Idiomaticity Prediction of Chinese Noun Compounds and Its Applications

CHENGYU WANG1, YAN FAN2, XIAOFENG HE3 (Member, IEEE), HONGYUAN ZHA4, and AOVING ZHOU5 (Member, IEEE)

1School of Software Engineering, East China Normal University, Shanghai, China (e-mail: chywang2013@gmail.com)
2Alibaba Group, Hangzhou, China (e-mail: fanyan.fy@alibaba-inc.com)
3School of Computer Science and Engineering, East China Normal University, Shanghai, China (e-mail: xfhe@sei.ecnu.edu.cn)
4School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail: zha@cc.gatech.edu)
5School of Data Science and Engineering, East China Normal University, Shanghai, China (e-mail: ayzhou@dase.ecnu.edu.cn)

Corresponding author: Xiaofeng He (e-mail: xfhe@sei.ecnu.edu.cn).
This work is partially supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000904.

ABSTRACT Idiomaticity refers to the situation where the meaning of a lexical unit cannot be derived from the usual meanings of its constituents. As a ubiquitous phenomenon in languages, the existence of idioms often causes significant challenges for semantic NLP tasks. While previous research mostly focuses on the idiomatic usage detection of English verb-noun combinations and the semantic analysis of Noun Compounds (NCs), the idiomaticity issues of Chinese NCs have been rarely studied. In this work, we aim at classifying Chinese NCs into four idiomaticity degrees. Each idiomaticity degree refers to a specific paradigm of how the NCs should be interpreted. To address this task, a Relational and Compositional Representation Learning model (RCRL) is proposed, which considers the relational textual patterns and the compositionality levels of Chinese NCs. RCRL learns relational representations of NCs to capture the semantic relations between two nouns within an NC, expressed by textual patterns and their statistical signals in the corpus. It further employs compositional representations to model the compositionality levels of NCs via network embeddings. Both loss functions of idiomaticity degree classification and representation learning are jointly optimized in an integrated neural network. Experiments over two datasets illustrate the effectiveness of RCRL, outperforming state-of-the-art approaches. Three applicational studies are further conducted to show the usefulness of RCRL and the roles of idiomaticity prediction of Chinese NCs in the fields of NLP.

INDEX TERMS representation learning, idiomaticity prediction, noun compound, relational pattern, compositionality analysis

I. INTRODUCTION

IDIOMATICITY is ubiquitous in natural languages. It refers to the phenomenon where the meaning of a lexical unit is unpredictable from the usual meanings of its individual constituents [1]. Typical examples of idioms include “cloud nine”, “white coal”, “kick the bucket”, etc. As a class of Multiword Expressions (MWEs), the presence of idioms often changes the default meanings of natural languages. Hence, such phenomenon has been regarded as “a pain in the neck” in Natural Language Processing (NLP) for decades [2], [3]. For example, the performance of machine translation drops significantly in an idiom-rich corpus [4].

Due to its prevalence, the detection and processing of idiomatic languages are key research areas in NLP and computational linguistics. For several NLP tasks (e.g., analysis of verb semantics [5]), idioms often need to be processed separately. In previous research, idiom token classification is an NLP task of distinguishing idiomatic MWEs and expressions with literal meanings. A majority of related research focuses on English Verb-Noun Combinations (VNCs) (e.g., “push one’s luck”, “blow the whistle”) [6], [7], [8], [9]. The goal of this task is to classify VNC usages in sentences as idiomatic or literal. Another closely related task is the compositionality prediction of Noun Compounds (NCs). This is because the compositionality levels of NCs have strong correlations with their idiomaticity degrees [10], [11], [12], [13]. For example, the noun phrase “apple tree” is decomposable, as its meaning can be inferred by combining the meanings of the two nouns (“trees where apples grow”). In contrast, the idiomatic NC “cloud nine” is indecomposable, since the meaning of...
this compound is unrelated to the meanings of “cloud” and “nine”, separately.

