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ABSTRACT Three different models of the game of Go are developed by establishing an analogy between
this game and physical systems susceptible to analysis under the well-known Ising model in two dimensions.
The Ising Hamiltonian is adapted to measure the energy of the Go boards generated by the interaction of the
game pieces (stones) as players make their moves in an attempt to control the board or to capture rival stones.
The proposed models are increasingly complex. The first or Atomic-Go model consists of the straightforward
measurement of local energy employing the adapted Ising Hamiltonian. The second or Generative Atomic-
Go model employs a Deep Belief Network (a generative graphical model popular in machine learning) to
generate board configurations and compensate for the lack of information in mostly-empty boards. The
third or Molecular-Go model incorporates Common Fate Graphs, which are an alternative representation
of the Go board that offers advantages in pattern analysis. The simulated games between different Go
playing systems were used to test whether the models are able to capture the energy changes produced by
moves between players of different skills. The results indicate that the latter two models reflect said energy
differences correctly. These positive results encourage further development of analysis tools based on the
techniques discussed.

INDEX TERMS Artificial intelligence, graphical model, machine learning, Monte Carlo methods, pattern

analysis, unsupervised learning.

I. INTRODUCTION

The game of Go is a two-player board game with a long
history. Although its precise origin is unknown, its use can
be traced back at least 2,500 years, making Go one of the
oldest strategy-oriented board games, together with draughts,
chess and backgammon. Go is probably the oldest board
game that has been continuously played to the present day
and is currently played by around 20 million players globally.
More importantly, nowadays the analysis of Go is made
relevant because the mathematical and algorithmic methods
for the automation of Go-playing are useful to deal with major
challenges in natural sciences, like biology, genomics and
medicine; in engineering and computer science for pattern
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analysis and data analysis; and in social sciences to obtain
conclusions from the analysis of interactions in social nets.
The objective of each of the players in Go is to control
as much of the board as possible, by strategically placing
their pieces, named stones, in such a way that completely
(or as thoroughly as possible) surround rival stones while
defending against the rival player that attempts to do the same.
Traditionally, Go is played with black stones against white
stones, on a square board with 19 x 19 locations (strictly
speaking the board is a grid and the locations correspond
to its crossings) where the players place their stones in
alternating turns, with black playing first. Once a stone is
placed on the board it will not be moved anymore, except if
captured by rival stones placed in immediately neighboring
locations (Go only considers 4-connectivity, and a group
of connected allied stones becomes a single larger stone),
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in which case the captured stone will be removed from the
board. A stone’s liberty is one empty location on the board
immediately adjacent to that stone. So, each individual stone
may have up to 4 liberties, and keeping these liberties is
essential for a player to maintain a competitive condition.
The game ends when both players are unable or unwilling
to make another move. After the game has ended, the win-
ner is defined by counting the controlled territory and the
rival stones captured by each player. There are a few more
rules that apply in particular situations, but what has been
described so far are the basic rules that allow the understand-
ing of the game. For an extensive discussion of Go, please
consult [50] and [12].

From a game theory point of view, the game of Go is a zero-
sum and complete information game; despite the simplicity of
its rules, Go has a vast state space. Since each board location
can be in one of three states (it can either be empty or occu-
pied by a black or a white stone), the state space is of size
319x19 oiving the game a very high combinatorial complex-
ity. This makes Go a challenging game to learn and to analyze.
Serious Go players are ranked according to their ability in
the game, and the strategies of top-ranked players are often
studied by rivals and enthusiasts wishing to improve their
skills. Several situations and factics can be easily identified;
the essential ones are referred to by the following terms in Go
parlance:

Connection: when a stone occupies a liberty shared by
other stones of the same color, a bigger stone is produced
by considering the group of connected stones as a single
stone with its size equal to the number of individual
connected stones.

Eye: a single empty space inside a group is called an
eye. In other words, an eye is a liberty that is shared
by four allied stones that are connected to each other
(through other allied stones). A group of stones with one
single liberty can be captured by filling its single eye.
In contrast, a group of stones that contains at least two
eyes, cannot be captured.

Net: allied stones surrounding rival stones form a net;
liberties may be left to the surrounded stones.

Ladder: anet that leaves only one liberty to the surrounding
stones, forms a ladder.

Atari: a stone is in atari if it has only one liberty left and is
thus in danger of being captured.

