Development of a Fault-tolerant Permanent-magnet Synchronous Motor

Tong Feng¹, Shuanghui Hao¹, Xiwen Zhang¹, Tianhong Yang¹ and Lei Wang²

¹ Harbin Institute of Technology, Harbin, 150001 China
² Harbin University of Science and Technology, Harbin, 150001 China

Corresponding author: Shuanghui Hao (e-mail: 156490479@qq.com).

ABSTRACT The failure of the motor or controller of a motor servo system could lead to terrible casualties and property loss in fields such as aviation and transportation. Current research mainly focuses on the algorithm for fault-tolerant control and the topological structure of hardware. Such approaches may reduce the system frequency through the use of a complex algorithm or increase the system cost through the use of special components. The present paper proposes and tests a multi-redundant, permanent-magnet synchronous motor. Through the parallel connection of multiple independent windings and a supporting control method that controls each redundancy separately, the system continues to run even when the winding or controller of one redundancy suffers an open-circuit or short-circuit fault. The system controller is easy to build and minimize without special components and does not require additional algorithms.

INDEX TERMS fault-tolerant motor, multi-redundant, permanent magnet synchronous motor, proportional–integral control.

I. INTRODUCTION

Motor servo systems are widely used in the aviation and transportation industries. In these applications, serious casualties and property loss will occur if the servo system fails because of a fault. Therefore, the improvement of the reliability and fault-tolerance properties of servo motor system is an important research topic.

There is currently more research focus on the multi-phase permanent-magnet motor and switch reluctance motor in the field of fault-tolerant motors. The multi-phase permanent-magnet motor can keep running in the event of a failure through isolation of the fault phase and rebuilding of the control system. For example, a permanent-magnet synchronous motor (PMSM) with quadruple three-phase star-connected windings and a corresponding control algorithm was designed [1]. Because there are many phases, each phase has a lower proportion of the power, and the system thus ensures a rated torque output exceeding 50% when any winding has a symmetric short-circuit fault. The switch reluctance motor normally has no permanent magnet, winding or brush on the rotor and it thus has a lower failure rate. Each tooth of the stator has only one winding. Windings are energized by turns during working, and the independence of windings is thus high. It is thus easy to realize high-performance fault-tolerant control.

Research on the multi-phase permanent magnet motor has mainly focused on rebuilding the fault system and fault-tolerant control theory. Studies [2,3] have used model predictive control and derived a prediction model for a specific fault situation according to the model of a healthy system, such that the normal decoupling transform can still be used after failure occurs. Other studies [4,5] used a new frame of reference to build the running model and simplified the control after faults. Another study [6] proposed the orthogonal reduced-order transformation matrix based on fault-tolerant current. Other work [7] divided the vector space into six sectors and reconfigured six equal nonzero voltage vectors to achieve a new analogous three-phase space vector pulse width modulation (SVPWM) control.

Holt-per-Hertz (V/f) scalar control has been used to control the motor speed stably when the system suffers an open-circuit fault in one or two phases [8]. Meanwhile, a new method of phase current control has been proposed to maximize the reluctance torque [9]. Feedforward voltage compensation based on the short-circuit current and the back-electromotive force (back-emf) of the fault phase has been designed and used to eliminate the effect of short-circuit current [10]. Two fault-tolerant control strategies, involving the optimized copper loss and phase current, have been proposed [11]. A current set that outputs the maximum smoothing torque by reconfiguring the maximum round magnetomotive force in different fault situations has been obtained [12].

Studies on the switched reluctance motor mainly focused on the topological structure and control of the power switch. One study [13] used four extra power switches and a relay network to keep the system working in the event of a fault. Another study [14] used a single-phase bridge to bypass the faulty part and form a fault-tolerant topology with the healthy part. Other work [15] optimized the position of the current sensor and suppressed short-circuit current by modifying the switching states of power transistors. Meanwhile, a system
has been put into a derating state by shortening the conduction angle of the faulty phase and adjusting the duty cycle of all switches, thus suppressing the torque ripple caused by the short circuit [16]. Other work [17] identified the short switch using a logical dynamic model and analyzing system residual generation.

The references cited above show that research on the fault-tolerant motor mainly focuses on the system rebuild algorithm and fault-tolerant control after a fault occurs and the topological structure of hardware, such as the power switch or inverter part. The limitations are that an additional algorithm may increase the computing cost and decrease the system frequency and that a specific structure may need special components. Additionally, studies have mostly been conducted for one-phase or specific multi-phase failure.

Against the above background, the present paper proposes a multi-redundant PMSM that uses multiple independent windings and a supporting control method that controls each redundancy separately. When one redundancy’s controller or winding is broken, the other redundancies allow the device to working normally and ensure that the whole system does not stop suddenly. This system does not need a complicated algorithm or specific components. Due to the parallel connection structure, the system also has a lower bus voltage, which reduces the effect on the power conversion unit. Furthermore, the control system can easily be downsized and integrated.