Despite the success, existing research works mostly focus on the English language and are not sufficient to process idiomatic Chinese NCs. The reasons are briefly stated below:

- Chinese is a highly idiomatic language, containing a large portion of metaphorical expressions [14]. The “hidden relations” within Chinese NCs are mostly commonsense to native speakers and are often omitted in texts. Hence, pattern-based methods for English (e.g., [9]) are difficult to apply to analyze and interpret the meanings of Chinese NCs (especially idiomatic NCs).
- The compositionality level prediction of English NCs usually relies on the morphological and structural analysis of English words (e.g., [10], [15]). In contrast, Chinese words have little morphology, using unbound morphemes and character orders to convey meanings [16]. Hence, it is difficult to apply these methods to the Chinese language without major modification.
- In existing datasets related to the compositionality of NCs, an NC is associated with a numeral score, indicating a scale of literality [13], [17]. However, this labeling scheme only implies how idiomatic the meanings of NCs are, instead of providing an explicit, classification-based framework for machines to understand and interpret the meanings of NCs directly.

In this paper, we propose a novel, neural computational framework to predict the idiomaticity degrees of Chinese NCs based on representation learning. Different from existing numerical score prediction tasks for compositionality analysis of NCs [10], [11], [12], [13], our work aims at classifying a Chinese NC into one of the four idiomaticity degrees introduced by Wang et al. [18]. Each idiomaticity degree corresponds to one specific paradigm to interpret the NC. Hence, the relations between idiomaticity analysis and natural language understanding of Chinese NCs can be established. The four idiomaticity degrees w.r.t. a noun-noun compound N_1N_2 are briefly summarized as follows, with an increasing level of idiomaticity:

1) **Transparent** (N_1 describes a property of N_2 explicitly.)

2) **Partly opaque** (N_1 is not a property of N_2. Instead, there exists a hidden, implicit verbal relation between N_1 and N_2.)

3) **Partly idiomatic** (No direct relation exists between N_1 and N_2. N_1 modifies N_2 metaphorically, not literal.)

4) **Completely idiomatic** (N_1 and N_2 are completely indecomposable and should be treated as a whole unit whose semantic meaning is not explicitly related to N_1 or N_2.)

To address this task, a Relational and Compositional Representation Learning framework (RCRL) is proposed. RCRL learns relational representations of NCs. Such representations encode the hidden semantic relations between two nouns within an NC via several specially designed pattern-based features for the Chinese language. As idiomaticity degrees of NCs are closely related to compositionality [11], [12], the RCRL model also learns compositionality representations of NCs efficiently via network embeddings [20], so that NCs with similar compositionality levels have similar representations. Both the representation learning and the idiomaticity prediction tasks are jointly optimized in an integrated neural network via multi-task iterative learning.

In the experiments, we evaluate the RCRL model over two Chinese NC datasets and compare it with strong baselines. The experimental results show that RCRL consistently outperforms these baseline methods. Based on the application of the RCRL model, we further conduct three studies, with the findings summarized as follows. i) We detect idiomatic NCs in a large-scale Chinese Web corpus. The results reveal that 50.8% of the Chinese NCs have idiomatic meanings to some degree. ii) We find that the idiomaticity degrees of NCs affect the machine translation quality significantly. A higher degree of idiomaticity is associated with poorer machine translation quality. iii) We show that the RCRL model is not entirely language-dependent. With simple modification, the RCRL model can also achieve state-of-the-art performance for the English language over the compositionality analysis task.

The rest of this paper is organized as follows. Section II introduces the background of this research. The RCRL model is described in Section III in detail. The experimental results are shown in Section IV. Finally, we present the three studies in Section V and draw the conclusion in Section VI.

II. BACKGROUND

In this section, we introduce our research background and discuss the idiomaticity issues of Chinese NCs.

A. A SUMMARY OF RELATED WORK

1) **NC Semantics**

NC is a class of MWEs [3], which is a fixed expression consisting of multiple nouns. The semantics of NCs (particularly noun-noun compounds) are typically expressed by abstract verbal relations from a fixed inventory [21], [22]. For example, the semantics of “olive oil” can be expressed by the verbal relation “made-of” (i.e., “oil” that is made of “olive”). However, a finite set of relations (or verbs) are insufficient to represent complicated NC relations. For finer-grained representations, Cruys et al. [23] use multiple paraphrases involving verbs and/or prepositions to express the semantics of NCs. In SemEval-2013 Task 4 [24], participants are allowed to use free paraphrases to represent relations within NCs. The
above works deal with English NCs only. For Chinese, the study of NC semantics is insufficient. In [18], the authors present a taxonomy on semantics of Chinese noun-noun compounds. We employ the four idiomaticity degrees in [18] to represent the semantics of Chinese NCs. Each idiomaticity degree can be viewed as a specific paradigm to interpret Chinese NCs.

