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ABSTRACT The objective of the research presented in this paper was to design an accurate and robust
algorithm for the challenging task of detecting field-grown cucumbers for robotic harvesting automation in
precision agriculture applications. The proposed algorithm is based on a combination of several processing
and data mining techniques to achieve a classification system capable of segmenting cucumbers from the
different elements of the scene, such as leaves, stems, the ground, stones, and irrigation pipes. The algorithm
includes a support vector machine pixel classifier that provides the initial regions of interest for further
processing, a Euclidean distance transform for eliminating less compact blobs that usually correspond to
flowers and young leaves, an image category classifier based on a bag-of-visual-words model that increases
the detection reliability, and a segmentation procedure based on the watershed transform and the minima
imposition technique. Several experimental campaigns were carried out in field conditions to acquire data
for training the classifiers and for validating the designed algorithm. Detection performance was evaluated
at both the pixel and cucumber levels by comparing the results provided by the proposed algorithm with
the ground truth data generated from hand-labeled images. The high hit rate and the low false-positive
rate obtained at the pixel level and the high recall and precision at the cucumber level demonstrated
the satisfactory performance of the proposed solution and highlight its potential benefits for automatic
cucumber-harvesting applications.

INDEX TERMS Robot vision system, precision agriculture, grown-field cucumbers, automatic detection,
image processing, robotic harvesting, machine learning, SVM, bag-of-visual-words.

I. INTRODUCTION
In 2016, the global production of cucumbers and gherkins
worldwide was 80.6 · 109 kg, ranking the vegetables third
in terms of volume of total production after tomatoes and
onions. This statistic demonstrates the global importance
of cucumbers and gherkins agriculturally and economically.
In the same year, the production of cucumbers and gherkins
in the European Union amounted to 6.4 ·109 kg, representing
7.9% of total global production [1]. However, the produc-
tion trend in recent years (see Fig. 1) indicates a significant
slowdown in the growth of the European Union’s cucumber

production, marked by (i) high labor costs, which reduce
profitability and the competitiveness of the products; (ii) the
strong emergence of countries with competitive advantages
such as low costs of land and low wages; (iii) and the growing
difficulty in finding a workforce, due to the high seasonality
of jobs, harsh working conditions and scarce attractiveness
as harvesting is considered a low-skilled job. In addition,
the growth rate of cucumber fruits is high, requiring the
fruits to be harvested two or three times a week. This high
frequency is one reason why the harvesting of cucumber is
more labor-intensive than that of any other vegetable fruit [2].
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FIGURE 1. World cucumber map. Evolution of cucumber and gherkin
production in recent years. Data extracted from FAOSTAT.

These findings highlight the need to design common strate-
gies to strengthen the sector and thereby improve the effi-
ciency of the processes involved in these activities. Service
robots are becoming a key part of many sectors of society,
including precision agriculture, where they are called upon
to play an important role in improving competitiveness and
sustainable production [3].

Thus, one of the most promising approaches for improv-
ing agricultural production yields is the use of autonomous
harvesting robots. An important first step in the develop-
ment of any automated harvesting robot is the design of
a sensory system that provides reliable data that can be
processed and analyzed to detect the presence of fruits,
discriminating them from the rest of the scene elements.
However, the automatic detection of cucumbers in natural

scenes is quite challenging. Cucumbers are highly similar
in color to leaves and stems. In addition, most cucumbers
are partially occluded by leaves or stems or overlapped with
other fruits. These occlusions eliminate the direct correspon-
dence between visible areas of cucumbers and cucumbers
themselves by introducing ambiguity into the interpretation
of the shape of occluded cucumbers [4]. Unlike cucumbers
grown in greenhouses with a relatively uniform layout, field-
grown cucumbers can be found in quite random positions and
orientations and in various sizes, volumes and limb structures.
The variable environmental conditions inherent to outdoor
scenarios also magnify the technical challenge imposed on
a sensory system.

