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ABSTRACT This paper investigates a nonlinear-model-predictive-control (NMPC)-strategy-based dis-
tributed leader–follower consensus multi-robot formation system. The control objective of this system is to
design a group of nonholonomic robots to converge into the desired geometric pattern and to track a designed
path. A directed graph that specifies communication topology for the formation is given. A leader–follower
consensus formation problem based on the mobile robot kinematic model is obtained, which is further
reformulated into a constrained nonlinear minimization problem through the NMPC strategy. A general
projection neural network (GPNN) is implemented to efficiently derive the optimal control inputs for the
robots. The simulation results verify the effectiveness of the proposed formation algorithm.

INDEX TERMS Nonholonomic Multi-robot formation, leader-follower consensus system, nonlinear model
predictive control (NMPC), graph theory, general projection neural network (GPNN).

I. INTRODUCTION
In recent years, robot formation, which is one of the most
important research areas in multi-robot coordination, has
become more and more attractive. Many researchers are
interested in its application prospects such as surveillance,
transportation, mine sweeping, rescue operations, and geo-
graphical exploration. Compared to single robot, a team of
robots can offer many superiorities on working. The consen-
sus formation, whose objective is to control a group of robots
to reach and maintain a designed geometric pattern during
moving, is a typical formation scheme. Meanwhile, owing
to Brockett’s theorem [1], it is hard to directly implement
the differentiable, or even continuous, pure state feedback
algorithm on the nonholonomic-robot-based distributed con-
sensus formation problem.

Generally, there are two control paradigms for robot for-
mation: centralized and distributed. In centralized formation,

The associate editor coordinating the review of this manuscript and
approving it for publication was Jinpeng Yu.

the formation system normally relies on one single chief
leader or external resource. The host exchanges information
among the robot members and the control inputs are calcu-
lated in the host depending on the received information of
the whole formation system. While in many cases, robots in
the formation only have limited communication ability, i.e.,
it is hard for the robots to receive all global information,
so the centralized formation is hard to be achieved. Different
from centralized control, in distributed formation, the robots
have more independence where the action of each robot
moves according on the behaviors observed from itself and
its neighbors. Recently, due to the development of the dis-
tributed consensus control, many works have used the graph
theory cooperated distributed consensus method to control
the multi-agent dynamical system [2], [3] and the formation
system [4], [5]. In the distributed consensus multi-robot for-
mation system, a communication topology of the robots can
be described by directed graph. The distributed control input
for each robot can be obtained only based on the information
from its neighbors and itself. Compared with centralized
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method, the distributed consensus control approach is supe-
rior in computing cost and its flexibility.

There are many methods that have been developed for
the distributed robot formation, such as Lyapunov-based
control [6], graph theory [7], feedback linearization [8],
nonlinear control [9], persistent generation [10] and sliding
mode [11]. In the work [4], a nonholonomic formation sys-
tem is transformed into a consensus state problem and a
distributed controller is applied. However, in above works,
the state and input constraints are not adequately considered.
The additional handling for the system’s constraints (such
as [12], [13], and [14]) may sometimes be inconvenient.
On the other hand, the nonlinear model predictive control
(NMPC) strategy can incorporate the state and input limita-
tions into the cost function and obtain a minimization closed-
loop optimal problem based on the consensus formation
model over a predictive control horizon in each sampling
time. In the previous works [15], [16], and [17], NMPC
method is used to control the leader-follower wheeled robot
formation systemwith separation-bearing orientation scheme
(SBOS) framework and the system’s boundaries can be con-
sidered. However, in [15]–[18] and [19], the formation sys-
tems are constructed by calculating robots’ relative relation-
ships but not in a consensus form. In [20], a homogeneous
multi-agent consensus system is controlled through the dis-
tributedMPCmethodwith input and state constraints. In [21],
MPC is used to control the second-order multi-agent flocking
system, the input constraints can be handled. However, most
of the MPC-based consensus formations are implemented on
the coordinate level and there is less work on the wheeled
mobile robots. In this work, we apply the NMPC method
on the consensus wheeled mobile robot formation system.
For dealing with the nonholonomic property brought by the
implemented robot, the consensus system is divided into to
two subsystems, where the MPC strategy, respectively, can
be implemented and the distributed optimal control input for
each robot can be obtained accordingly

To deal with the NMPC’s constrained optimal prob-
lem efficiently, the neurodynamic optimization approach is
implemented. In existing works such as [22]–[24] and [25],
duality and projection based neurodynamic models have been
built for dealing with the convex and pseudoconvex optimiza-
tion. Compared with other optimizationmethod, the neurody-
namic optimization algorithm has the superior performances
with robustness global convergence [26], low computational
complexity and can process the information in a distributed
and parallel way. Inspired by the work in [25], here, for the
constrained Quadratic Programming (QP) problem, a general
projection neural network (GPNN) is implemented to obtain
the optimal solution and the online computational efficiency
can be improved.