Life & death: a stone is considered alive if it cannot be
captured, and it is considered dead if it cannot avoid
being captured (even if it is not actually captured yet).
Dead stones equal captured stones when computing a
player’s score at the end of a game.

Strategies in Go are sequences of tactics that each player
employs towards winning the game. Efficient strategies are
hard to master due to the number of potential moves and
because they require a good understanding of the board con-
figurations. From a computational point of view, designing
efficient strategies is also a hard computer challenge [2], [16].
Considering the size of the state space and an average
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of 200 moves per game, the automation of Go strategies to
win a game is vastly complex [2], [7], [11], [31], [53].

Computer systems able to play Go have been created [9],
[36] and ranked under similar criteria used to rank human
players. These computer players are built around differ-
ent techniques, such as heuristic-search [14], [46], machine
learning [31], [55], [56] and pattern recognition methods for
identifying eyes, ladders and nets [53], [57], [58]. Monte
Carlo Tree Search (MCTS) has been extensively used for
simulation-based search algorithms [10], [14], [15], but this
approach is highly time-consuming. A-priori knowledge-
based heuristics have been added to MCTS to construct
strategies to advance computer Go [27]. In 2016, the then
top-ranked system AlphaGo [44] employed intelligent data
mining of Go-game repositories to identify successful gaming
patterns. To classify these patterns and to learn from them,
AlphaGo and subsequent systems created by Google’s Deep-
Mind,! were built around deep neural networks [44]. Cur-
rently, AlphaZero, another system from DeepMind, can be
considered the strongest Go player in history, after defeating
even the broadly celebrated AlphaGoZero [45]. Interestingly,
AlphaGoZero and AlphaZero developed their gaming skills
primarily by playing thousands of games against different
versions of similar systems, thus making them Artificial Intel-
ligence systems that can truly learn from experience. Beyond
the required and learned abilities to play Go, it is desirable to
develop a comprehension of the nature of Go playing as well
as the commonalities that share with complex phenomena in
nature and social matters. Because of this, the focus of this
work is not on the techniques used to produce effective and
efficient Go-playing systems, but rather, in developing novel
techniques for analysis of the game.

Interest in the game of Go from a computational perspec-
tive can be traced back to at least 1962. In that year, Remus
published a paper entitled *‘Simulation of a learning machine
for playing GO” where he described a computerized system
for playing GO composed of a lexicon, a heuristic computer,
and a random number generator [40]. Said study includes
probably one of the earliest mathematical formulations of
the rules of Go. In the 21% century, several more studies
have been devoted to the game, and we distinguish at least
two separate avenues of interest: one including sophisti-
cated learning-based techniques for implementing efficiently
computerized/Al-based Go players; and a second one group-
ing the mathematical models of the game, developed for its
analysis as a case study of different theories [59], not neces-
sarily to produce competitive Go playing systems. In this sec-
ond group we can locate the work of Graepel and colleagues
[17], [18], [49] around Common Fate Graphs (also used in
[19], [38]) and other graph models, as well as the work of
Sato and colleagues [41]-[43] regarding the connectedness
of stones for analysis of the game. The paper by Harré and
colleagues is worth noticing [20] because of the similarity
between its purpose and that of the present work. Namely,

1 https://deepmind.com/research/
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the authors examine game trees for Go and then apply
concepts from information theory, particularly Entropy and
Mutual Information (MI), to quantitatively evaluate and study
the complexity of decisions made by (human) Go players with
different playing skills. Their positive results regarding the
detection of trends in the entropy and MI as functions of the
players’ skills encouraged the present work.

Particularly, in this paper, the game of Go is studied
by establishing an analogy between the game and physical
systems susceptible to analysis under the well-known Ising
model. The important concepts and techniques needed to
develop our models for analysis of Go are discussed below.

Il. MATERIALS AND METHODS

A. THE ISING MODEL

The Ising model (Ising, 1945) was developed in the field
of statistical mechanics to study ferromagnetism [35]. Origi-
nally, the model considers several discrete variables, each rep-
resenting a particle with a magnetic spin that can take one of
two states (+1 or —1). The interaction between these particles
is described by an energy function that summarizes the state
of the system. This energy function is often referred to as the
Hamiltonian (a term inherited from Hamiltonian mechanics).
Essential characteristics of a system can be studied through
its Hamiltonian. For instance, a given material such as nickel
is ferromagnetic when the magnetic moments of its atoms
are aligned to each other, a situation which occurs at low
temperatures [8]. In this case, the energy of the system is
nonzero. At higher temperatures, the magnetic moments are
no longer aligned but tend to cancel each other, resulting in
the total energy of the system equal to zero, and the material
becomes paramagnetic.