Over the past two decades, several studies have been
conducted to provide automatic detection and measurement
systems for different features of cucumbers crops. One of the
first studies in this area was [5], in which an image analysis
method was proposed for the automated assessment of the
length and width of cucumber fruit, as well as the length and
shape of the neck of the fruit. Cucumber fruits were placed
on an illumination table equipped with background lighting,
and a CCD video camera mounted perpendicularly above the
table was used for image acquisition. Van Henten et al. [6]
proposed a combination of two CCD cameras, one equipped
with an 850 nm filter and the other with a 970 nm filter
for detecting cucumber fruits grown in greenhouses using a
high-wire cultivation system, in which every plant is attached
to a wire. Experimental tests showed that the designed sys-
tem was able to detect more than 95% of the fruits in a
dataset of 106 cucumbers, with 19 false positives. Image
acquisition was carried out such that every part of the plant
stand appeared three times in the camera’s field of view but
from different perspectives. If a cucumber was detected in
at least one of the three images, it was counted as detected.
A segmentation algorithm based on rough set theory was
presented in [7] for solving the problem of cucumber iden-
tification in greenhouses. However, no quantitative results
derived from the proposed algorithm were presented. In [8],
a three-layer back-propagation neural network combined
with a texture analysis was established to detect greenhouse
cucumber fruits. The algorithm was tested on 40 cucumber
plant images, and a detection rate of approximately 76% was
achieved considering only backlighting conditions. A simpli-
fied pulse-coupled neural network algorithm was proposed
by Wang et al. [9] for segmenting greenhouse cucumbers
from a complex background. The connection strength coef-
ficients were adjusted adaptively by using the local standard
deviation. The rate of correct segmentation obtained from
the experimental results was approximately 82.4%. More
recently, deep convolutional neural networks have been pro-
posed for detecting other fruits, such as mangoes [10], sweet
peppers and rock melons [11], exhibiting promising results
with F1 scores of 0.881 and 0.838, respectively. In [12],
Noble and Li presented schemes for classifying cucumber
fruits, leaves, and vines under laboratory conditions and
greenhouse conditions, concluding that the utilization of the
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water absorption band at 970 nm is generally effective for
segmenting cucumber fruits from images. However, the qual-
ity of the segmentation is highly dependent on illumination.
No quantitative results were presented. Clement et al. [13]
proposed a computer algorithm based on active contours
to classify cucumbers by length and curvature. The system
uses digital imaging technology operating within the visible
spectrum. A multi-template matching method was utilized
by Bao et al. [14] to recognize matured Radit cucumbers
grown vertically in a greenhouse. Proportional scaling and
rotation operations were applied to a standard cucumber
image to build a multi-template matching library, whereas the
multi-template matching method was developed by using the
normalized correlation coefficients algorithm. For evaluation,
images were shrunk to a size of 240×180 pixels, with a target
in the center of the image. In total, 100 images were analyzed
and 98% of the cucumbers were correctly recognized. In [15],
a Kinect sensor was used to acquire greenhouse cucumber
images, which were segmented based on a color and region
growing algorithm. The targets contours were then extracted
and the feature values of the tangent point and the centroid
were calculated. The algorithm was validated in a collection
of 4 cucumber photos, providing a segmentation success rate
without occlusions of almost 100%.

This paper presents research carried out to design and
implement an accurate and reliable algorithm for detecting
field-grown cucumbers from an RGB image. The proposed
solution is intended to be used in autonomous harvesting
robotic systems and differs from all previous approaches
found in the literature, which mainly focus on the detec-
tion or characterization of cucumbers grown in greenhouses
by using wire cultivation systems. Cucumbers grown using
wire cultivation systems are less prone to the formation of
clusters of overlapping cucumbers, less affected by occlu-
sions, and feature a fairly well-defined orientation with
respect to the plants, simplifying detection.

In addition, the proposed sensory rig is based solely on an
RGB camera, which decreases the total cost of the system and
makes the future harvesting robot in which it is incorporated
more competitive in the market.

The rest of the paper is organized as follows. Section 2
describes the design and implementation of the pro-
posed detection algorithm. Section 3 presents the results
obtained from the different experimental tests carried out.
Section 4 discusses the main results of this work, and finally,
Section 5 summarizes the main conclusions.

II. MATERIALS AND METHODS
A. STUDY SITE
Data acquisition was conducted in several experimental cam-
paigns between June and August of 2017 under field condi-
tions in Arganda del Rey - Madrid, Spain (lat. 40◦18’58.1’’N;
long. 03◦29’5.5’’W). This timeframe allowed us to acquire
images at different growth stages of the cucumber plants.
The experimental field was planted with Quirk cucumbers,
a new variety developed by the seed producer Ryk Zwaan

GmBH for the CATCH experiment within the FP7 EU project
ECHORD++. This new variety is characterized by providing
small, pale cucumbers.

B. PRELIMINARY HYPERSPECTRAL STUDY
Before initiating the design of the detection algorithm, a pre-
liminary hyperspectral study was carried out to determine
the wavelengths that could be relevant for the discrimination
of cucumbers with respect to other elements of the plant,
such as the leaves. To that end, several samples of cucumbers
and leaves of the Quirk cultivar were scanned with a pushb-
room hyperspectral system, which consisted of an objective
lens, an ImSpector V10E spectrograph, a Pulnix TM-1327GE
CCD camera and a DC-regulated 150 watt-halogen light
source that provided intense, cold illumination. This system
enabled recording of 200 spectral bands in the visible and
near-infrared regions between 400 nm and 1000 nm, with
3 nm between contiguous bands. Fig. 2 shows the result-
ing images for leaves and cucumbers at 470 nm, 534 nm,
685 nm, 720 nm and 755 nm. With the acquired information,
we obtained the corresponding signatures for the leaves and
cucumbers of the Quirk cultivar (see Fig. 3). These signa-
tures confirmed that the reflectance ratios of cucumbers-to-
leaves in the visible region provide sufficient differences for
discrimination. Therefore, we discarded the use of a sensor
operating in a specific wavelength and looked for a simple
RGB camera.