In this paper, we propose a distributed control method for
leader-follower consensus multi-robot formation systemwith
the MPC method. A virtual leader is employed to decide
the moving trajectory and is regard as the geometric center
of the formation. For the robots which only have limited

communication ability, a directed graph is used to describe
the communication topology and a consensus error system
model is formed. Compared with existing works on control-
ling consensus formation, the contributions of this work can
be list as follows:
1) To overcome the nonholonomic property, the mobile

robot kinematic system is transformed and divided into
two consensus error subsystems so that the control
objective can be achieved through stabilizing these two
subsystems in sequence.

2) A constrainedNMPCmethod is proposed for controlling
the consensus formation by transforming the consensus
subsystems in to QP optimization problems. The sys-
tem’s constraints can be handled by incorporating them
into the coefficients of the QP problems.

3) To obtain the optimal inputs for the robots, a neural-
dynamic optimization is proposed to solve the con-
strained QP problem in real time with its high efficiency
and low computational complexity.

This work is organized as follows. Section II gives some
preliminary knowledge of this work. Section III describes
the leader-follower consensus formation system. Section IV
introduces the proposed MPC method; the optimization
method is shown in Section V. Finally, Section VI gives
the results of simulation to verify the effectiveness of the
developed algorithm and Section VII concludes this work.

II. PRELIMINARIES
A. GRAPH THEORY
A directed graph G = (V ,E,A) is applied to represent
the communication relation of the robots. In the graph G,
V = 1, 2, · · · ,M represents the nonempty set ofM following
robots which can be labeled as R1,R2, · · · ,RM ; the directed
edges are represented as E = {(i, j), i, j ∈ V , i 6= j}; the
matrix A = (aij) ∈ RM×M is used to represent the relevant
weighted adjacency. We can describe the communication
relation of robots as follows: if and only if the information
can be transferred from robot j to robot i, (j, i) ∈ E exists, aij
of A is nonnegative. Here we set: if (j, i) /∈ E or i = j, aij = 0
and if (j, i) ∈ E, aij = 1.

Define the diagonal matrix D ∈ RM×M as:

D = diag(d1, d2, · · · , dM ) (1)

where di is called the in-degree and is defined as:

di =
M∑
j=1

aij (2)

L = D− A is the Laplacian matrix, L ∈ RM×M .
In the directed graph, the link path between i to j(i 6=

j) can be represented as a sequence of directed edges
(i, i1), (i1, i2), · · · , (ie, ij) where ik ∈ V , k = 1, 2, · · · , e.
The directed path between two robots is not unique. In a
directed graph, if and only if there is at least one node inV has
a directed path to all the other nodes that a directed spanning
tree is existed.
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FIGURE 1. Nonholonomic wheeled mobile robot.

In this paper, an virtual robot RL is considered as the leader
robot and the relation between it and other following robots
Ri(i = 1, · · · ,M ) can be described through a new directed
graph Ḡ. The leader RL cannot be affected by the other
follower Ri and can only send the information to a few fol-
lowers. Define the leader-follower connection weight matrix
B = diag(b1, b2, · · · , bM ). bi ≥ 0 for i = 0, 1, · · · ,M ,
if information sent by RL can be received by the follower Ri,
bi = 1, otherwise bi = 0. Assume that at least one follower
can receive leader’s information.
Lemma 1: [27] If a directed spanning tree exists in the

directed graph Ḡ, the matrix F = L + B is invertible.