II. THEORETICAL ANALYSIS AND SIMULATION

A. ANALYSIS OF MUTUAL INDUCTANCE WINDING

In contrast to a traditional PMSM, a multi-redundant PMSM system has mutual inductance between the stator windings of various redundancies. To realize this system, the current in mutual inductance windings must be shown to be controllable.

The voltage equilibrium of a mutual inductance winding under a static condition can be expressed as

\begin{align}
 u_1 &= R_1 i_1 + L_{s1} \frac{di_1}{dt} + L_m \frac{di_2}{dt} \\
 u_2 &= R_2 i_2 + L_{s2} \frac{di_1}{dt} + L_m \frac{di_2}{dt}
\end{align}

(1)

where \(R_1\) and \(R_2\) [\(\Omega\)] are respectively the resistance of windings 1 and 2, \(L_{s1}\) and \(L_{s2}\) [\(H\)] are respectively the self-inductance of windings 1 and 2, and \(L_m\) [\(H\)] is the mutual inductance of windings 1 and 2.

Both windings 1 and 2 use a proportional–integral (PI) controller. Fig. 1 is a block diagram of the current control system.

![Block diagram of the current control system](image)

FIGURE 1. Block diagram of the current control system

Expressions are obtained from Fig. 1 as

\[
 \begin{align}
 U_1(s) &= I_{ref1}(s) - I_1(s) \left(K_p + \frac{K_i}{s} \right) \\
 U_2(s) &= I_{ref2}(s) - I_2(s) \left(K_p + \frac{K_i}{s} \right)
 \end{align}
\]

(2)

For the multi-redundant PMSM in this paper, the parameters of different static windings and current references are the same, and the transfer function of the current loop can thus be written as

\[
 \frac{I_1(s)}{I_{ref}(s)} = \frac{I_2(s)}{I_{ref}(s)} = \frac{K_p s + K_l}{(L_m + L_s) s^2 + (K_p + R) s + K_l}
\]

(3)

Equation (3) shows that the current control system is a second-order system. The standard expression of a second-order system is

\[
 G(s) = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}
\]

(4)

where \(\omega_n\) [\(Hz\)] is the system’s natural frequency while \(\xi\) is the system’s damping ratio.

From equations (3) and (4), the parameters for the PI controller are obtained as

\[
 \begin{align}
 K_p &= 2\xi \omega_n (L_m + L_s) - R \\
 K_l &= (L_m + L_s) \omega_n^2
 \end{align}
\]

(5)

For a conventional PMSM, the block diagram of the current control system is shown in red in Fig. 1. The transfer function is

\[
 \frac{I_1(s)}{I_{ref}(s)} = \frac{K_p s + K_l}{L_m s^2 + (K_p + R) s + K_l}
\]

(6)

From equations (4) and (6), the parameters of the PI controller are obtained as

\[
 \begin{align}
 K_p &= 2\xi \omega_n L_s - R \\
 K_l &= L_s \omega_n^2
 \end{align}
\]

(7)

Equations (5) and (7) show that if regulating \(K_p\) and \(K_l\) and introducing \(L_m\) while calculating the parameters of the PI controller, \(\xi\) and \(\omega_n\) of the mutual inductance winding are the same as those of conventional winding, which shows that current in a mutual inductance winding can be controlled as in conventional winding.
B. MATHEMATICAL MODEL FOR THE MULTI-REDUNDANT PMSM

The following assumptions are made before building a mathematical model of the motor.

1) Magnetic reluctance from the stator and rotor core, magnetic saturation, eddy currents, and hysteresis losses can be ignored.
2) The permeability of the permanent magnet is zero.
3) The rotor does not have a damping winding.
4) The magnetic field in the air gap has a normal distribution.
5) The effects of high harmonics can be ignored.

1) STATOR FLUX EQUATION

The flux of the stator winding is the sum of the armature magnetic field and rotor magnetic field. The rotor’s excitation field axis is denoted as the d-axis, while the q-axis is 90 electrical degrees before the d-axis. The system uses the vector control strategy and \(i_d = 0 \). The system has n redundancies, and each redundancy’s stator flux vector is decomposed on the d-axis and q-axis. The flux equation of each redundancy is

\[
\begin{bmatrix}
\psi_{d1} \\
\psi_{q1} \\
\psi_{d2} \\
\psi_{q2} \\
\vdots \\
\psi_{dn} \\
\psi_{qn}
\end{bmatrix} =
\begin{bmatrix}
L_{d1} & M_{d1q1} & M_{d1q2} & \cdots & M_{d1qn} & M_{d1qm} & \psi_{d1} \\
M_{q1d1} & L_{q1} & M_{q1q2} & \cdots & M_{q1qn} & M_{q1qm} & \psi_{q1} \\
M_{d2q1} & M_{d2q2} & L_{d2} & \cdots & M_{d2qn} & M_{d2qm} & \psi_{d2} \\
M_{q2d1} & M_{q2d2} & M_{q2q2} & L_{q2} & \cdots & M_{q2qn} & M_{q2qm} & \psi_{q2} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \psi_{dn} \\
M_{dnq1} & M_{dnq2} & M_{dnq2} & \cdots & L_{dn} & M_{dnqm} & \psi_{qn}
\end{bmatrix}
\] (8)