FIGURE 2. Narrow-band images of cucumbers and leaves from the Quirk
cultivar at 470 nm, 534 nm, 685 nm, 720 nm and 755 nm.

C. VISION SYSTEM
AnAVTProsilica GC2450 camera (AlliedVision, Stradtroda,
Germany) was utilized to acquire high-resolution color
images, which were supplied as input for the detection algo-
rithm. The AVT Prosilica GC2450 color camera was installed
in a Bosch frame such that the image plane was parallel to the
ground plane. The distance between the frontal plane of the
camera and the ground was approximately 700 mm.

D. METHOD
This section describes the various steps of the process-
ing algorithm designed and implemented for the automatic
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FIGURE 3. Spectral signatures.

detection of field-grown cucumbers. The proposed algorithm
combines a support vector machine (SVM) pixel classifier
that provides the initial regions of interest for further pro-
cessing, a Euclidean distance transform for eliminating less
compact blobs that usually correspond to flowers and young
leaves, an image category classifier based on a bag-of-visual-
words model that increases the detection reliability, and a
segmentation procedure based on the watershed transform
and the minima imposition technique (see Fig. 4).

FIGURE 4. Overview of the proposed detection algorithm.

The desired outputs are the centroids of the visible areas
of the cucumbers present in the acquired images, as well
as their corresponding orientations, which are given by the
angles between the x-axis and the major axes of the ellipses
that have the same normalized central moments as the regions
of interest.

As a first step, a multiclass SVM classifier is trained
on color information to identify the initial regions of inter-
est [16], [17]. As the proposed solution is intended to be used
with a cucumber harvesting robot, a multiclass SVMmachine
classifier is preferred over a binary SVM since detection of

leaves is important for the trajectory planning of arms and
grippers. Instead of directly using the original R, G, and B
values, color transformations are introduced before apply-
ing the SVM classifier to make the algorithm response less
sensitive to changing illumination conditions. These trans-
formations quantify the intensity difference between green
and blue (G-B) and the proportion of green (G/(R+G+B))
in the RGB color model and quantify the hue in the HSV
(hue saturation value) color model (see Fig. 5). Two acquired
datasets were randomly selected for training the SVM of the
proposed classification algorithm. After applying the color
transformations described above, 15 representative regions
of interest of different sizes were selected for each desired
class. The mean reflectance values of these regions were then
treated as training samples and were manually labeled into
three semantic classes: cucumbers, leaves and background,
providing a set of 135 observations (45 observations per
class). With the obtained set of samples per class, the SVMs
of the proposed algorithm were trained to classify the pixels
of the images by using a linear kernel function and the one-
versus-one coding design.

The resulting pixel-based classification map (see
Fig. 6-(a)) was then utilized to generate a mask enabling us
to work only with those pixels that belonged to the cucumber
class in the next processing steps and discard the rest. Thus,
only pixels classified as cucumbers were retained, and two
morphological operations were applied: an area opening to
remove all connected components with fewer than 550 pixels
and a flood-fill operation to fill in holes. With this set of mor-
phological operations, all areas with a small number of pixels
in the background were removed and small holes within the
cucumbers were filled in (see Fig. 6-(b)). These small holes
within the cucumbers correspond to areas overexposed to
light.

During the design of the proposed algorithm, we observed
that the resulting pixel-based classification map provides a
high true detection rate for the cucumber class. However,
we also found that young leaves and flowers frequently
produced numerous false positives due to their similar col-
orations. A more detailed comparison of correctly and incor-
rectly classified blobs demonstrates that those blobs that
belong to cucumber fruits are always denser and more com-
pact than those corresponding to young leaves and flowers.
This discrepancy is mainly due to the uniformity of the
cucumber fruits, in contrast to the irregular surface of leaves
and flowers. Therefore, to discard these incorrectly classified
blobs automatically, we computed the Euclidean distance
transform of the binary image obtained from the previous
step (see Fig. 6-(c)). With this nearest-neighbor distance
criterion, it is possible to identify pixels that belong to one
object, as the value of each pixel in the derived represen-
tation is replaced by its distance to the nearest background
pixel [18]. Next, Otsu’s method [19] is applied to choose a
global threshold that minimizes the intraclass variance of the
distance pixels. With the attained threshold, a binarization of
the distance image is conducted, followed by a dilation of
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FIGURE 5. Experimental results – Test 1. (a) Original RGB image; (b) intensity difference between green and blue; (c) proportion of green; and (d) hue
component of the HSV color space.