B. NONHOLONOMIC WHEELED MOBILE ROBOT
Fig. 1 shows a typical nonholonomic wheeled mobile robot,
its position coordinate can be represented as (xi, yi) and its
orientation is θi(t). This robot equips two driving wheels
with 1.6cm radius for moving, a communication module for
exchanging information with other robots and a processor
to process the data. The maximum of its linear and angular
velocities are vmax = 10m/s andωmax = 5rad/s. Its diameter
is 9.9cm. The state vector of this robot i can be defined as
Xi = [xi, yi, θi]T , the kinematics model can be represented
as:

ẋi(t) = vi(t) cos θi(t)

ẏi(t) = vi(t) sin θi(t)

θ̇i(t) = ωi(t) (3)

This type of robots can not slip in a lateral direction. Mean-
while, define a virtual leader robot RL and its moving state is
defined as XL = [xL , yL , θL]T .

III. PROBLEM STATEMENT
A. FORMATION OBJECTIVE
As shown in Fig. 2, the desired formation pattern can be
defined asP = [(p1x , p1y), (p2x , p2y), . . . , (pMx , pMy)], where
(pix , piy)(i = 1, 2, · · · ,M ) is the desired geometric pattern’s
orthogonal coordinate of robot Ri. Suppose that the total

FIGURE 2. The desired formation pattern of the virtual leader robot and
follower robots.

M desired geometric patterns satisfy
M∑
i=1

pix = pLx ,
M∑
i=1

piy = pLy (4)

where (pLx , pLy) is the center of the formation pattern and is
normally set as original point, i.e., pLx = 0, pLy = 0. The
control objective of the formation system can be represented
as:

lim
t→∞

(xi(t)− xj(t)) = pix − pjx
lim
t→∞

(yi(t)− yj(t)) = piy − pjy
lim
t→∞

(θi(t)− θL(t)) = 0 (5)

lim
t→∞

(xM (t)− xL(t)) = 0

lim
t→∞

(yM (t)− yL(t)) = 0 (6)

B. CONSENSUS ERROR SUBSYSTEM TRANSFORMATION
For each robot Ri (i = 1, 2, · · · ,M ) in the formation,
we define following transformation:

z1i = θi
z2i = (xi − pix)cosθi + (yi − piy)sinθi + αsign(u1i)z3i
z3i = (xi − pix)sinθi − (yi − piy)cosθi
u1i = ωi
u2i = vi − (1+ α2)u1iz3i (7)

u1i and u2i are the inputs of the transformed system, sign(·) is
the signum function, α > 0. Let zi = [z1i, z2i, z3i]T represents
the state vector of the ith system, the dynamic system of (7)
can be represented as:

żi =

 ż1iż2i
ż3i

 =
 u1i

u2i + α|u1i|z2i
u1iz2i − α|u1i|z3i

 (8)

Then, the control objective (6) becomes

lim
t→∞

(z1i(t)− z1L(t)) = 0

lim
t→∞

(z2i(t)− z2L(t)) = 0

lim
t→∞

(z3i(t)− z3L(t)) = 0

lim
t→∞

(u1i(t)− u1L(t)) = 0 (9)

Lemma 2: [4] If equations (9) hold for i = 1, 2, · · · ,M ,
then equations (5)-(6) can be satisfied, i.e., all the M follow-
ing robots can reach the desired formation pattern P.
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Further, (8) can be transformed into two subsystems. Let
ξi = [ξ1i, ξ2i]T = [z2i, z3i]T , we have

ż1i = u1i (10)

ξ̇i =

[
u2i + α|u1i|ξ1i
u1iξ1i − α|u1i|ξ2i

]
(11)

Assumption 1: The state of the first subsystem z1i is
bounded and u1i is persistent exciting (1 = 1, 2, · · · ,M ).
Remark 1: From the system (11) we can see that, if the

input u1i in the subsystem (10) vanishes, the subsystem (11)
will lost its controllability. In this work, because of the
Assumption 1, input u1i dose not converge to 0, so that the
proposed nonholonomic system can be controlled.