2) Idiom Token Classification

The detection of idiomatic tokens is vital for processing MWEs, as it recognizes idiomatic language usages in free texts. The research of idiom token classification dates back to [25], which uses an SVM classifier to distinguish whether a Japanese phrase is idiomatic or literal. Peng et al. [7] assume that contexts of idioms are usually different from words in local topics and detect such idioms based on topic models. Recently, the usage of word embeddings has been extensively applied to the task of idiom token classification. For example, Salton et al. [8] use sentences containing a target phrase as inputs, and classify the phrase as idiomatic or literal based on distributional representations of the corresponding words. Gharbieh et al. [26] show that by using word embeddings as features, both unsupervised and supervised models for idiomatic token classification outperform traditional methods. King and Cook [9] further improve the performance of word embedding-based methods by considering lexico-syntactic linguistic knowledge. A similar linguistically motivated work is proposed by Liu and Hwa [27], which propose a literal usage metric to measure the probability of a certain idiom is intended literally in the text corpus. A potential drawback is that they deal with idiomatic VNCs, leaving idiomatic NCs and other similarly structured MWEs unexplored.

3) Compositionality of NCs

The compositionality analysis of NCs is also closely related to our research. This is because the meanings of idiomatic NCs are usually different from its components. Hence, these NCs tend to be indecomposable. Early attempts devise a number of measures to describe the levels of compositionality based on vector space representations of terms. Notable approaches in this field include [13], [28] and many others. With the wide application of neural language models, word embeddings have been extensively exploited for compositionality prediction. For example, Salehi et al. [29] combine word embedding techniques and previous compositionality measures proposed by Reddy et al. [13] to detect indecomposable NCs. Yazdani et al. [12] and Cordeiro et al. [11] present a range of distributional semantic models to learn the non-compositionality of MWEs. By comparing the difference between the compound embeddings of NCs and the individual embeddings of the two component nouns, the compositionality degrees of NCs can be measured, in the form of real-value scores. For Chinese, the research work is highly insufficient. Qi et al. [30] incorporate Chinese sememe knowledge into compositionality prediction models, and learn the semantic representations of Chinese multiword expressions based on sememes. However, this work is potential restricted by the coverage of sememes. In this work, we solve the problem of semantic compositionality from another aspect. We classify Chinese NCs into a fine-grained taxonomy of idiomaticity degrees, which does not rely on existing sememe knowledge bases and is more suitable for the natural language understanding of the Chinese language.

B. IDIOMATICITY OF CHINESE NCs

As discussed, the semantics of Chinese NCs are not sufficiently studied. In linguistics, “semantic transparency” is a property of NCs. It describes to which extent an NC retains
its literal meaning in its actual meaning [31]. Hence, higher transparency in NCs also means lower idiomaticity.

In this work, we consider a taxonomy of semantic transparency of Chinese NCs [18] as the standard to characterize the idiomaticity degrees of Chinese NCs. It has four levels of semantic transparency, with increasing idiomaticity degrees. In the following, we summarize the four classes briefly, with examples presented in Table 1:

1) **Transparent**: N_1 modifies N_2 explicitly, describing a property/attribute of N_2. It also means $N_1 N_2$ is a type of N_2. For example, “固体燃料” (solid fuel) is a physical property of “燃料(fuel)” in the NC “固体燃料(solid fuel)”.

2) **Partly Opaque**: N_1 does not directly modify N_2. Instead, there exists an implicit verbal relation between N_1 and N_2. Again, $N_1 N_2$ is a type of N_2. Consider the NC “办公用品(office supplies)”、“办公(office)” is not a property of “用品(supplies)”, but refers a kind of “用品(supplies)” that are used in “办公(office)”. In this case, “used-in” is the verbal relation between them.

3) **Partly Idiomatic**: N_1 and N_2 are decomposable but the usage of N_1 is idiomatic, not literal. The relation between N_1 and N_2 is metaphorical. Hence, there is no direct relation between N_1 and N_2. However, we can infer $N_1 N_2$ is a type of N_2. In “计划经济(planned economy)”, the economic system is not about plans themselves. Instead, “计划(plan)” refers to the most important characteristics in the system where the allocation of goods and other resources is managed by plans made by governments.

4) **Completely Idiomatic**: $N_1 N_2$ is completely indecomposable, referring to a concept that is not a type of N_1 or N_2. For example, “夫妻肺片(Mr and Mrs Smith)” is the name of a specific Chinese beef dish. The NC is neither a type of “夫妻(couple)” nor “肺片(lung piece)”.