the background region and a morphological operation for dis-
carding small blobs that correspond to leaves and flowers and
that consequently produce detection errors. Then, a marker is
created for each of the remaining blobs that are candidates for
representing a cucumber fruit (see Fig. 6-(d)). These markers
are overlapped with the mask resulting from the classification
map (see Fig. 6-(b)), and only those blobsmarked are retained
for further processing. Next, we compute the convex hulls of
all the preserved blobs (see Fig. 7-(a)).

To further increase the robustness of the detection algo-
rithm, each blob retained from the previous step is analyzed
to confirm whether it is a cucumber. To that end, an image
category classifier [20] is implemented by using a bag-of-
visual-words model [21], [22] (see Fig. 7-(b)). The model
requires a vocabulary of representative descriptors for each

image category. These descriptors are used as references for
quantifying features in the images. In the proposed case,
the descriptors are created by extracting Speeded-UP Robust
Features (SURF) [23] from an acquired dataset that includes
15 images for each of the following categories: cucumbers,
flowers, leaves, stems and background. Point locations are
selected on a predefined grid with spacing [8 8]; that is,
a uniform grid with steps of 8 pixels in the x and y directions.
Locations for feature extraction are then defined by the inter-
sections of the grid lines. By keeping 80% of the strongest
features from each category and balancing the number of
features across all image categories to improve clustering,
the strongest 5161 features from each of the image cate-
gories are obtained. A visual vocabulary of 500 words is
then constructed by reducing the number of features through
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FIGURE 6. Experimental results – Test 1. (a) Pixel-based classification map; (b) mask obtained after morphological operations; (c) result of applying
the Euclidean distance transform; (d) blobs marked as possible cucumbers.

the quantization of the feature space using K-means clus-
tering [24], [25]. The resulting clusters are compact and
separated by similar characteristics. Each cluster center repre-
sents a visual word. Additionally, the visual word occurrence
in each image is counted and encoded in a histogram that
becomes the new and reduced feature vector representation
of the image. In this manner, the bag-of-visual-words model
represents each image by a frequency distribution of its visual
vocabularies. An SVM classifier is then trained to discrimi-
nate between vectors corresponding to positive and negative
training images. Both the bag-of-visual-words model and the
SVM training are carried out offline.

To transform the selected polygonal regions into input
images for the category classifier, the exterior boundaries
of the blobs are traced and a cell array of boundary pixel

locations is generated. For each cell, the minimum and
maximum values of x and y are found, and these pairs of
minimum and maximum coordinates are then utilized to
crop the original color image around each blob. Because
the cropped image should provide sufficient information for
recognition, the minimum size used for the cropping window
is 100 pixels × 100 pixels. This size was selected based on
the average size of cucumber templates. Thus, if a blob is
large enough to be categorized, the pair of minimum and
maximum coordinates is used to crop the image. Otherwise,
the defined window is centered on the blob centroid and
utilized to crop the image. After this step, the proposed image
category classifier returns the labels of the cropped images.

Next, a logical AND between the cropped images catego-
rized as cucumbers and the mask of blobs obtained from the
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FIGURE 7. Experimental results – Test 1. (a) Convex hulls of marked blobs; (b) images utilized as input for the category classifier based on a
bag-of-visual-words model and the corresponding output labels.

pixel-based classification map is conducted. In this manner,
only pixels belonging to the cucumber category are pre-
served. It is then necessary to check whether the preserved
blobs are formed by one or several overlapping cucumbers.
To accomplish this, a segmentation based on the watershed
transform [26]–[28] is applied to all the blobs that have
been categorized as cucumber and have an area greater than
8000 pixels. This minimum area size was selected based on
the average size of cucumber templates. Watershed trans-
formation is an effective morphological tool that treats an
image as a topographic surface, providing catchment basins
and watershed ridge lines by assuming that any object is
characterized by a homogeneous texture and hence a weak
gradient. Therefore, the objects in an image correspond to
the minima of the morphological gradients and their con-
tours to the watershed of the gradient [29], [30]. Considering
the prior knowledge about the cucumber image structure,
some changes are introduced into the preserved blobs to
avoid local minima that can lead to over-segmentation. First,
a morphological operation is applied to remove stray isolated
pixels. Then, the Euclidean distance transform is computed
to find foreground markers inside each of the cucumbers.
Because a typical image of overlapping cucumbers consists
of roughly ellipsoidal, touching blobs, the Euclidean distance
transform is useful for producing catchment basins in the
cucumbers that should be identified. Next, small localminima
are filtered out by using the extended-minima transform, and
the Euclidean distance transform is modified with the min-
ima imposition technique such that no minima occur at the
filtered-out locations [31], [32]. After these steps, the water-
shed transform is computed, and the resultingwatershed ridge
lines are utilized to segment the blobs. Finally, we calculate
the centroids and the angles between the x-axis and the major

axes of the ellipses that have the same normalized central
moments as the segmented blobs (see Fig. 8).