For controlling the ith robot system (1 = 1, 2, · · · ,M ),
the angular velocity input ωi = u1i , while the linear velocity
input vi needs a transformation from u2i:

vi = u2i + (1+ α2)u1iξ2i. (12)

For each robot i, it can only receive the state information
from its neighbors, the communication topology is described
by a directed graph Ḡ in Subsection II-A. Through applying
directed graph Ḡ, the consensus errors of two subsystems can
be defined as follows:

e1i =
M∑
j=1

aij(z1i − z1j)+ bi(z1i − z1L) (13)

e2i =
M∑
j=1

aij(ξi − ξj)+ bi(ξi − ξL) (14)

where e1i and e2i are the consensus errors of two subsystems,
aij is the relevant adjacency weight. Define error vectors e1 =
[e11, e12, · · · , e1M ]T ∈ RM and e2 = [eT21, e

T
22, · · · , e

T
2M ]T ∈

R2M , the generalized consensus error system including M
robots can be formulated as:

e1 = Fz̃1 (15)
e2 = F ⊗ 12ξ̃ (16)

whereF = L+B, z̃1 = [z11−z1L , z12−z1L , · · · , z1M−z1L]T ,
ξ̃ = [(ξ1−ξL)T , (ξ2−ξL)T , · · · , (ξM −ξL)T ]T ,⊗ represents
the Kronecker product, 12 = [1, 1]T .

Further, define u1 = [u11, u12, · · · , u1M ]T ∈ RM and u2 =
[u21, u22, · · · , u2M ]T ∈ RM , subsystems (15) and (16) can be
represented as following nonlinear affine systems:

ė1 = h1(z1)+ s1(z1)u1 (17)
ė2 = h2(ξ, u1)+ s2(ξ )u2 (18)

where

h1(z1) = −Fu1L , s1(z1) = F ∈ RM×M

h2(ξ, u1) = F ⊗ 12


−u2L+α|u11|ξ11−α|u1L |ξ1L
u11ξ11−α|u11|ξ21+α|u1L |ξ2L

...
−u2L+α|u1M |ξ1M−α|u1L |ξ1L
u1M ξ1M−α|u1M |ξ2M+α|u1L |ξ2L


s2(ξ ) = F ⊗ 12.

After above transformation, the control objective (9) can
be turned into stabilizing the two transformed consensus
subsystems (17) and (18). For each following robot i in the
formation, the individual consensus error subsystems can be
represented as:

ė1i = h1i(z1)+ s1i(z1i)u1i (19)

ė2i = h2i(ξi, u1i)+ s2i(ξi)u2i (20)

h1i, h2i, s1i and s2i represent the ith row of h1, h2, s1,
and s2 respectively. Through stabilizing these two consensus
error subsystems, the robots in the formation can reach the
desired geometric pattern and the formation objective can be
achieved. That is to achieve:

For i = 1 · · ·Mast →∞, e1i→ 0, e2i→ 0 (21)

C. DISCRETIZATION OF CONSENSUS FORMATION SYSTEM
As the control method need to be implemented on the robot
platforms, the discrete-time form is required. Above two
subsystems can be discretized as follows:

e(k + 1) = e+ T ė (22)

where T is the sampling period. Let

h1i(e1i(k)) = e1i(k)+ Th1i(z1i),

s1i(e1i(k)) = Ts1i(z1i),

h2i(e2i(k)) = e2i(k)+ Th2i(ξi, u1i),

s2i(e2i(k)) = Ts2i(ξ ),

the previous two consensus error subsystems (17) and (18)
can be discretized as:

e1i(k + 1) = h1i(e1(k))+ s1i(e1i(k))u1i(k) (23)

e2i(k + 1) = h2i(e2i(k), u1i(k))+ s(e2i(k))u2i(k) (24)

IV. NONLINEAR MODEL PREDICTIVE CONTROL
STRATEGY
A. CONSENSUS FORMATION SYSTEM WITH INPUT AND
STATE CONSTRAINTS
For achieving the control objective, a discrete-time closed-
loop optimal control problem can be formed through the
nonlinear model predictive control (NMPC) strategy. Then,
one of the most important issues should be considered is the
system’s constraints. As the nonlinear affine systems (23)
and (24) have the similar form, we can use e, u,h and s to
representing eni,hni, sni and uni, for n = 1, 2, i = 1, · · · ,M .
The consensus error subsystems with constraints in discrete-
time can be represented as:

e(k + 1) = h(e(k))+ s(e(k))u(k) (25)

subject to

1umin 6 1u(k) 6 1umax (26)

umin 6 u(k) 6 umax (27)

emin 6 e(k) 6 emax (28)
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where m = 1 or 2 depends on the ith system; u ∈ R and
1u ∈ R represent the input vector and input increment vector,
respectively; e ∈ Rm represents the state vector; h(·) and
s(·) are nonlinear continuous functions; h(0) = 0; N and Nu
are the prediction horizon and control horizon, respectively,
and both satisfy 0 ≤ Nu ≤ N ; note that the inequalities of
constraints (27) means that: for the vector a, its ith element is
bounded by relative ith elements in amax and amin.