Thus, monitoring the value of the Hamiltonian can be
used to detect phase transitions, such as the change in the
magnetic properties of a material that becomes ferromag-
netic or paramagnetic. State of matter transitions, such as
from solid to liquid and liquid to gas, can also be studied
through the Hamiltonian under the Ising model. Other exam-
ples include quantum phase transitions, dynamic phase tran-
sitions, and topological (structural) phase transitions. In these
types of systems, other control parameters take the place of
the temperature. In this work, the Hamiltonian is employed to
measure the ‘energy’ in Go boards, based on the interaction
between the stones.

The Ising model in two dimensions is perhaps the simplest
statistical model to show a phase transition and typically
considers that the particles in the system are arranged in a
squared lattice. For this model, the energy interactions are
described by the Hamiltonian:

H(Xl,--.,xn)z—sz‘jxixj—uzhixz‘ ()
i ;

where w;; stands for the interaction between particles x; and
xj, 1 represents the magnitude of an external magnetic field
(if not present, u = 0), and A; is the magnetic field contribu-
tion at location i (for a homogeneous external field, #; = 1).
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FIGURE 1. A Restricted Boltzmann Machine. Relate this figure to Egs. (2)
and (3).

Since the Ising model of interaction between elements in
a system is quite general and simple [8], it has been adapted
to describe the emergence of ordering in numerous systems
in physics [39], chemistry [29], thermodynamics [52], biol-
ogy [34], medicine [51], sociology & economy [3], technol-
ogy applications in medical images [37], or systems-biology
for medical tools [54]. All of these systems are assumed
as constituted by discrete variables arranged in lattices and
subject to extended Ising-like interaction rules. In this work,
following our previous efforts [4], [59], the Ising model is
applied to the analysis of the game of Go. The resulting
models are described in Section III.

B. DEEP BELIEF NETWORKS

A Deep Belief Network (DBN) can be thought of as
being composed of several Restricted Boltzmann Machines
(RBMs), stacked one on top of another [24]. RBMs were
invented circa 1985 by Hinton, Sejnowski and Ackley [1],
[25] following the work of Hopfield [28] and Little [32]
in Energy Models [26]. Each RBM is a network composed
of two layers of units, called visible units and hidden units
(see Fig. 1). The units of an RBM are binary and stochastic,
with a joint probability distribution following a Boltzmann
distribution p(z, h) = exp(—E(z, h))/ Z, where Z represents
the partition function. The energy of the RBM is defined as:

E(x,h)=—hTWx —c'x —b'h )

Notice that (2) is in fact the Ising Hamiltonian (1) in vector
form, where the effect of the external magnetic field has been
split into two parts, one for the visible units x and another
for the hidden units h in the network. This fact can be made
obvious by presenting the energy in a scalar form:

Exh) ==Y "> wihpxx — > cxx — Y _bihj  (3)
k j k J

from which we can see that RBMs fall under the Ising model
and the main difference between an RBM and the standard
Ising model is that the variables in the RBM are organized
in layers and no connections between the variables within
each layer are allowed (hence the name restricted). Thus, this
type of networks are ideally suited for learning models and
particularly, Ising models.
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FIGURE 2. (a) A Go board and (b) its corresponding representation using a CFG. See main text for an explanation.

The parameters of an RBM can be tuned by repeatedly
setting its visible units to some values (an input vector),
computing the states of its hidden units and performing an
adjustment to the parameters. This is called training the net-
work and occurs in an unsupervised manner via a particular
algorithm known as Contrastive Divergence [5], [6], [21],
[22]. The objective of the training is to get the network to learn
relationships between the variables represented by the visible
units, or in other words, their probability distribution. Once
the network has been trained, then we can use it to sample
said variables, which means generating new “input” vectors.
This is why RBMs belong to a family of models known as
generative models.