The reason for choosing the four-value scale to model the idiomaticity degrees of Chinese NCs rather than numerical scores is as follows. Numeral compositionality scores for NCs (e.g., [11], [17]) may lack explicit relational modeling between such scores and other NLP tasks. For instance, if the score of “计划经济(planned economy)” is predicted to be 0.7/1.0, we only know that this NC is idiomatic to some extent. It is still unclear how the meanings of the NC should be interpreted. In contrast, by adopting the framework [18], connections between NC semantics and other NLP tasks can be established, including noun phrase interpretation [32], hypernym generation [33], etc. For example, if “固体燃料(solid fuel)” is transparent, the two semantic relations can be directed generated:

$$ (\text{固体燃料, 具有属性, 固体}) \quad (\text{solid fuel, has-property, solid})$$
$$ (\text{固体燃料, 属于, 燃料}) \quad (\text{solid fuel, is-a, fuel})$$

For “办公用品(office supplies)”, we can also extract the two relations:

$$ (\text{办公用品, 用于, 办公}) \quad (\text{office supplies, used-in, office})$$
$$ (\text{办公用品, 属于, 办公}) \quad (\text{office supplies, is-a, supplies})$$

where the relation predicate “used-in” can be inferred via noun phrase interpretation techniques [32]. As for “夫妻肺片(Mr and Mrs Smith, sliced beef and ox tongue in Chilli sauce)”, we can infer that the previously mentioned “has-property” and “is-a” relations are not correct in this case. In summary, the extracted relations or induced rules are particularly useful for taxonomy induction, knowledge base completion, commonsense reasoning, etc. In this paper, we restrict the scope of this work to the idiomaticity degree prediction of Chinese NCs and a few related studies. Further applications of RCRL in NLP are left as future work.

III. THE RCRL MODEL

In this section, we present the RCRL model in detail for the prediction of idiomaticity degrees for Chinese NCs.

A. AN OVERVIEW OF RCRL

A basic approach for predicting the idiomaticity degree of the NC $N_1 N_2$ is to leverage word embeddings of N_1 and N_2. This is because the semantic relations between N_1 and N_2 inferred from word embeddings have close connections to idiomaticity degrees [11]. However, this method considers distributional representations of words only, and may suffer from the “lexical memorization” problem [34]. In the experiments, we also find that it has low accuracy for Chinese due to the ignorance of Chinese language characteristics. In this work, we learn relational and compositional representations of Chinese NCs based on the following two observations:

- **Observation 1**: Some relational textual patterns w.r.t. N_1 and N_2 in the corpus are important signals to predict the idiomaticity degree of $N_1 N_2$.

For example, given a sentence containing a Chinese NC $N_1 N_2$, if the head word N_2 also occurs solely in the same sentence, it is likely that the author uses other expressions containing N_2 to describe $N_1 N_2$. Hence, the meaning of $N_1 N_2$ is likely to be decomposable. This gives little probability that $N_1 N_2$ is completely idiomatic. Consider the sentence: “流行音乐是一种以盈利为主要目的而创作的音乐(Pop music is a type of music created with profit as its main purpose)”. The head word of “流行音乐(pop music)” is “音乐(music)”, which also appears in the same sentence, besides in the NC “流行音乐(pop music)”. Here, we may infer “流行音乐(pop music)” is not completely idiomatic, since its meaning relates to “音乐(music)" to some degree.

- **Observation 2**: NCs with similar compositionality levels share similar idiomaticity degrees.

For example, two NCs “solid fuel” and “liquid oil” are both decomposable. In these NCs, “solid” and “liquid” describe
a property (physical form) of the objects (“fuel” and “oil”). This also implies that the two NCs are semantically transparent.

Let \(y^{(i)} \) be the true idiomaticity degree of an NC \(x^{(i)} \). \(\tilde{y}(x^{(i)}) \) is the predicted idiomaticity degree by any machine learning models. Denote \(L \) and \(U \) as the training and unlabeled sets of Chinese NCs. Based on two observations, RCRCL learns relational representation \(x^{(i)} \) and compositional representation \(x^{(j)} \) for each \(x^{(i)} \in D \cup U \). It minimizes the loss function defined in Eq. (1):\(^4\)

\[
J = \sum_{x^{(i)} \in L} sl(y^{(i)}, \tilde{y}(x^{(i)})) + \lambda \sum_{x^{(i)} \in L \cup U} \alpha_{i,j} ul(\tilde{y}(x^{(i)}), \tilde{y}(x^{(j)}))
\]