B. NONLINEAR MODEL PREDICTIVE CONTROL
In theMPC, at each sampling time, the states of system can be
predicted within the predictive horizon based on the control
model. So a cost function can be formulated by using the
predictive state and input sequences. The iterative online opti-
mization process is the distinction between the MPC method
and other traditional control methods. Define a(k+ j|k) as the
predicted value of a at the future time instance k+ j based on
the information at the current time instance k . For n = 1, 2,
the predictive states of consensus subsystems (23) and (24)
of the ith robot at the future time k + j can be represented
as eni(k + j|k), j = 1, 2, . . . ,N , which can be obtained as
following predictive process:

eni(k + 1|k) = hni(eni(k|k − 1))+ sni(eni(k|k − 1))

×(uni(k − 1)+1uni(k|k))

eni(k + 2|k) = hni(eni(k + 1|k − 1))

+sni(en(k + 1|k − 1))

×(uni(k − 1)+1uni(k|k)+1uni(k + 1|k))
...

eni(k + N |k) = hni(eni(k + N |k − 1))

+sni(eni(k + N − 1|k − 1))

×(uni(k − 1)+1uni(k|k)+ . . .+1uni(k + Nu − 1|k))

(29)

where uni(k − 1) is the previous control input; 1uni(k + j|k)
is system’s future input increment over the control horizon;
uni(k+ j|k) = uni(k−1)+1uni(k|k)+ . . .+1uni(k+ j|k) is
system’s future input. Then cost function of the nth consensus
subsystem of the ith robot can be built up as:

Jni(k) =
N∑
j=1

eTni(k + j|k)Qnieni(k + j|k)

+

Nu−1∑
j=0

1uTni(k + j|k)Rni1uni(k + j|k) (30)

where Qni and Rni represent appropriate weighting matrices.
Define:

ēni(k) = [eni(k + 1|k), . . . , eni(k + N |k)]T ∈ RmN

ūni(k) = [uni(k|k), . . . , uni(k + Nu − 1|k)]T ∈ RNu

1ūni(k) = [1uni(k|k), . . . ,1uni(k + Nu − 1|k)]T ∈ RNu

so the predicted consensus system errors can be repre-
sented as:

ēni(k) = Sni1ūni(k)+ h̃ni + s̃ni (31)

where

Sni =

 sni(eni(k|k−1)) ··· 0
sni(eni(k+1|k−1)) ··· 0

...
. . .

...
sni(eni(k+N−1|k−1)) ··· sn(eni(k+N−1|k−1))



h̃ni =


hni(eni(k|k − 1))

hni(eni(k + 1|k − 1))
...

hni(eni(k + N − 1|k − 1))

 ,

s̃ni =


sni(en(k|k − 1))uni(k − 1)

sni(eni(k + 1|k − 1))uni(k − 1)
...

sni(eni(k + N − 1|k − 1))uni(k − 1)

 .
Sni ∈ RmN×Nu , h̃ni and s̃ni ∈ RmN ,m = 1, 2 depends on the

nth subsystem. Through substituting (31) into (30), we can
get the optimal problem:

min Jni(k) = ||Sni1ūni(k)+h̃ni+s̃ni||2Qni+||1ūni||
2
Rn (32)

subject to

1ūnimin 6 1ūni(k) 6 1ūnimax (33)

ūnimin 6 ūni(k − 1) 6 ūnimax (34)

ūnimin 6 ūni(k − 1)+ Ĩ1ūni(k) 6 ūnimax (35)

ēnimin 6 h̃ni + s̃ni + Sni1ūni(k) 6 ēnimax (36)

where Ĩ =


I 0 · · · 0
I I · · · 0
...

...
. . .

...

