization algorithms.

TABLE 1. Classification accuracies (Mean ± Std) of logistic regression
using different optimization algorithms.

1024 hidden units in the first hidden layer and 512 hidden
units in the second hidden layer. ReLU is used as the acti-
vation function. Softmax is used as a classifier acting on the
outputs of the last hidden layer. Furthermore, constant step
size is utilized throughout this experiment.

The training loss curves of these two fully connected neural
network models by using different optimization algorithms
are shown in Fig. 2 and Fig. 3. In order to compare clearly,
we use the base-10 logarithm to plot the training loss. Fig. 2
and Fig. 3 all show that NWM-Adam algorithm outperforms
other optimization algorithms, i.e., Momentum, Adagrad,
RMSprop, Adam, and AMSGrad.

The classification accuracy over ten rounds is presented
in Table 2. From the table, we observe that our method out-
performs all the other methods in terms of classification accu-
racy. Furthermore, the good performance of NWM-Adam is
relatively stable.

The good performance of our algorithm benefits from
proper utilization of the past gradients. Traditional gradient
descent optimization algorithms all use a fixed exponential
decay rate for second moment estimate, while our algorithm
employs a dynamic exponential decay rate for this estimate.
Furthermore, our algorithm can easily adjust the degree to
which how much the past gradients weigh in the estimation.
This is the reason why our algorithm is superior to others.

TABLE 2. Classification accuracies (Mean ± Std) of multi-layer fully
connected neural networks using different optimization algorithms.

TABLE 3. Classification accuracies (Mean ± Std) of deep convolutional
neural networks using different optimization algorithms.

D. DEEP CONVOLUTIONAL NEURAL NETWORKS
In the last experiment, we use deep convolutional neural
network (DCNN) to evaluate our method on the standard
CIFAR-10 dataset. The residual architecture is used as the
DCNN model in this part. In this architecture, the first layer
is 3×3 convolutions. Then, it includes a stack of 3m residual
blocks with an equal number of blocks for each feature map
size. Finally, this architecture ends with a global average
pooling, a 10-way fully connected layer, and softmax.

In this experiment, we use the 20-layer ResNet (m = 6)
and the 110-layer ResNet (m = 36). The minibatch size is
also set to 128, which is similar to previous experiments.
Furthermore, we employ constant step size throughout this
experiment.

The training loss curves for this problem are shown
in Fig. 4 and Fig. 5. We can see that NWM-Adam performs
considerably better than other optimization methods, which
is in line with the conclusion of the experiment of multi-layer
fully connected neural network. At the same time, we also
provide the classification accuracy over ten rounds using
different optimization methods, which is shown in Table 3.
From the table, we can see that our optimization method
can help the neural network further improve its classification
accuracy, which demonstrates once again the superiority of
our proposed optimization method.

VI. CONCLUSION
In this paper, our method NWM-Adam has been designed
as a more flexible machine learning first-order gradient
descent optimization algorithm to resolve the undesirable
convergence behavior of some optimization algorithmswhich
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employ fixed sized window of past gradients to scale the
gradient updates and improve the performance of Adam and
AMSGrad. The idea of our NWM-Adam algorithm is that
placing more memory of the past gradients than the recent
gradients. In addition, our optimization algorithm can eas-
ily control the degree to which how much the past gradi-
ents weigh in the estimation. The experimental results have
demonstrated that our NWM-Adam optimization algorithm
performs better than other popular gradient descent optimiza-
tion algorithms on some convex and non-convex problems in
the field of machine learning. The optimization idea in this
paper can also be adopted to other kind of neural networks,
like the memristor-based neural networks [31] and discontin-
uous neural networks [32]. In future work, we plan to develop
an improved method which can implement updates for each
weight.
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