By stacking several RBMs together, the learning
is improved, and the network is thus known as a
DBN [23], [24]. In this work, a DBN is employed to generate
Go board configurations that will help to measure the energy
in boards with mostly empty locations, which appear at the
beginning of Go games. Details are provided in Section III-B.

C. COMMON FATE GRAPHS
The definition of the elements of the Ising energy function
can help algorithms to compute the energy of stone patterns
at the successive Go moves, accounting for each state of
dominance. A Common Fate Graph (CFG) is an alternative,
sophisticated representation of the stones on a Go board [17].
As the name implies, the CFG consists of a graph where con-
nected stones of the same color are merged into one vertex.
The graph enables better handling of tactics and strategies for
analysis of the game [19].

This representation is shown in Fig. 2 where each Go stone
is a CFG principal node, labeled with the number of single
stones that compose it, and each stone’s liberty is a CFG
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secondary node. For instance, the white stone in the superior
left corner in Fig. 2 is 11 single stones, it possesses six
liberties (one shared with the 5-stones group below), and one
black liberty (shared with the 18-stones group to the right).
All of this is more easily appreciated through the CFG than
on the raw board.

Also, a Go gaming state representation by CFGs embraces
each stone’s linked relationship with allies, adversaries, and
liberties. By using CFGs, the Go sequence of moves (tactics
deployment) during a game, is easily logged, as well as the
follow up of the evolution of game interaction (depicted in a
lattice graph). By regarding the relative board position among
allies and adversaries on the base of the CFG, this technique
permits to define the Ising energy function and the design of
algorithms to quantify the force of interactions among black
and white stones. CFGs are employed to build the model
described in Section III-C.

IIl. ISING-GO MODELS

The Ising model can be applied to modeling the dynamics
of the interactions between allied or rival stones in their
struggling for territory control in GO. In this section, three
different models are proposed, two more ‘traditional’ models
that consider each of the stones in the game as individual
particles, thus called atomic-Go models, and a third one that
employs CFGs [17] to model connected stones, and is called
a molecular-Go model.

A. ATOMIC-GO ISING MODEL

Our first model considers only the interaction between adja-
cent stones, taking individually (thus w; = 1 and u = 0).
Recalling that in Go only 4-connectivity exists, this means
that any stone will interact with other stones located imme-

VOLUME 7, 2019



A. Rojas-Dominguez et al.: Modeling the Game of Go by Ising Hamiltonian, Deep Belief Networks, and Common Fate Graphs

IEEE Access

ABCDEF
T A B CDEF
1 100 0 100
2 — ,_200 1010
3 30010 01
< 4000000
5 O 50 00000
hd |
(a) (b)
A B CDTETF A B CDTETF
1011000 1100 0 1 1
g=2010000 _2100101
30000 00 3110110
40000 11 4111100
50 0 10 00 5110111
(c) (d)

FIGURE 3. Representation of a Go board used to train an RBM.

diately to the north, west, south or east of its location. For an
arbitrary board configuration (representing an arbitrary time
during a game), the interaction between a central stone x; and
stones x; in its neighborhood NV, results in local energy:

Si= ) X=X )X “
jeN jeN
where x;, x; € {—1, +1} for a black stone or a white stone,
respectively, and equals zero if the board location is empty.

The total energy of the board at a time ¢ is simply the sum of
the local energies of the corresponding board configuration.

Huyiomic(t) = — ngt) — K Z hgt)xi(t) 5)
i i

where h; represents the number of stone liberties (empty
board locations in the neighborhood of a stone), and con-
tribute with an amount of energy . > 0 aligned with x;.

B. GENERATIVE ATOMIC-GO ISING MODEL
Our second model inherits the features of our first model,
augmented by a deep generative model that is used to fill the
empty positions of Go boards, mainly in the early stages of
a game. The generative model is a DBN consisting of three
stacked RBMs, as described in Section II-B.

An ad-hoc encoding of the Go boards is introduced to
train the RBMs. A small illustrative Go board with some
black and white stones is shown in Fig. 3a; real Go boards
contain 19 x 19 crossings, the vertical lines are labeled A to
T (historically, the letter I is not used), the horizontal lines are
labeled with numbers 1 to 19, and the margins of the board are
included (we have not included the margin in our illustration,
for simplicity). This small board can be represented by three
matrices of binary values, shown in Fig. 3b - 3d. The values in
the first matrix are equal to 1 if the corresponding crossing on
the board has a black stone and are zero otherwise. In the sec-
ond matrix, the values equal to 1 represent the presence of
white stones at the corresponding crossings, and in the third
matrix, the values equal to 1 represent the empty crossings on
the board.
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FIGURE 4. A DBN is composed of 3 RBMs stacked up together.