I I · · · I

 ∈ RNu×Nu .
Remark 2: Note that when formulating of the optimiza-

tion problem, robot Ri needs to get the predictive values of
Sni, hni and sni. However, in the distributed formation, one
robot cannot obtain the predicted state values of its neighbors.
So in the practical application, the predictive states of Ri’s
neighbors can be estimated numerically using neighbors’
previous states. Even in controlling a nominal undisturbed
system, the predicted value and the actual closed-loop values
of NMPC is not necessary to be the same. Hence the Sni,
hni and sni can be obtained based on the estimated predictive
states of their neighbors. The errors between the estimated
values and the predicted one can be reduced through tuning
Qni, Rni, N and Nu [28] as well as setting compatibility
input constraints and sufficient small sampling period [18],
meanwhile, the closed-loop stability can be achieved.

Then, a QP problem can be formed from the optimization
problem (32)

min
1
2
1ūTniHni1ūni + r

T
ni1ūni

s.t lni 6 Ani1ūni 6 h̄ni (37)
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where

Hni = 2(STniQniSni + Rni), rni = 2STniQni(s̃ni + h̃ni)

Ani =


−Ĩ
Ĩ
−Sni
Sni
I

 , fni =


−ūnimin + ūni(k − 1)
ūnimax + ūni(k − 1)
−ēnimin + h̃ni + s̃ni
ēnimax − h̃ni − s̃ni

 ,
lni =

[
−∞

ūnimin

]
, h̄ni =

[
fni

ūnimax

]
where Hni ∈ RNu×Nu , rni ∈ RNu , Ani ∈ R(2mN+3Nu)×Nu , fni ∈
R2mN+2Nu . lni and h̄ni are the upper/lower bounds of Ani1ūni
and lni/h̄ni ∈ R2mN+3Nu .
The stability analysis of the implemental MPC method

have been shown in the previous work [17]. The closed-loop
stability of the system can be achieved when there exists
optimal input sequences ū∗ni(k + 1) for the QP optimization
problem (37) at each time instance k . So the next step is to find
an efficient and effective method for obtaining the optimal
inputs for each robot.

V. GENERAL PROJECTION NETWORK OPTIMIZATION
After formulating the QP problem (37), for the ith robot
(i = 1, 2, . . . ,M ), we need to solve (37) to obtain the optimal
input increment sequences1ūni (n = 1, 2) for its two relative
consensus error subsystems. For the sake of simplicity, 1ū
is used to represent the input increment we need to obtain.
Firstly, we have following theorem:
Theorem 1: To find an optimal solution for the QP prob-

lem (37) is equivalent to find a vector 1ū ∈ RNu satisfying
following piecewise equation:

ϕϑ+(1ū− ζ )+% = K3(% − ϑ+(1ū− ζ )+ϕϑ+(1ū− ζ ))

(38)

where ϑ+ is the pseudo-inverse of ϑ ; ϑ = H−1ni A
T
ni; ϕ =

AniH
−1
ni A

T
ni; ζ = −H

−1
ni rni; % = −AniH

−1
ni rni.

The proof of the Theorem 1 has been illustrated in the
work [25].
K3(·) is the projection operator as follows:

K3(ai) =


a− if ai < x−,
ai if a− 6 ai 6 a+,
a+ if ai > x+,

∀i ∈ R2mN+3Nu (39)

and the minimum/maximum boundaries are a− = l and
a+ = h.

Through defining two continuous differentiable vector-
valued functions: R(1ū) = ϕϑ+(1ū − ζ ) + %, D(1ū) =
ϑ+(1ū − ζ ), neural network’s dynamic equation with
1ū ∈ RNu as the state vector can be represented as

γ
d1ū
dt
= β[K3(R(1ū)− D(1ū))− R(1ū)] (40)

Fig. 3 shows the structure of GPNN, where β = ϑ , βi
represents the ith row of the scaling matrix β; γ is a positive
constant.

FIGURE 3. Block diagram of the GPNN.

The work in [25] verifies the Lyapunov stability of the
optimal problem (37) with this method, the optimal solu-
tion 1ū∗ is of globally exponentially convergence. Finally,
the first element of the outputs in (40) will be used to obtain
the optimal inputs for the subsystem.
Remark 3: Generally, there are 2Nu additions/subtractions,