FIGURE 8. Results provided by the proposed detection algorithm:
centroids and ellipses of the blobs detected as cucumbers.

III. RESULTS AND VALIDATION
A. EXPERIMENTAL RESULTS
The images acquired during the experimental campaigns
were crucial for obtaining initial intuitive insights regarding
the data to be confronted by the detection algorithm, for train-
ing the SVMs and generating the vocabulary of the bag-of-
visual-words model, and finally, for the empirical evaluation
and testing of the proposed detection algorithm.

In the following, two tests are presented to illustrate most
of the intermediate results obtained from the different steps
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FIGURE 9. Experimental results – Test 2. (a) Original RGB image; (b) pixel-based classification map; (c) mask obtained after morphological operations;
(d) blobs marked as possible cucumbers after applying the Euclidean distance transform; (e) convex hulls of marked blobs and (f) images utilized as
input for the category classifier based on a bag-of-visual-words model and the corresponding output labels.
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of the proposed algorithm for the detection of field-grown
cucumbers at different stages of plant growth.

1) PLANTS FEATURING FEW ISOLATED CUCUMBERS
This first test is illustrated in Figs. 5-8. Fig. 5 displays (a) the
original RGB image acquired in the field with the Prosilica
camera, (b) the intensity difference between the green and
blue channels, (c) the proportion of green in the RGB color
model and (d) the hue component of the HSV color model.
The last three images obtained from the described color
transformations are utilized as inputs for the SVM classifier.

The pixel-based classificationmap resulting from the SVM
classifier is shown in Fig. 6-(a). In this map, pixels clas-
sified as cucumbers, leaves and background are shown in
yellow, green and black, respectively. Fig. 6-(b) displays the
mask obtained from the pixels classified as cucumbers, after
applying morphological operations for both removing noise
and filling small holes within the cucumbers. In Fig. 6-(b),
it becomes clear that blobs that correspond to cucumber
fruits are denser and more compact than those belonging
to young leaves and flowers. For this reason, we computed
the Euclidean distance transform of this image, as illustrated
in Fig. 6-(c). Then, a binarization of the distance image, a
dilation of the background and a morphological operation for
removing areas with a small number of pixels were conducted
to discard some of the incorrectly classified blobs. Fig. 6-(d)
displays the results of these procedures, as well as themarkers
created for each remaining blob that is a potential cucum-
ber candidate. These markers are overlapped with the mask
presented in Fig. 6-(b), and only those blobs marked were
retained for further processing. Fig. 7-(a) shows the convex
hulls of the marked blobs that were preserved.

Fig. 7-(b) displays the images cropped for each preserved
blob. These images are utilized as input for the image cate-
gory classifier implemented by using a bag-of-visual-words
model. Fig. 7-(b) also presents the resulting labels provided
by the classifier. Notably, all cropped images are correctly
classified, thus increasing the robustness of the detection
algorithm.

Fig. 8 shows the resulting centroids and ellipses, which
have the same normalized central moments as the blobs cate-
gorized as cucumbers. Thus, in this example, all areas of vis-
ible cucumbers are detected successfully with the proposed
algorithm.

2) PLANTS FEATURING CLUSTERS OF CUCUMBERS
The second test, shown in Figs. 9-12, corresponds to a more
advanced stage of development. In this case, Fig. 9 dis-
plays (a) the original RGB image, (b) the pixel-based classi-
fication map, (c) the cucumber mask, (d) the markers created
after the Euclidean distance transform, (e) the convex hulls of
the preserved blobs, and (f) the labels provided by the image
category classifier. Once again, in this test, all cropped images
are correctly classified.

Because two of the blobs consist of cucumber clusters
with areas greater than the predefined threshold in this case,

FIGURE 10. Test 2. (a) Input image; (b) morphological operations;
(c) Euclidean distance transform; (d) foreground markers; (e) watershed
transform; and (f) blobs resulting from the segmentation procedure.