The elements of each of the matrices in Fig. 3 can be rear-
ranged to form a vector of 30 binary numbers. For instance,
A’ =10,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0,1,0,...,0]
are the elements of A reordered into a single row vector.
We define our input vector z as the vector resulting from
concatenation of A’, B’ and C': z = [A/,B/, C']. As can
be appreciated, z contains all the information required to
reconstruct the original Go board.

In this work, 3 RBMs were stacked together as illustrated
in Fig. 4. Examining this network from the bottom to the top,
we have a visible layer of 19 x 19 x 3 = 1083 units, a first
hidden layer of 500 units, a second hidden layer of 600 units
and a final third hidden layer of 1000 units. The number
of units in the visible layer corresponds to the number of
variables in our representation of a Go board, as explained
above. The number of units for each hidden layer was found
empirically, by looking at the reconstruction error obtained
for each of the RBMs during its training, see Fig. 5. For
the training, we used a total of 69,100 boards in their final
(i.e. most complete) configuration from Go games of expert
players.?

Once trained, the DBN becomes a model for the probability
distribution of the data from which the network was trained.
Thus, the data can be sampled using the expressions:

p(hjlz) = 1/(1 + exp(—(b; + Wjz)) (©6)
p(zxlh) = 1/(1 + exp(—(cx + 2" Wy)) (7

where h; represents the j-th hidden unit, z; the k-th visible
unit, W; and Wy represent the j-th row and k-th column of
W, respectively (notation is overloaded for simplicity), and
b; and ¢y are the visible and hidden biases, respectively.
Thus, p(z) = ), p(z|h) is the marginal distribution of
z if the sum is performed over all possible configurations
of the hidden units, h. In our problem, with 1000 hidden
binary units in the last layer of our RBM, we have 2090 ~
1E301 possible configurations, so computing p(z) in that way
becomes intractable. Besides, there are many configurations
of our hidden units that are either trivial or uninteresting for

2https://senseis.xmp.net/
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FIGURE 5. Training of a DBN composed of 3 RBMs.
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FIGURE 6. (a) Probability of black stone; (b) probability of white stone; and (c) probability of empty

crossing.

our purposes, so instead of trying to use every possible con-
figuration, we use our network to approximate the probability
distribution of our hidden units and then use this to generate
new instances of our visible units. By presenting each of the
69,100 boards to our trained network we can compute the
states of the hidden units in the final layer of our DBN and
produce an estimate of the probability distribution of those
hidden units p(h). Next, we sample from p(h) and run the
DBN backward (from top to bottom) to obtain new instances
of z. After generating enough samples, we obtain a good
estimate p(z), of our desired distribution. This represents the
most probable configuration in a game of Go, as learned
from expert games. The estimate obtained from one million
instances generated in this fashion is shown in Fig. 6. The
probabilities of occurrence of each state for each position
can be read directly from these matrices. It should be noticed
that the probabilities recorded in these three matrices sum to
1 for every position, since there are only three possible states
of the board (black stone, white stone or empty crossing).
In our second model, called Generative Atomic-Go Ising
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model, we use said probabilities of occurrence to fill the
empty positions of the boards before computing the energy
in the way described in section III-A.

C. MOLECULAR-GO ISING MODEL

Our third model considers the existence of compound stones,
formed by connected individual stones. For this purpose,
we employ a more efficient representation of the Go board
throughout a game, by means of CFGs. In this CFG-based
representation, a molecular stone X; is defined by:

ki+1
X; = ci(n;"" )

®)

where n; € Z7T is the size of the molecular stone (equal
to the number of connected atomic stones forming it), k; €
{0, Z™} is the number of eyes in the molecular stone, and
¢i € {—1, 41} corresponds to the stone color (black or white,
respectively).

In this expression, the strength of the stone is weighted by
the number of its eyes, so that the value of a stone with one
eye is squared, and that of a stone with two eyes (a stone that
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A. Rojas-Dominguez et al.: Modeling the Game of Go by Ising Hamiltonian, Deep Belief Networks, and Common Fate Graphs

IEEE Access

TABLE 1. Proposed weight values for the Go tactics.