Nu integrators,Nu processors of projection operatorK3(·) and
Nu processors of vector-valued function R(1ū) and D(1ū)
in GPNN. In this paper, for each subsystem in one robot,
the dimension of GPNN’s state is Nu, so there are totally
2MNu dimension for all M robots. In each iteration, there
are totally 2MNu ∗ (6MN + 6MNu) multiplication, 2MNu
integrators, 2 ∗ (6MN + 6MNu) additions/subtractions, and
6MN +6MNu processes of K3(·), hence the computing com-
plexity is O((MNu)2) [17]. On the other hand, the traditional
sequential quadratic programming (SQP) using gradient
descent methods to solve the QP problem. The SQP method
requires computation of the Hessian matrix [29] repeatedly
with O((3NM )4 + (14MNu + 8MN )3 + (6MNu + 4MN ) ∗
(3MNu)2 + 3MN ) operations; therefore the complexity is
O((MNu)4), which cannot satisfy our requirement for control-
ling the formation system in real time. In general, the GPNN
have a low computational burden and is an efficient way for
solving the QP problem.
Remark 4: Compared with other existing optimal method,

in each sampling time, the GPNN can obtain the optimal solu-
tions just by solving the differential equation (40), in which
the system constraints are incorporated, and avoid iterative
computation. As to other frequently used methods like par-
ticle swarm optimization (PSO) [16] and the cooperative
coevolutionary algorithm (CCEA) [18], the optimal problems
are solved through iteratively updating their global best posi-
tions and the constraints need to be considered additionally.
However, the complexities of these two methods can up to
O(MNuNiNp), whereNi is the maximum iteration number and
Np is the particle number when the global best position cannot
directly be found. So, the GPNN is more suitable for the real-
time optimization.
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Finally, the general control processes of the leader-follower
distributed consensus multi-robot formation can be listed as
follows:

1) Let k = 1, choose the parameters like the control hori-
zon Nu, prediction horizon N , weight matrices Rni and
Qni, the constants γ, α, and period T , desired formation
pattern P = [(p1x , p1y), (p2x , p2y), ..., (pMx , pMy)], let
k = 1.

2) For each follower robot Ri(i = 1, 2, . . . ,M ), two sub-
systems (10) and (11) is obtained based on its kinematic
model by transformed and dividing processes.

3) Two consensus error systems (19) and (20) are obtained
based on the directed graph Ḡ and the subsystems in 2).

4) For each robot ith i = 1, 2, . . . ,M and n = 1, 2,
formulate the QP problem (37) and get Hni,Ani, fni, rni
as well as the upper/lower bounds lni, h̄ni.

5) Solve the differential equation (40) of GPNN and obtain
optimal control increment sequences 1ū∗1i(k) of all the
1th subsystems (15). Only the first terms of 1ū∗1i(k) are
used to form the angular velocities ωi(k + 1) = u∗1i(k +
1) = u∗1i(k)+1u

∗

1i(k + 1) for every follower robots.
6) Similar to step 5), solve and obtain the1ū∗2i(k) of all the

2nd subsystems (16), then linear velocities vi(k+ 1) can
be obtain by (12).

7) After inputting the velocities to each robots, calculate
the posture Xi = [xi, yi, θi]T of all the followers and the
XL = [xL , yL , θL]T of the leader for the calculation of
next period.

8) Go back to 2) if the formation moving keeps on.

VI. SIMULATION RESULTS
In this section, simulation results are performed to show
the effectiveness of proposed method. The control strategy
is applied on a group of mobile robots. In the simulation,
the parameters of robot are referred to the practical nonholo-
nomic wheeled mobile robot platform in Section II-B.

Considering the boundaries of the velocities, vmax =
10m/s, ωmax = 5rad/s, 1vmax = 2m/s and 1ωmax =
1rad/s for the robots. The input and input increment lim-
itations of the ith subsystem are chosen as ū1imax =

[ωmax · · ·ωmax]T ∈ RNu , ū1imin = −ū1imax , 1ū1imax =
[1ωmax · · ·1ωmax]T ∈ RNu and 1ū1imin = −1ū1max . Refer
to (12), vi is consisted of u1i, u2i and ξ2i, so we set u2imax =
vmax − (1 + α2)ωminξ2i, u2imin = vmin − (1 + α2)ωmaxξ2i.
Hence ū2imax = [u2imax · · · u2imax ]

T
∈ RNu and ū2min =

[u2imin · · · u2imin ]
T
∈ RNu . 1ū2max = [1vmax · · ·1vmax]T ∈

RNu and 1ū2min = −1ū2max . For the nth consensus subsys-
tem, its bounds of the consensus errors are set as ēnmax =
[10 10 · · · 10]T ∈ RmN , ēnmin = [−10 −10 · · ·−10]T ∈ RmN ,
m = 1 or 2 depends on the subsystem. The parameters of
MPC are set as Nu = 2, N = 3, Qni = 104I , Rni = 10I .
α = 1.
In the simulation, the robot RL is set as the leader, 5 fol-

lower robots R1 − R5 are applied. The initial states of
robots are set as XL(0) = [xL(0), yL(0), θL(0)]T = (3.5 m,

FIGURE 4. The desired geometric pattern of formation.