where \(\psi_{dn} \) and \(\psi_{qn} \) [Wb] are respectively the stator flux on the d-axis and q-axis of redundancy n, \(\psi_{fdn} \) and \(\psi_{fqn} \) [Wb] are respectively the rotor flux on the d-axis and q-axis of redundancy n, \(L_{dn} \) and \(L_{qn} \) [H] are respectively the self-inductance on the d-axis and q-axis of redundancy n, and \(M_{dqn} \) and \(M_{qnm} \) [H] are respectively the mutual inductance of the d-axis and q-axis of redundancies m and n. Further, \(M_{dmdn} \) [H] is the mutual inductance of the d-axes of redundancies m and n, and \(M_{qmqn} \) [H] is the mutual inductance on the q-axis of redundancies m and n, and \(i_{dn} \) and \(i_{qn} \) are respectively the current components on the d-axis and q-axis of redundancy m.

The phases of different redundant windings are the same, and equation (8) can thus be rewritten as

\[
\begin{align*}
L_{d1} &= L_{q1} = L_{d2} = L_{q2} = \cdots = L_{dn} = L_{qn} = L_s \\
M_{dmdn} &= M_{dndm} = M_{qmqn} = M_{mqnm} = M_{m} \\
M_{dqm} &= M_{dmq} = 0 \\
\psi_{f1d} &= \psi_{f2d} = \cdots = \psi_{fdn} = \psi_{fda} \\
\psi_{f1q} &= \psi_{f2q} = \cdots = \psi_{fqn} = 0
\end{align*}
\] (9)

where \(\psi_{f} \) [Wb] is the rotor flux component on the d-axis, \(L_s \) [H] is the winding self-inductance, and \(L_m \) [H] is the mutual inductance of coaxial windings.

If the motor has three redundancies, then the stator flux equation is

\[
\begin{bmatrix}
\psi_{d1} \\
\psi_{q1} \\
\psi_{d2} \\
\psi_{q2} \\
\psi_{d3} \\
\psi_{q3}
\end{bmatrix} =
\begin{bmatrix}
L_{d1} & M_{d1q1} & M_{d1q2} & M_{d1q3} & M_{d1qm} & M_{d1mq} & \psi_{d1} \\
L_{q1} & M_{q1d1} & M_{q1d2} & M_{q1d3} & M_{q1qm} & M_{q1mq} & \psi_{q1} \\
L_{d2} & M_{d2q1} & L_{d2} & M_{d2q2} & M_{d2q3} & M_{d2qm} & \psi_{d2} \\
L_{q2} & M_{q2d1} & M_{q2d2} & L_{q2} & M_{q2q3} & M_{q2qm} & \psi_{q2} \\
L_{d3} & M_{d3q1} & M_{d3q2} & M_{d3q3} & L_{d3} & M_{d3qm} & \psi_{d3} \\
L_{q3} & M_{q3d1} & M_{q3d2} & M_{q3d3} & M_{q3qm} & L_{q3} & \psi_{q3}
\end{bmatrix}
\]

Equation (10) can be simplified as

\[
\begin{align*}
\psi_{d1} &= \psi_{fda} \\
\psi_{q1} &= L_s i_{q1} + L_m i_{q2} + L_m i_{q3} \\
\psi_{d2} &= \psi_{fda} \\
\psi_{q2} &= L_m i_{q1} + L_s i_{q2} + L_m i_{q3} \\
\psi_{d3} &= \psi_{fda} \\
\psi_{q3} &= L_m i_{q1} + L_m i_{q2} + L_s i_{q3}
\end{align*}
\] (11)

2) STATOR VOLTAGE BALANCE EQUATION

The voltage vector equation of the stator is transformed from the a–b–c frame to the d–q frame through vector transformation as

\[
u_s^{dq} = R_s i_s^{dq} + \frac{d}{dt} \psi_{sdq} + j \omega_r \psi_{rdq}
\] (12)

The voltage component equation then becomes

\[
\begin{align*}
u_d &= R_s i_d + \frac{d}{dt} \psi_{sd} - \omega_r \psi_{qd} \\
u_q &= R_s i_q + \frac{d}{dt} \psi_{sq} + \omega_r \psi_{qd}
\end{align*}
\] (13)

where \(R_s \) [Ω] is the resistance of the d-axis and q-axis winding, \(\psi_{sd} \) [Wb] is the flux vector component on the d-axis, \(\psi_{sq} \) [Wb] is the flux vector component on the q-axis, and \(\omega_r \) [rad/s] is the rotor speed.