Tactic Value of r;
Ladder 0.8
Net 0.6
Eye 14

cannot be captured) is cubed. If a stone has no eye, x; just
indicates the size and color of that stone.

Besides the strength of a molecular stone, it is also impor-
tant to quantify its interaction with other stones considering
their involvement in some of the different tactics described in
Section I. Said interaction is represented by w;; in the Ising
model (1), and is now defined in our third Ising-Go model as:

wi = ri(i.J) ©)

where r4(7, j) is a multiplicatory factor corresponding to a
weight assigned to each possible tactic in which the stones
x; and x; participate. In other words, the factor r, weights the
power of each tactic t: eye (7eye), et (7yer) or ladder (riadder)-
The proposed values for r; are reported in Table 1; these are
based on the experience of well-ranked human Go players>
and our own understanding of the game.

Introducing (8) and (9) into the Hamiltonian (1), we have,
at a time ¢:

Holecular(t) = — Z WE;)X,('I)X]('I) — M Z h?)th) (10)
ij i

where, just as in (5), h; represents the sum of liberties that
stone i possesses.

The energy function (10) can be employed to compute the
power of the adversary groups of stones in a Go board and
thus quantify their corresponding board dominance. Usually,
a group of three stones or more appear as a net, so the
existence of the net tactic throughout a game is frequent.
Also, from the middle of a game onward, at least one large
stone in a net is present on the board, so the power of the
net tactic is significant. A ladder is not a frequent tactic, but
its occurrence results in a strong position on the board. One
compound stone may have one, two, or more internal eyes,
which ‘multiply’ its strength: a stone with one eye is alive,
a stone with two eyes cannot be captured, etc. The connection
tactic results in small stones becoming a larger one; thus,
a connection is indirectly quantified in the size of a compound
stone. As before, the ‘magnetic field” influence 4; on each
stone is made analogous to the sum of liberties that stone i
possesses. For simplicity, the scaling parameter 4 = 1 in this
proposal.

IV. EXPERIMENTAL EVALUATION

In this section, the three different Go-Ising models are tested
by applying each of them to compute the energy of Go
games and verify whether the models can detect energy dif-
ferences or not. In order to introduce controlled differences
between the skills of the players, several thousand Go games

3Please see the Acknowledgments Section.
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were simulated employing three different artificial players
(2,500 games per player.*) A brief description of these players
is provided before reporting the experimental results.

A. GO ARTIFICIAL PLAYERS

— GNU Go.- is a sophisticated program that plays the game
of Go, developed by the Free Software Foundation. A com-
plete list of contributors and extensive documentation can be
found in the project website.> GNU Go is a strong player that
includes dedicated routines for moves generation/valuation;
tactical analysis; influence computation; analysis of strings
and groups of connected stones; pattern analysis, etc. The
strength of the player is controlled by the level parameter. The
default level is 10, which is the maximum strength level. GNU
Go is the strongest player of the three used in this work.

— SmartGo.- is a commercially developed go-playing pro-
gram (Smart Go, Inc.)® which includes an advanced graphical
user interface and a large variety of user tools for game
analysis. As a player, it analyzes and selects the best moves
(by default it looks at the top 24 moves) for a given scenario.
This is possible through a customizable library of games from
which SmartGo can draw its moves. Although the playing
strength of SmartGo cannot be adjusted, according to its
authors, the program will play marginally better when given
more time to analyze the games. We consider SmartGo to be
a medium/strong level player.

— Fuego.- is a collection of C++4 libraries for the game
of Go.” It was initially developed by the Computer Go group
at the University of Alberta, Canada. It includes a Go player
Monte Carlo tree search [44] with the Upper Confidence
Bound applied to Trees algorithm [30]. Fuego is the weakest
of the three players considered in this work.

In every case, the programs described above simulate
games that can be stored as text files. The files comply with
the purpose-specific Smart Game Format (SGF)® and can be
easily parsed for analysis. Each SGF file contains the moves
performed by each of the players in order of occurrence,
together with the corresponding position on the board. From
this information, the per-move energy change produced in a
game can be computed under our different Go-Ising models.