FIGURE 11. Test 2. (a) Input image; (b) morphological operations;
(c) Euclidean distance transform; (d) foreground markers; (e) watershed
transform; and (f) blobs resulting from the segmentation procedure.

in Figs. 10 and 11, we present the results of the segmen-
tation procedure based on the watershed transform and the
minima imposition technique. Figs. 10-(a) and 11-(a) show
the images used as inputs for the segmentation procedure.
Figs. 10-(b) and 11-(b) display the images obtained after a
binarization and the application of a morphological operation
to remove stray isolated pixels. The results of computing the
Euclidean distance transform for these images are illustrated
in Figs. 10-(c) and 11-(c). Foreground markers obtained
with the minima imposition technique are presented in
Figs. 10-(d) and 11-(d). Figs. 10-(e) and 11-(e) show the
results of the watershed transform, whereas Figs. 10-(f)
and 11-(f) display the blobs resulting from the segmenta-
tion procedure. Note that only the blobs segmented by the
watershed transform that contain a foreground marker are
considered cucumbers. Finally, Fig. 12 shows the resulting
centroids and ellipses that have the same normalized central
moments as the blobs categorized as cucumbers. Although in
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TABLE 1. Performance results of the intermediate processing step based on the SVM classifier.

TABLE 2. Performance assessment at the pixel level of the proposed detection algorithm.

FIGURE 12. Results provided by the proposed detection algorithm:
centroids and ellipses of the blobs detected as cucumbers.

this case one of the cucumbers is missed, the results are quite
satisfactory in terms of detection and segmentation.

B. VALIDATION
To evaluate the performance of the proposed detection
algorithm quantitatively, ground truth data were carefully
produced for 45 scenes. This process included the man-
ual labeling of the pixels that belong to the visible areas
of the cucumbers, as well as the calculation of the cen-
troids and the angles between the x-axis and the major
axes of the ellipses that have the same normalized central
moments as the visible areas of the cucumbers. Fig. 13 shows
the ground truth generated for the RGB images presented
in Figs. 5-(a) and 9-(a).

Thus, the quality of the proposed detection algorithm is
rated by comparing the obtained detection results with the
generated ground truth data, which are used as reference
values. The assessment is then divided into the following
three levels.

First, detection performance is evaluated at the pixel level
in terms of the true-positive rate, false-positive rate and false-
negative rate [33], [34].

The true-positive detection rate is defined as the proportion
of pixels that are correctly identified as cucumber:

TPR =
n◦ of pixels correctly identified as cucumber

total number of actual cucumber pixels
(1)

The false-positive detection rate, which is the proportion
of pixels that are incorrectly classified as cucumber, is calcu-
lated as follows:

FPR =
n◦ of pixels incorrectly identified as cucumber
n◦ of pixels of other classess (not cucumber)

(2)

The false-negative rate, which is the proportion of cucum-
ber pixels that are not classified as cucumber, is calculated as
follows:

FNR =
n◦ of cucumber pixels identified as not cucumber

total number of actual cucumber pixels
(3)

Table 1 shows the performance results of the intermediate
processing step based on the SVM classifier, whereas Table 2
summarizes the performance assessment of the proposed
detection algorithm at the pixel level. In both cases, the mean
values obtained from all the analyzed scenes as well as the
minimum and maximum values are presented.

Next, the proposed detection algorithm is evaluated at the
cucumber level in terms of recall, precision and F-score.
In this case, instead of counting the pixels, the cucumbers are
counted as units.

Recall or TPR is the proportion of detected cucumbers that
are actual cucumbers and is given by:

Recall or TPR =
tp

tp+ fn
, (4)

where tp is the number of correctly identified cucumbers, and
tp + fn is the total number of cucumbers.
Precision is the ratio of correctly identified cucumbers to

the total number of identified cucumbers and is calculated as
follows:

Precision =
tp

tp+ fp
, (5)

where fp is the number of identified cucumbers that are not
actually cucumbers.
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FIGURE 13. Ground truth. (a) Pixel labeling for Fig. 5-(a); (b) calculated centroids and angles for Fig. 5-(a); (c) pixel labeling for Fig. 9-(a); and
(d) calculated centroids and angles for Fig. 9-(a).

TABLE 3. Performance evaluation at cucumber level.

The F-score is the weighted harmonic mean of the recall
and precision. In this case, recall and precision are given equal
weight and the F-score can therefore be referred to as F1. The
F-score is then calculated as follows:

F-score or F1 = 2 ·
precision · recall
precision+ recall

, (6)

Table 3 shows the mean values obtained from all the
analyzed scenes.

Finally, it is necessary to assess the performance of the
proposed detection algorithm from the perspective of cucum-
bers segmentation as well as the estimation of the visible
areas of the cucumbers and their corresponding orientation
on the image plane. To that end, the mean absolute errors
of the centroid position and the orientation are selected as
performance metrics. The mean absolute error of the centroid
position is given by the average of the absolute differences
between the true coordinates of the centroids of the visible
areas of the cucumbers manually labeled in the ground truth
images and the corresponding coordinates of the centroids
of the blobs detected by the proposed algorithm. Similarly,
the mean absolute orientation error is calculated as the aver-
age of the absolute differences between the orientations of the
visible areas of the cucumbers manually labeled in the ground
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TABLE 4. Performance assessment of cucumber segmentation.

truth images and the corresponding orientations of the blobs
detected by the proposed algorithm. Orientation is defined as
the angle between the x-axis and the major axis of the ellipse
that has the same normalized central moments as the visible
area of the considered cucumber.