After the stator flux equation is brought into equations (12) and (13), the voltage-equilibrium equation of the d–q axis of each redundancy can be obtained as

\[
\begin{bmatrix}
\psi_{d1} \\
\psi_{q1} \\
\psi_{d2} \\
\psi_{q2} \\
\psi_{d3} \\
\psi_{q3}
\end{bmatrix} =
\begin{bmatrix}
L_{d1} & M_{d1q1} & M_{d1q2} & M_{d1q3} & M_{d1qm} & M_{d1mq} & \psi_{d1} \\
L_{q1} & M_{q1d1} & M_{q1d2} & M_{q1d3} & M_{q1qm} & M_{q1mq} & \psi_{q1} \\
L_{d2} & M_{d2q1} & L_{d2} & M_{d2q2} & M_{d2q3} & M_{d2qm} & \psi_{d2} \\
L_{q2} & M_{q2d1} & M_{q2d2} & L_{q2} & M_{q2q3} & M_{q2qm} & \psi_{q2} \\
L_{d3} & M_{d3q1} & M_{d3q2} & M_{d3q3} & L_{d3} & M_{d3qm} & \psi_{d3} \\
L_{q3} & M_{q3d1} & M_{q3d2} & M_{q3d3} & M_{q3qm} & L_{q3} & \psi_{q3}
\end{bmatrix}
\]

When the motor has three redundancies, the voltage-equilibrium equation can be written as

\[
\begin{align*}
\frac{d}{dt} \psi_{sd} &= \psi_{fd} - \omega_r \psi_{qd} \\
\frac{d}{dt} \psi_{sq} &= \psi_{fq} - \omega_r \psi_{qd} \\
\frac{d}{dt} \psi_{sd} &= \psi_{fd} - \omega_r \psi_{qd} \\
\frac{d}{dt} \psi_{sq} &= \psi_{fq} - \omega_r \psi_{qd}
\end{align*}
\] (14)

\[
\begin{align*}
\frac{d}{dt} \psi_{sd} &= \psi_{fd} - \omega_r \psi_{qd} \\
\frac{d}{dt} \psi_{sq} &= \psi_{fq} - \omega_r \psi_{qd} \\
\frac{d}{dt} \psi_{sd} &= \psi_{fd} - \omega_r \psi_{qd} \\
\frac{d}{dt} \psi_{sq} &= \psi_{fq} - \omega_r \psi_{qd}
\end{align*}
\] (15)
The resistances of the d-axis and q-axis windings for different redundancies are the same, and the known quantities can be brought into equation (15) to obtain

\[
\begin{align*}
\dot{u}_q1 &= -\omega_r (L_m i_{q1} + L_m i_{q2} + L_m i_{q3}) \\
\dot{u}_q1 &= R_s i_{q1} + L_s \frac{d}{dt} i_{q1} + L_m \frac{d}{dt} i_{q2} + L_m \frac{d}{dt} i_{q3} \\
\dot{u}_d2 &= -\omega_r (L_m i_{q1} + L_m i_{q2} + L_m i_{q3}) \\
\dot{u}_d2 &= R_s i_{q2} + L_s \frac{d}{dt} i_{q2} + L_m \frac{d}{dt} i_{q3} \\
\dot{u}_q2 &= R_s i_{q2} + L_s \frac{d}{dt} i_{q2} + L_m \frac{d}{dt} i_{q3} + \omega_r \psi_d \\
\dot{u}_d3 &= -\omega_r (L_m i_{q1} + L_m i_{q2} + L_m i_{q3}) \\
\dot{u}_d3 &= R_s i_{q3} + L_s \frac{d}{dt} i_{q3} + L_m \frac{d}{dt} i_{q3} + \omega_r \psi_d \\
\dot{u}_q3 &= R_s i_{q3} + L_s \frac{d}{dt} i_{q3} + L_m \frac{d}{dt} i_{q3} + \omega_r \psi_d
\end{align*}
\]

(16)

3) ELECTROMAGNETIC TORQUE EQUATION
When a PMSM uses vector control, its torque vector equation is

\[
t_e = p_0 \psi_s \times i_s = p_0 (\psi_d i_q - \psi_q i_d)
\]

(17)

where \(p_0\) is the number of pole pairs of the rotor, \(\psi_s\) [Wb] is the stator flux vector, and \(i_s\) [A] is the stator current vector.

After bringing equation (8) into (17), the torque equation of the multi-redundant motor becomes

\[
t_e = p_0 \begin{bmatrix} \psi_{d1} \\ \psi_{d2} \\ \psi_{dm} \end{bmatrix} \begin{bmatrix} i_{q1} \\ i_{q2} \\ i_{qn} \end{bmatrix} - p_0 \begin{bmatrix} \psi_{q1} \\ \psi_{q2} \\ \psi_{qn} \end{bmatrix} \begin{bmatrix} i_{d1} \\ i_{d2} \\ i_{dn} \end{bmatrix}
\]

(18)

For a PMSM with three redundancies, the electromagnetic torque equation is

\[
t_e = p_0 (\psi_{d1} i_{q1} + \psi_{d2} i_{q2} + \psi_{dm} i_{q3})
\]

(19)

In the real world, controlling the motion of the load is the same as controlling the output torque of the motor. According to the dynamic principle, the equation of mechanical motion is

\[
t_e = J \frac{d\omega}{dt} + R_o \omega + t_L = \frac{d^2\theta}{dt^2} + R_o \frac{d\theta}{dt} + t_L
\]

(20)

where \(t_e\) [N·m] is the motor output torque, \(t_L\) [N·m] is the load torque, \(J\) [kg·m²] is the rotational inertia, \(\omega\) [rad/s] is the mechanical angular velocity of the rotor, \(R_o\) [N·m/s/rad] is the damping coefficient, and \(\theta\) [rad] is the angular displacement of the rotor.