B. RESULTS

Three pairs of player combinations are reported, and the
changes in energy (with inverted sign, so that positive energy
is considered favorable), measured employing the models
described in Section III, are presented in box and whiskers
diagrams (outliers were excluded from the plots for improved
clarity). These diagrams are a summary or simplified repre-
sentation of the data distributions; the horizontal segments
represent, from bottom to top: the minimum value, first quar-

4Beyond a few hundred games, adding more games does not change the
data distributions. Using 2,500 games results in very stable distributions.

5 https://www.gnu.org/software/gnugo/

6https://smartgo.com/

7http://fuego.sourceforge.net/

8https://WWW.re:d-bean.com/sgf/
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FIGURE 8. Energy comparison of different artificial players under the Generative Atomic-Go Ising model.

tile (in blue), second quartile (median, in red), third quartile
(in blue), and maximum value. If the models proposed in this
work are adequate, then differences in the strength between
different players (relative to their rivals) should be reflected
by the changes in energy that their moves produce. Stronger
players make moves that result in positive energy changes,
and this should be captured by the models and made apparent
in the box and whiskers diagrams.

The results of applying the Atomic-Go Ising model,
the Generative Atomic-Go Ising model and the Molecular-
Go Ising model are presented in Figs. 7 to 9, respectively.
On first examination, the box diagrams in Fig. 7 reflect some
differences between the data distributions. In statistical terms,
when the median line of one distribution (red line in the box
and whiskers diagrams) is located inside the range of the
box of another distribution, there is a possibility that the two
distributions are not different from each other. This is the case
in the data shown in Fig. 7a and 7b. The median lines of the
distributions in Fig. 7c do not fall within the body of each
other, but the distributions overlap significantly. A second
aspect examined is the variance of the data distributions,
which is reflected in their interquartile range (the height of the
boxes). As can be observed, the larger variance corresponds to
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the stronger player in each panel. This means that the moves
made by stronger players have larger effects on the energy,
as measured by the Atomic-Go model. Combining the two
aspects above, the conclusion is that this model does not
capture the strength of the players sufficiently well, since the
data distributions of players that are known to be different
overlap each other and only differences in the range of the
energy can be observed.

The box and whiskers diagrams in Fig. 8 show the results
of using the Generative Atomic-Go Ising model to analyze
the games. A very different scenario to that of the Atomic-
Go model can be readily observed. In this case, the medians
are not located inside the body of the other boxes in the
comparison. This is evidence to the fact that the medians of
the distributions are significantly different from each other.
Also, there is significantly less overlap between the boxes,
and in the case of the two more different players (GNU vs
Fuego) the boxes do not overlap at all. Furthermore, accord-
ing to this model, the data distribution of the stronger player
is always above that of the weaker player, indicating that
the moves of the stronger player result in positive energy
differences with much more frequency that the moves of
the weaker player. This is the behavior that the model was
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expected to capture. Notice as well that the scale of the energy
differences is nearly one order of magnitude larger than those
found by the Atomic model. In other words, the Generative
Atomic model amplifies the differences between the players.
Finally, the variances of the data compared are very similar
and the boxes are symmetric around the median, indicating
that the data follow Normal distributions.

Regarding the results presented in Fig. 9, which correspond
to the application of the Molecular-Go Ising model, it can
be observed that, taken by pairs, none of the boxes repre-
senting the data distributions overlap each other. This means
that, according to this model, the game moves performed
by one player produce significantly different changes in
energy. As with the Generative-Go model, in the Molecular-
Go model the stronger player in each case produces a data
distribution that is above that of the weaker player. Further-
more, under this model, the medians of the distributions are
not in the middle of the boxes, but are skewed towards one end
(the one end of each box that is closer to zero). In other words,
the data distributions of the stronger players are right-skewed
distributions whereas the distributions of the weaker players
are left-skewed distributions. This is a feature of the data that
the Atomic-Go and the Generative Atomic-Go models do not
capture. Finally, the range of the energy difference values
under the Molecular-Go model is about three orders of mag-
nitude larger than the Atomic-Go model. This is understand-
able, because this model groups stones before computing the
corresponding Hamiltonian, amplifying the energy values of
the stone configurations in a board, depending on the number
of eyes they possess. At this point it is worth noticing that the
energy values measured employing the models described in
this work could be normalized, depending on the user needs.

To test whether the apparent differences (or lack of differ-
ence) between the data distributions are statistically real to
a certain significance level, the data was analyzed using the
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TABLE 2. p-values for the Wilcoxon rank sum test.