After evaluating the results provided by the proposed algo-
rithm with respect to the ground truth data, we found that
the position errors measured for the considered centroids
ranged from 0 pixels to 29 pixels in the x-axis and from
0 pixels to 16 pixels in the y-axis, with a mean absolute
error of 6 pixels in the x-axis and 5 pixels in the y-axis. The
absolute orientation error ranged from 0.2◦ to 53.5◦, with a
mean absolute error of 10.1◦ (see Table 4).

IV. DISCUSSION
The performance evaluation results at the pixel level show
that the proposed detection algorithm exhibits a high hit rate
of 91.79%, a low FPR of 2.56% and an acceptable FNR
of 8.21%. A more detailed observation of Tables 1 and 2
reveals that the proposed algorithm increases the TPR and
decreases both the FPR and the FNR relative to those of the
SVM classifier described as an intermediate processing step
in Section 2. This improvement is mainly achieved by the
introduction of the Euclidean distance transform to eliminate
less compact blobs and the introduction of the category classi-
fier based on the bag-of-visual-words model, which provides
better discrimination among the blobs that correspond to
cucumbers, flowers and young leaves.

At the fruit level, the proportion of cucumbers detected by
the proposed algorithm that are actual cucumbers is 90.10%,
which indicates that only a small number of cucumbers are
not detected. In analyzing the processed images, we observed
that the occurrence of false negatives was due to two main
reasons: (i) cucumbers suffered from severe occlusion, mak-
ing each of their ends invisible, and (ii) cucumbers were
overexposed to light. These two cases can be observed in the
examples shown in Fig. 14. In addition, the average precision
provided by the detection algorithm was 85.65%, which indi-
cates a slightly higher presence of false positives compared
with the number of false negatives. Common misclassifi-
cation errors are produced by atypical leaves colorations,
atypical clusters of flowers, and problems with separating
cucumbers and stems. Nevertheless, compared to the results
provided by the simplified, state-of-the-art wire cultivation
systems described, the recall of 90.10% and the precision of
85.65% reflect considerable success for the stated applica-
tion. Importantly, all previous results reported in the literature

FIGURE 14. Examples of undetected cucumbers. (a) A severely occluded
cucumber and (b) a cucumber overexposed to light.

are related to cucumbers grown in greenhouses using wire
cultivation systems. Most of the algorithms designed for wire
cultivation systems are based on a series of assumptions that
are not met in field-grown cucumber scenarios, such as the
fact that cucumbers are always hanging vertically. Scenarios
for wire cultivation systems are also less affected by occlu-
sions and are therefore less prone to false positives and false
negatives. To the best of our knowledge, the results presented
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here are the first reported for field-grown cucumbers in natu-
ral scenarios.

On the other hand, the F-score of 0.878 provided by the
proposed algorithm proved to be quite competitive compared
with other methods based on deep convolutional neural net-
works that have been proposed for detecting other fruits, such
as the one presented in [10] with an F-score of 0.881 for the
detection of mangoes, and the other described in [11] with
an F-score of 0.838 for the detection of sweet peppers and
rock melons. Therefore, this competitive F-score supports the
use of the proposed algorithm for the detection of field-grown
cucumbers, in contrast to other promising approaches based
on deep-learning, which are heavier computationally and do
not offer much difference in terms of accuracy.

Regarding the performance results related to cucumber
segmentation, the mean centroid position errors obtained
from the experimental results are 6 pixels on the x-axis
and 5 pixels on the y-axis, which are quite acceptable
considering that the resolution of the RGB camera is
2448 pixels× 2050 pixels. However, the mean absolute ori-
entation error was 10.1◦, although a maximum error of 53.5◦

was obtained in one of the processed scenes. Orientation is
the variable most strongly affected by the detection errors
at the pixel level. Shadows, as well as stems and leaves
with similar coloration—which additionally are close to the
detected cucumber—can vary the area of the detected blob
and consequently introduce an error into the orientation esti-
mation. In contrast, centroid position error is not as severely
affected by these conditions. It is also important to com-
ment that manual labeling of pixels for the generation of the
ground truth data is not 100% exempt from errors. Therefore,
labeling errors can also adversely affect the performance
results. Fig. 15 shows an example of the aforementioned case,
in which the orientation estimation of the cucumber at the
bottom of the image is affected by the pixel-level errors due
to the similar coloration of the leaf.