Equation (20) shows that the control of both the angular velocity and angular displacement is realized by controlling the torque \(t_e - t_L\). Thus, improving the control quality of electromagnetic torque will improve the performance of the whole PMSM system.

C. ANALYSIS OF THE MULTI-REDUNDANT CONTROL SYSTEM
A vector control strategy was used for the new motor. To realize good control performance, this system uses two loop PI controllers, including a current loop and velocity loop.

Equation (20) shows that to control the motor output torque is to control the current on the q-axis of each redundancy. Fig. 2 is a control block diagram for current on the q-axis for a PMSM with three redundancies.

![Control block diagram for current on the q-axis](image)

(21)

Equation (21) shows that the system is of second order, and the parametric expression of the PI controller is

\[
K_i = (L_s + 2L_m) \omega_n^2 \quad K_p = 2\xi \omega_n (L_s + 2L_m) - R_s
\]

(22)

When one of the redundancies fails owing to a fault, the current control block is configured as the block within the blue rectangle in Fig. 2. The transfer function is

\[
G(s) = \frac{i_{q1}(s)}{i_{q1}(s)} = \frac{i_{q2}(s)}{i_{q2}(s)} = \frac{i_{q3}(s)}{i_{q3}(s)} = \frac{K_p + K_i}{(L_m + L_s)s^2 + (K_p + R_s)s + K_i}
\]

(23)

The system is still of second order and its parametric expression is

\[
K_i = (L_s + L_m) \omega_n^2 \quad K_p = 2\xi \omega_n (L_s + L_m) - R_s
\]

(24)
When two of the redundancies fail, the current control block is configured as shown by the block within the red rectangle in Fig. 2. The transfer function is

\[G(s) = \frac{K_p s + K_i}{L_s s^2 + (R_s + K_p) s + K_i} \]

(25)

The system is still of second order system and its parametric expression is

\[
\begin{align*}
K_i &= L_s \omega_n^2 \\
K_p &= 2 \xi \omega_n L_s - R_s
\end{align*}
\]

(26)

In the equations above, \(L_m, L_s, \) and \(R_s \) are constants. Therefore, no matter which situation the system is working in, proper values for \(K_p \) and \(K_i \) allow the pole of the system to remain on the left side of the complex plane and the system to be stable. If the system is initially stable, any stray current will not change the denominator of the transfer function, and the system thus remains stable during faults.

D. SIMULATION BASED ON MATLAB AND SIMULINK

A mathematical model of the multi-redundant PMSM was used to build a simulation model in Simulink, as shown in Fig. 3. The inputs of the PMSM are voltages \(U_{q1}, U_{q2}, \) and \(U_{q3} \) on the three redundant \(q \)-axes and PMSM load \(t_L \). The outputs are currents \(i_{q1}, i_{q2}, \) and \(i_{q3} \) for the three redundancies, rotational speed \(\omega_r \), and output torque \(t_e \).

Figure 3. Simulation model of the PMSM with three redundancies

Fig. 4 shows the PMSM control system model in Simulink. The inputs are the command speed \(\omega \) and motor load \(t_L \); the outputs are the same as those of the PMSM.

Figure 4. Simulation model of the control system for the PMSM with three redundancies

The basic parameters of the PMSM are listed in Table 1.

Table 1

<table>
<thead>
<tr>
<th>PARA</th>
<th>POLE NUMBER</th>
<th>WINDING RESISTANCE (R_s(\Omega))</th>
<th>SELF-INDUCTANCE (L_s(MH))</th>
<th>MUTUAL INDUCTANCE (L_m(MH))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1</td>
<td>2.5</td>
<td>0.444</td>
<td>0.434</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>PARA</th>
<th>ROTATIONAL INERTIA ((KG\cdotM^2))</th>
<th>DAMPING COEFFICIENT (R_w(N\cdotS))</th>
<th>D-AXIS ROTOR FLUX (\Psi_{rd}(WB))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>2</td>
<td>0.01</td>
<td>1.00</td>
</tr>
</tbody>
</table>

To simulate an operating situation in which two redundant windings fail, the simulation time was set to 5 s, the rotational speed was 30 rad/s, and the motor load was 30 N-m. When \(t = 2 \) s, redundancy 3 was cut off, and when \(t = 4 \) s, redundancy 2 was cut off. The system response is shown in Figs. 5, 6, and 7.
1) MOTOR STRUCTURE AND MATERIALS

The multi-redundant motor system has \(n \) sets of driver and stator winding. Each set is defined as one redundancy, and each redundancy has the same characteristics. All redundancies are in parallel with one another, and the sum of the output torques of all redundancies is the output torque of the motor. The basic theory of the multi-redundant motor is presented as Fig. 8.