Here, \(sl(y^{(i)}, \tilde{y}(x^{(i)})) \) is the supervised loss of idiomaticity degree prediction errors over the training set. The features used for idiomaticity degree classification are designed based on Observation 1. \(\alpha_{i,j} = \text{sim}(\tilde{y}(x^{(i)}), \tilde{y}(x^{(j)})) \) is the compositional similarity between two NCs \(x^{(i)} \) and \(x^{(j)} \). \(ul(\tilde{y}(x^{(i)}), \tilde{y}(x^{(j)})) \) is the unsupervised loss, forcing compositionally similar NCs to have similar idiomaticity predictions, which addresses Observation 2. \(\lambda \) is the balancing factor w.r.t. the two types of losses. Note that we utilize both training and testing (i.e., unlabeled) data to compute the unsupervised loss in order to exploit Observation 2 in both datasets.

B. LEARNING RELATIONAL REPRESENTATIONS

Unlike general word embeddings, the relational representation characterizes how two nouns relate to each other within an NC. To encode the knowledge of relational textual patterns (i.e., Observation 1), we define a collection of raw features \(F_\ell^{(i)} \) of an NC \(x^{(i)} \) over a text corpus. The relational representations of \(x^{(i)} \) can be calculated via \(x^{(i)} = \mathbf{M}_\ell F_\ell^{(i)} \) where \(\mathbf{M}_\ell \) is a linear projection matrix. Based on characteristics of different idiomaticity degrees, we design following raw features \(F_\ell^{(i)} \).

1) Auxiliary Feature

In Chinese, if the pattern “\(N_1 \text{的} N_2 \)” exists, \(N_1 \) explicitly modifies \(N_2 \) as a property, where “\(\text{的} \)” is a common Chinese auxiliary word. Hence, it is probable that \(N_1 \) and \(N_2 \) is transparent. Because the pattern may be expressed multiple times and contains noise, similar to [35], we define \(r_\alpha \) as a pattern redundancy factor, typically set to a small, positive integer. To speed up text retrieval, we construct a sentence-level inverted index over the text corpus. We denote \(S_{\alpha}^i \) as the collection of top-\(k \) sentences that returns for query \(q \). Assume that “\(N_1 \text{的} N_2 \)” strongly indicates that \(N_1 \) and \(N_2 \) is transparent if the pattern appears at least \(r_\alpha \) times. Using such notations, the auxiliary feature is defined as follows:\(^5\)

\[
f_{\text{aux}}(N_1, N_2) = \min\{1, \frac{1}{r_\alpha} \sum_{s \in S_{\alpha}^i} I(q_{\text{aux}} \in s)\}
\]

where query \(q_{\text{aux}} = “N_1 \text{的} N_2” \). \(I(\cdot) \) is the indicator function that returns 1 if \(\cdot \) is true and 0 otherwise.

2) Verb Feature

This feature models to which degree there may exist verbs describing the relations between the two nouns. In Chinese, the detection of verbal relations suffers from low accuracy due to the flexible language expressions and the existence of light verb constructions [36]. To address the two issues, we propose a statistical approach to increase error tolerance, as shown in Algorithm 1. Let query \(q_{\text{verb}} \) be “(\(N_1 \) AND \(N_2 \)) NOT \(N_1 \) \& \(N_2 \)” . For each sentence \(s \in S_{\text{verb}}^k \), we extract contextual verbs from \(s \) which may indicate relations between \(N_1 \) and \(N_2 \). Inspired by [37], we treat a verb \(v \) as a contextual verb of \(N_1 \) and \(N_2 \) if it is in the dependency chain or syntax path between \(N_1 \) and \(N_2 \).