GNU Smart GNU
Model vs Smart vs Fuego vs Fuego
Atomic 5.57E-25 6.86E-8 3.19E-142
Generative Atom.  1.49E-293  1.02E-215 0
Molecular 0 0 0

Wilcoxon rank sum statistical test, against the null hypothesis
that the data samples come from continuous distributions
with equal medians. The dependent variable is the energy
difference measured and the independent variable is the pair
of players, in each case. The p-values obtained are reported
in Table 2 and indicate that the null hypothesis can be rejected
for every case tested.

Although the statistical tests show that all of our Go Ising
models manage to measure the difference in the strength of
players, the different models are not equally efficient nor
equally useful. Under the Atomic model the energy differ-
ences are subdued to the point that it would be hard to use
this model for any practical purpose of analysis of the Go
games. Strictly speaking, the distributions in Fig. 7a indicate
that the Smart Go player is slightly stronger than GNU Go,
which is incorrect. Under the Generative Atomic-Go model,
the energy differences between players are clearly distin-
guishable and correctly reflect the strength of the players;
this model can be used to evaluate the strength of the moves
in a Go match. The Molecular-Go Ising model is the most
sophisticated one and the one that more strongly amplifies
the differences between the players. Comparing Fig. 9a with
Fig. 9b it can be observed that the Smart Go energy distri-
bution changes signs and shapes, from a negative left-tailed
distribution to a positive and right-tailed distribution. This is
because the model does not simply rely on the local infor-
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mation around a stone that has been played (like the Atomic
models do) but also includes the interactions occurring on the
rest of the board. In contrast, the Atomic models generate
essentially Normal distributions. For this reason, the Molec-
ular model is preferred.

V. CONCLUSION

The highly intricate interactions that occur between the stones
in the game of Go were studied utilizing three models devel-
oped from the starting point of the 2-D Ising model originally
proposed for the study of ferromagnetism. The Ising Hamilto-
nian was adapted to measure the ‘energy’ between allied and
rival stones. Through the proposed models, the Hamiltonian
allows quantification of a stone’s power as it is placed on the
board, and later on as part of identified tactics.

The models were applied to several thousand games played
between artificial players. Supported by statistical tests,
we can conclude that two of the Go Ising models (Genera-
tive Atomic-Go and Molecular Go) were able to adequately
measure the energy differences produced on the Go boards by
each of the moves of the different Go players. The remaining
model (which is the simplest of the three proposed) does not
measure the energy in a useful way to separate players accord-
ing to their strength in the game. The most complex model
(called Molecular Go Ising model), measures the energy in
the interaction between ally and adversarial stones, but also
weights that interaction according to the contribution of the
stones to each eye, ladder or net tactics. The nature of Go
gaming captured by the models suggests that low-cost algo-
rithms based on these models could be deployed to identify
the relevant strategies for success.

In this work, the models described were used to detect sta-
tistically significant differences between the skills of different
players. However, the models could also be used to perform a
play-by-play analysis of a game in order to predict the winner.
This can be done by application of the Hamiltonian, either
(5) or (10), to estimate the relative strength of each player.
After a sequence of moves, the player whose moves result in
the largest energy differences has the highest probability of
winning the match. Similarly, the statistical analysis of the
games with the help of the models could identify tactics and
sequences of tactics that form effective strategies in the long
run, potentially setting the foundation for Ising-model-based
artificial players that employ energy measures as part of their
move-selection algorithms.

Although initially, the interaction between individual Go
stones is fairly simple, complex behavior emerges from the
association among groups of those basic elements. Such
behavior is characteristic of many large systems found in
natural and social sciences. Thus, through the study of these
models, advancement in the comprehension of emerging
complex behaviors from other domains can be achieved,
particularly to those where territory control is the main mech-
anism for the success of the involved entities [34], [51].
Areas for potential application are social science (for example
to model business confidence, segregation, language change
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and stock market speculation [47], [48]) and socio-political
networks [13] (like the US Senate where the party affiliations
place Senators in adversarial positions [33]), etc. Another
potential area for the application of the Go Ising models is the
study of cancer metastasis, where the immune system and the
cancer cells play the role of two rival players and the patient’s
tissue is the territory that the adversaries try to dominate [4].
These ideas present opportunities for future work.
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