![Basic theory of the multi-redundant motor](image)

Figure 8. Basic theory of the multi-redundant motor

Windings of different redundancies have the same enwinding method and same phase. There is physical isolation and thermal isolation between different redundancies. Magnetic field coupling still exists at present. Fig. 9 is a schematic figure of the stator windings, where different colors indicate different redundancies.

![Schematic figure of stator windings](image)

Figure 9. Schematic figure of stator windings

Technical specifications of the motor designed in this study are given in Table 2.

Table 2

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (kW)</td>
<td>6.3</td>
<td>AC Supply (V)</td>
<td>220</td>
</tr>
<tr>
<td>Max Speed (r/min)</td>
<td>100</td>
<td>Motor’s quality (kg)</td>
<td>60</td>
</tr>
<tr>
<td>Torque (N·m)</td>
<td>600</td>
<td>Limit Torque (N·m)</td>
<td>650</td>
</tr>
</tbody>
</table>

III. Design of the motor and controller

A. DESIGN OF THE MULTI-REDUNDANT PMSM

![Current waveforms of U, V, and W](image)

Figure 5. Current waveforms of U, V, and W for all three redundancies during the failure of two redundancies

![Motor output torque during the failure of two redundancies](image)

Figure 6. Motor output torque during the failure of two redundancies

![Motor speed during the failure of two redundancies](image)

Figure 7. Motor speed during the failure of two redundancies

Fig. 5, 6, and 7 show that when the system was initially working normally, the three-phase current waveforms for the three redundancies were the same, revealing that the current was synchronized. When redundancy 3 was cut off at \(t = 2 \) s, the current from redundancy 3 decreased to zero and the current from redundancies 1 and 2 increased to 1.5 times the synchronous current value. When redundancy 2 was also cut off at \(t = 4 \) s, the current from redundancy 2 decreased to zero and the current from redundancy 1 increased to twice the value of the synchronous current.

Because of the initial static friction of the motor, the torque was higher when the system started and then decreased to a value that matched the load stably. When redundancies 2 and 3 were cut off, the torque decreased slightly and then again quickly increased to a value that matched the load stably. The output torque was essentially constant during the entire process. The rotational speed increased rapidly to 30 rad/s. When redundancies 2 and 3 were cut off, the speed was maintained at the set value.

The simulations show that when any redundant system is cut off, the other redundancies transition from normal operation to a compensation mode to increase the current automatically and maintain a constant output torque and speed.

![Schematic figure of stator windings](image)

Figure 9. Schematic figure of stator windings
Because of the higher load torque, the permanent magnetic material needs to have excellent magnetic properties, such as higher remanent magnetic induction, a maximum magnetic energy product, and coercivity, to give the motor higher energy density. Among common kinds of permanent magnetic material, Nd-Fe-B has a remanent magnetic induction as high as 1.49 T, maximum magnetic energy product up to 422 kJ/m³, and coercivity of up to 1035 kA/m. Therefore, Nd-Fe-B, grade N38SH, was chosen as the magnetic material of the motor. The stator was made from 50W470 silicon steel and the rotor from #10 steel.

2) STRUCTURAL DESIGN OF THE ROTOR AND PERMANENT MAGNET

The motor structure is that of an outer rotor. Because of the rotor’s limited volume, the magnetic circuit structure is surface mounted. Surface-mounted structures can be divided into protrusion and insertion types.

A permanent magnet’s differential permeability is approximately 1 and close to that of air, and the d-axis inductance of the protrusion type of structure is thus almost equal to the q-axis inductance; this type of structure is suitable for the control strategy of \(i_d = 0 \). In addition, the protrusion type of structure is simple and has low processing cost. A protrusion type rotor was therefore used in this study.

The motor used fan-shaped permanent magnets. The length of the magnetizing direction \(h_M \) strongly affects the d-axis reactance \(X_{ad} \), and \(h_M \) can be approximately determined as

\[
h_M = \frac{\mu_r \cdot \delta_i}{\delta_g} \delta_i
\]

where \(\mu_r \) [H/m] is the differential permeability of the permanent magnet, \(\delta_i \) [mm] is the length of the motor air gap, \(B_r \) [T] is the remanent magnetic induction, \(B_g \) [T] is the air gap flux density, and \(\delta_g = \frac{B_r}{B_g} \) is the ratio of induction to flux density, normally set in the range of 1.1–1.35.

The N38SH permanent magnet has a remanent magnetic induction of 1.24 T. The maximum value of the air gap flux density was obtained as 1.06 T after simulation. The length of the motor air gap was taken as 1 mm. Inserting these values into equation (27) gives \(h_M \) as 6 mm.

When the motor’s armature diameter, current density, and air-gap magnetic flux density are invariant, increasing the number of motor slot poles reduces the amount of copper and improves the motor’s power density. However, it also increases the fabrication difficulty and makes it difficult to guarantee machining precision. After careful consideration, this study chose 45 slots and 40 poles as the motor’s plan. Fig. 10 shows the three-dimensional structure of the motor.

3) SIMULATION OF ELECTROMAGNETIC PROPERTIES

The armature winding in the present study adopted a Y connection. Variations in output characteristics and magnetic flux density were analyzed by changing the current magnitude.