FIGURE 5. Communication topology of the robots.

2.2 m, 0.0 rad)T , X1(0) = [x1(0), y1(0), θ1(0)]T =

(3.5 m, 2.5 m, 0.0 rad)T , X2(0) = [x2(0), y2(0), θ2(0)] =
[3.8 m, 2.2 m, 0 rad]T , X3(0) = [x3(0), y3(0), θ3(0)]T =
(3.3 m, 1.7 m, 0.0 rad)T , X4(0) = [x4(0), y4(0), θ4(0)]T =
(2.4 m, 1.6 m, 0.0 rad)T , X5(0) = [x5(0), y5(0), θ5(0)]T =
(2.5 m, 1.8 m, 0.0 rad)T .
As shown in Fig 4, the desired geometric pattern P of

formation is defined as

(p1x , p1y) = (0, 0.25)

(p2x , p2y) = (0.25 cos(π/10), 0.25 sin(π/10))

(p3x , p3y) = (0.25 sin(π/5),−0.25 cos(π/5))

(p4x , p4y) = (−0.25 sin(π/5),−0.25 cos(π/5))

(p5x , p5y) = (−0.25 cos(π/10), 0.25 sin(π/10))

The moving duration is set as 30.0s and the sampling time is
set as T = 0.1s.

The directed communication topology of these robots is
described as Fig. 5. So the adjacency matrix A, degree matrix
D and connection weight matrix B are represented as:

A =


0 0 1 0 0
1 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

,D =

1 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,
B = diag(1, 0, 0, 0, 0)

The velocities of RL are set as:

vL(k) = 0.4 m/s, ωL(k) = 0.2 rad/s, k = 0, . . . , 300.

(41)
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FIGURE 6. The trajectories of the robots in the formation.

FIGURE 7. The linear velocities of robots.

FIGURE 8. The angular velocities of robots.

Fig. 6 shows the trajectories of the whole formation,
the alight blue dotted line is the trajectory of the virtual
leader robot RL while others are the trajectories of R1 − R5.
Initially, the five followers formed an irregular pentagon and

FIGURE 9. The consensus errors of z2i (i = 1, 2, 3, 4, 5).

FIGURE 10. The consensus errors of z2i (i = 1, 2, 3, 4, 5).

FIGURE 11. The consensus errors of z3i (i = 1, 2, 3, 4, 5).

the formation’s centroid (black line) was not on the desired
path (RL’s trajectory). Fig. 7 shows the linear velocities
while Fig. 8 shows the angular velocities of follower and
leader robots. Fig. 9-11 show the changing of the state errors
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between zi and zL and finally the errors converge to the
origin. Above results show that the developed method can
drive all the followers Ri forming and maintaining a desired
pentagon and the centroid of them can track the desired path,
the consensus errors of each robots can also be stabilized.
Thus the effectiveness of this method can be demonstrated.

VII. CONCLUSION
This paper has developed a NMPC-based distributed leader-
follower consensus control strategy for nonholonomic multi-
robot formation. For describing the communication topol-
ogy of these robots, a directed graph is applied. After the
transforming, the leader-follower consensus formation sys-
tem for each nonholonomic robot is obtained and is further
divided into two subsystems. A NMPC method is applied
to transformed two consensus error systems into constrained
QP problems iteratively and the input and state constraints
are incorporated into this optimization problem. For solv-
ing the QP problem, a GPNN is utilized. The GPNN can
obtain the distributed optimal input for each robot with low
computational complexity. In the end, simulation results of
the proposed method on the multi-robot formation show the
effectiveness of the proposed approach. In our future work,
we will research the application of the proposed method
on some practical cases such as the unmanned wheeled
robot convoying. In the convoying process, the leader can
be replaced by the protected person and the followers are
the automotive escorts. On the other hand, the collision and
the communication boundary problems can also be taken into
account.
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