However, the results obtained from the performance
assessment are quite satisfactory and highlight the potential
of the proposed solution.

Importantly, the time required for the proposed algorithm
to process an image, depends on the complexity of the scene
and the hardware platform where it is running. A more com-
plex scene contains more blobs and thus, requires longer
processing time. However, to provide an idea of the total
processing time, we estimated the mean time for each of the
main steps of the algorithm. The experimental results provide
a mean time of 185 ms for obtaining the normalized color
transformations from the original RGB image, 650 ms for the
SVM pixel-based classification, 95 ms for the morphologi-
cal operations, 65 ms for the Euclidean distance transform,
50 ms for the image category classification of each blob
provided by the bag-of-visual-words model, and 65 ms for
the segmentation of each blob using the watershed transform
and the minima imposition technique. These results were
obtained by running the proposed algorithm in the MATLAB
environment in a HP Z420 workstation with an Intel Xeon

FIGURE 15. Example showing how errors at the pixel level affect correct
estimation of the cucumber orientation. (a) Result provided by the
proposed detection algorithm and (b) close-up view of the blob utilized
for the orientation estimation.

E5-1620 processor and 3.6-GHz clock speed. Therefore,
the time cost can be reduced if the proposed algorithm is
optimally coded and executed in a real-time operating system.

For the critical steps of the proposed algorithm, both
the training of the multiclass SVM classifier and features
extraction for construction of the visual vocabulary for the
bag-of-visual-word model were fundamental for achieving
successful performance. To increase the accuracy of the SVM
pixel classifier, data were normalized and color transforma-
tions were introduced to make the algorithm more robust
to changing illumination conditions. Regarding the bag-of-
visual-words model, special attention was directed toward the
inclusion of visual words of all the elements that produce false
positives (such as young leaves, flowers and irrigation tubes
from the background) to reduce them in the final detection.
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A crucial parameter for correct operation of the proposed
algorithm was the size of the window for cropping the image
around each blob serving as a potential cucumber candidate.
These cropped images are the inputs for the image category
classifier and should provide sufficient information for recog-
nition. The minimum size of this window was selected such
that the cropped image could contain a cucumber template of
average size. Another key parameter was the area threshold
defined to automatically apply the segmentation procedure
to a blob categorized as cucumber. The minimum area size
was also selected based on the average size of the cucumber
templates.

V. CONCLUSIONS
This paper presents a field-grown cucumber detection algo-
rithm intended to be used in an autonomous harvesting
robotic system. The proposed algorithm includes an SVM
machine pixel classifier that provides the initial regions of
interest for further processing, a Euclidean distance transform
for eliminating less compact blobs that usually correspond
to flowers and young leaves, an image category classifier
based on a bag-of-visual-words model that increases detec-
tion robustness, and a segmentation procedure based on the
watershed transform and the minima imposition technique.

Field-grown cucumber detection imposes several chal-
lenges due to the similar coloration of the fruits and the
leaves, stems and flowers; the large number of occlusions,
which creates high variability in the apparent shape of the
cucumbers; and the random positions and orientations in
which fruits can be found. However, preliminary experimen-
tal results demonstrate the satisfactory performance of the
proposed algorithm and highlight its potential benefits.

Future work will combine the results of the proposed
algorithm with the 3D data provided by a range sensor
(e.g., a Time-Of-Flight camera) to improve the estimation
of the position of the centroids and the orientation of the
detected blobs and to provide the spatial location of the
detected cucumbers to the harvesting robot. We will also
consider extension of the proposed algorithm to detect other
cucumber cultivars. To that end, we will study the feasibility
of using a sensor fusion approach that includes an SWIR
camera. Water strongly absorbs light in SWIR wavelengths
due to the overtones and fundamentals of the three vibra-
tion frequencies of H2O, symmetric and asymmetric O-H
stretching and O-H bending. Thus, the reflectance on SWIR
images decreases with increasing water content, which could
contribute to discriminating cucumbers from others plant
elements. However, an SWIR camera is much more expen-
sive than an RGB camera. Therefore, whether introduction
of this sensor is beneficial from an economic perspective
must be investigated since an increase in the cost of the
sensory rig could limit its incorporation in a future harvesting
robot. Additional experimental campaigns are also planned
to acquire datasets from other cucumber cultivars (e.g., Liszt
RZ, Karaoke RZ and Componist RZ cultivars). With these
new datasets, we will also investigate the possibility of

replacing the classic SVM approach in the proposed algo-
rithm by deep convolutional neural networks not only to
determinewhether the algorithm can be extended for different
cucumber cultivars but also to evaluate whether the efficiency
of the proposed algorithm can be increased.
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