Diagrams of the final magnetic force lines are shown in Fig.11. The top diagram shows that most magnetic force lines form closed loops through the teeth, air gaps, magnetic steel, and yokes, and these lines form the main magnetic flux. An enlarged diagram of the air gap area in the bottom panel shows that a small number of magnetic force lines do not pass through the teeth or yokes—these lines are the leakage magnetic flux. Fig.11 shows that there is little leakage flux and that the motor therefore has lower loss.

Figure 10. Three-dimensional structure of the multi-redundant motor
The output torque of the motor working at 500 ampere-turns is shown in Fig. 13. The average output torque is 645.6 N·m, which is 7.6% more than the specified torque; the fluctuation of the torque is 18.5 N·m, accounting for 3.1% of the total output, which meets the design requirements.

The air-gap flux density variation is shown in Fig. 14. The result was processed with a fast Fourier transform, and the harmonics are shown in Fig. 15. The results show that the fundamental frequency is 10 Hz and the amplitude is 1.05 T; these values are mainly affected by the second and third harmonics. The other harmonics have lower amplitudes.
Because of the limited number of communication ports in a central processing unit, the system needs multiple communication modules to receive instructions and send them to the corresponding redundant motor drivers. Each module has a tri-gate to ensure that only one redundancy's feedback is sent to the encoder module at a time.

The motor driver has multiple independent driver modules. Each module receives instructions from the communication module and runs the current loop, outputting a pulse-width modulation wave to drive the redundancy.

During failure, the current sensor on the fault redundancy’s driver detects the feedback current’s raising (short-circuit fault) or falling (open-circuit fault), and the central processing unit then stops driving redundancy. The action does not affect the other driver and motion controller. If the failure breaks the driver, the fault redundancy will also stop.

The output of the multi-redundant motor is the sum of the outputs of all redundancies. There will therefore be a torque ripple in the system that reduces the fall in the motor speed after shutting down the fault redundancy. The motion controller can detect the change in speed in real time and adjust the current reference. By increasing the current of other redundancies, the output can be recovered and the ripple can be eliminated.

IV Experiments

A. EXPERIMENT ON MOTOR CHARACTERISTICS
To save time, the motor used in the experiments had two redundancies. A test motor was used to measure the back-emf by imposing drag on the multi-redundant motor at different speeds. The setup is shown in Fig. 16.

Because of the limited number of communication ports in a central processing unit, the system needs multiple communication modules to receive instructions and send them to the corresponding redundant motor drivers. Each module has a tri-gate to ensure that only one redundancy’s feedback is sent to the encoder module at a time.

The motor driver has multiple independent driver modules. Each module receives instructions from the communication module and runs the current loop, outputting a pulse-width modulation wave to drive the redundancy.

During failure, the current sensor on the fault redundancy’s driver detects the feedback current’s raising (short-circuit fault) or falling (open-circuit fault), and the central processing unit then stops driving redundancy. The action does not affect the other driver and motion controller. If the failure breaks the driver, the fault redundancy will also stop.

The output of the multi-redundant motor is the sum of the outputs of all redundancies. There will therefore be a torque ripple in the system that reduces the fall in the motor speed after shutting down the fault redundancy. The motion controller can detect the change in speed in real time and adjust the current reference. By increasing the current of other redundancies, the output can be recovered and the ripple can be eliminated.

IV Experiments

A. EXPERIMENT ON MOTOR CHARACTERISTICS
To save time, the motor used in the experiments had two redundancies. A test motor was used to measure the back-emf by imposing drag on the multi-redundant motor at different speeds. The setup is shown in Fig. 16.

Because of the limited number of communication ports in a central processing unit, the system needs multiple communication modules to receive instructions and send them to the corresponding redundant motor drivers. Each module has a tri-gate to ensure that only one redundancy’s feedback is sent to the encoder module at a time.

The motor driver has multiple independent driver modules. Each module receives instructions from the communication module and runs the current loop, outputting a pulse-width modulation wave to drive the redundancy.

During failure, the current sensor on the fault redundancy’s driver detects the feedback current’s raising (short-circuit fault) or falling (open-circuit fault), and the central processing unit then stops driving redundancy. The action does not affect the other driver and motion controller. If the failure breaks the driver, the fault redundancy will also stop.

The output of the multi-redundant motor is the sum of the outputs of all redundancies. There will therefore be a torque ripple in the system that reduces the fall in the motor speed after shutting down the fault redundancy. The motion controller can detect the change in speed in real time and adjust the current reference. By increasing the current of other redundancies, the output can be recovered and the ripple can be eliminated.

IV Experiments

A. EXPERIMENT ON MOTOR CHARACTERISTICS
To save time, the motor used in the experiments had two redundancies. A test motor was used to measure the back-emf by imposing drag on the multi-redundant motor at different speeds. The setup is shown in Fig. 16.
Table 3: Results of the Back-emf

<table>
<thead>
<tr>
<th>Speed (r/min)</th>
<th>Redundancy 1</th>
<th>Redundancy 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Back-emf (V)</td>
<td>Coeff (V/(r/min))</td>
</tr>
<tr>
<td>200</td>
<td>8.3</td>
<td>0.0415</td>
</tr>
<tr>
<td>400</td>
<td>15</td>
<td>0.0375</td>
</tr>
<tr>
<td>800</td>
<td>28.5</td>
<td>0.0356</td>
</tr>
<tr>
<td>1000</td>
<td>34.5</td>
<td>0.0345</td>
</tr>
<tr>
<td>1500</td>
<td>52</td>
<td>0.0347</td>
</tr>
<tr>
<td>1800</td>
<td>61</td>
<td>0.0339</td>
</tr>
</tbody>
</table>

The motor-locked rotor output torque was measured by changing the current command. The experimental results are listed in Table 4 and plotted in Fig. 19.

Table 4: Results for Static Torque

<table>
<thead>
<tr>
<th>Current (A)</th>
<th>Static Torque (N·m)</th>
<th>Coeff (N·m/A)</th>
<th>Static Torque (N·m)</th>
<th>Coeff (N·m/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>/</td>
<td>0</td>
<td>/</td>
</tr>
<tr>
<td>1</td>
<td>0.55</td>
<td>0.1100</td>
<td>0.62</td>
<td>0.1240</td>
</tr>
<tr>
<td>1.25</td>
<td>2.31</td>
<td>1.1613</td>
<td>1.25</td>
<td>1.1667</td>
</tr>
<tr>
<td>1.65</td>
<td>3.00</td>
<td>0.2000</td>
<td>2.04</td>
<td>0.2027</td>
</tr>
<tr>
<td>2.20</td>
<td>3.79</td>
<td>0.2166</td>
<td>3.68</td>
<td>0.2103</td>
</tr>
</tbody>
</table>

Figure 17. Speed versus back-emf for the prototype motor

Fig. 17 shows that back-emf coefficients for redundancies 1 and 2 tend to become uniform with increasing speed, and the linearity is adequate. The induced emf waveforms of the two redundancies, which are shown in Fig. 18, are basically coincident. This reveals that the back-emf characteristics of the two redundancies basically remain consistent.

Figure 18. Waveform of the back-emf for the prototype motor

The consistency of the back-emf coefficients and static torque coefficients of the two redundancies shows that the characteristics of the two redundancies are consistent. It also shows that the relationship between the motor output torque and the number of redundancies is linear.

B. TEST DRIVING OF THE MULTI-REduNDANT MOTOR

The platform for the driving experiment is shown in Fig. 20.

Figure 19. Static torque versus current for the prototype motor

Fig. 19 shows that the static torque increases as command current increases, and the static torque coefficient had good consistency.

Figure 20. Setup of the driving experiment

First, the system was driven without a magnetic encoder to ensure that the redundant windings were synchronous. Two
redundant U-phase current waveforms were collected using two probes. The waveforms are shown in Fig. 21.

![Waveforms of the prototype motor current without the encoder](image)

Figure 21. Waveforms of the prototype motor current without the encoder

Fig. 21 shows that the two redundancies work well together, with there being stationary and consistent waveforms for both phase and amplitude. Above all, these results show that the system works normally when driven by two redundant windings.

Next, the two redundancies were driven with the same parameters. During operation, redundancy 1 was powered off to simulate the situation of one redundancy failure. Powering off redundancy 1 is equivalent to shutting down the output voltage of redundancy 1. This situation has the same effect as a failure in the armature winding, inverter, or driving circuit.

Fig. 22 shows the U-phase current waveforms of both redundancies during the experiment. When redundancy 1 was turned off, its U-phase current fell to 0 A after a short shock. Redundancy 2 still output current normally and simultaneously. The waveforms show that the system continues operating normally under failure of the armature winding, inverter, or driving circuit.

![Current waveforms during a fault](image)

Figure 22. Current waveforms during a fault

In this experiment, the back-emf and static torque of each redundancy were tested firstly to show that each redundancy has basic consistent characteristics. The two redundancies were then driven synchronously with the same controller and same parameters. Results show that the multi-redundant PMSM system was controllable. Finally, the driver of one redundancy was shut down to simulate a failing situation, and waveforms showed that the other redundancies continued working normally during and after failure.

V CONCLUSION

A new multi-redundant PMSM was proposed. First, the controllability of the mutual inductance winding was shown. A mathematical model for the multi-redundant PMSM was then built, and its fault-tolerance performance was demonstrated through simulation. The structure and drive system of the motor were then designed. Finally, an experimental platform was built, and the system’s fault-tolerance performance was verified by powering off one redundancy as the motor was operating. The experimental results show that the multi-redundant PMSM continued to work when one redundant winding failed. Compared with other fault-tolerant motor systems, the proposed PMSM system uses normal PI control theory, has no additional complex algorithm, and has no specific component for controller or drivers. The redundant windings are in parallel with others so the need to bus voltage could be low. The hardware of the control system is easy to downsize and integrate because the controller and driver are independent and divided. The system is suitable for situations that require a shorter control cycle, higher system frequency, lower bus voltage, and a smaller controller and drivers.

REFERENCES