Denote \(V(N_1, N_2) \) as the multi-set of the contextual verb collection w.r.t. \(N_1 \) and \(N_2 \) where \(c(v) \) is the count of \(v \). Similarly, let \(r_v \) as a verb redundancy factor (i.e., a small, positive integer). \(V_{r_v}(N_1, N_2) \) is the subset of \(V(N_1, N_2) \) with top-\(r_v \) frequency counts. Assume there is strong presence of relational verbs between the two nouns if there are at least \(r_v \) verbs where each verb has at least \(r_v \) frequency counts. The verb feature is computed as follows:

\[
f_{\text{verb}}(N_1, N_2) = \min\{1, \frac{1}{r_v} \sum_{v \in V_{r_v}(N_1, N_2)} c(v)\}
\]

Algorithm 1 Verb Feature Extraction Algorithm

1: Initialize multiset \(V(N_1, N_2) = \emptyset \);
2: for each sentence \(s \in S_{\text{verb}}^k \) do
3: \quad if \(N_1 \in s \) and \(N_2 \in s \) then
4: \quad \quad Add contextual verbs w.r.t. \(N_1 \) and \(N_2 \) to \(V(N_1, N_2) \);
5: \quad end if
6: end for
7: for each verb \(v \in V(N_1, N_2) \) do
8: \quad Compute frequency count \(c(v) \);
9: \quad end for
10: Extract the verb collection \(V_{r_v}(N_1, N_2) \) with top-\(r_v \) counts from \(V(N_1, N_2) \);
11: return Feature value \(f_{\text{verb}}(N_1, N_2) \);

3) Head Co-occurrence Feature

As in Observation 1, the frequent co-occurrence of \(N_1 \) and \(N_2 \) in the same sentences indicates that \(N_1 \) and \(N_2 \) is not completely idiomatic. Let \(r_h \) be the head word co-occurrence factor. \(q_{\text{head}} = “N_2 \text{ AND} N_1 \text{N}_2” \). \(I_c(s, N_1 N_2) \) is an indicator

\(^4\)For simplicity, we omit the regularization terms of the model parameters.

\(^5\)We use \(x \subset y \) to represent \(x \) is the substring of \(y \).
Similarly, the head expanded auxiliary feature is:

\[f_{\text{head}}(N_1, N_2) = \min\{1, \frac{1}{r_c} \sum_{s \in S_{\text{head}}} I_c(s, N_1 N_2) \} \]

4) Expanded Features

Although previous features capture linguistic characteristics of idiomaticity degrees, they are insufficient. This is because in some cases, such explicit expressions are commonplace to humans and do not frequently appear in the corpus. Recently, word embedding based query expansion techniques [38] have been applied to improve the recall of sentence retrieval. Here, we derive expanded features using query expansion. For example, the pattern “液体的燃料(liquid fuel)” gives us additional knowledge to predict “固体燃料(solid fuel)” is transparent, because “liquid” and “solid” are semantically similar. In this case, we do not even need to see “固体(solid)” and “燃料(fuel)” to co-occur in the same sentence to make a confident prediction.

Let \(C_p(w) \) be the \(p \)-nearest neighbors of word \(w \), where the semantic similarity of words is quantified by the cosine similarity of word embeddings. For the auxiliary feature, we replace \(N_1 \) with each word \(w \in C_p(N_1) \) and compute feature values. The modifier-expanded auxiliary feature is:

\[f_{\text{aux}}^m(N_1, N_2) = \frac{1}{\tau} \sum_{n_1 \in C_p(N_1)} \text{top}(f_{\text{aux}}(n_1, N_2), \tau) \]

where \(\text{top}(f_{\text{aux}}(n_1, N_2), \tau) = f_{\text{aux}}(n_1, N_2) \) if \(f_{\text{aux}}(n_1, N_2) \) is the top-\(\tau \) largest among all values \(f_{\text{aux}}(n_2, N_1) \) \(n_2 \in C_p(N_1) \) and equals 0 otherwise. Hence, \(f_{\text{aux}}^m(N_1, N_2) \) is the top-\(\tau \) averaged feature values in the “neighborhood” of \(N_1 \). Similarly, the head-expanded auxiliary feature is:

\[f_{\text{aux}}^h(N_1, N_2) = \frac{1}{\tau} \sum_{n_2 \in C_p(n_2)} \text{top}(f_{\text{aux}}(n_1, n_2), \tau) \]

We heuristically use \(\frac{r_c}{2} \)-nearest neighbors rather than \(p \) because the change of heads affects more on meanings of NCs than modifiers. We also introduce the modifier-expanded and head-expanded features for verbs and head co-occurrences. Refer to Table 2 for the detailed feature template of RCRL. In summary, \(F_{\tau}^{(i)} \) is the concatenation of all the above features. The matrix \(M_{\tau} \) is used for generating relational representations via \(x^{(i)} = M_{\tau} F_{\tau}^{(i)} \) (which will be learned via the neural network introduced afterwards).

C. LEARNING COMPOSITIONAL REPRESENTATIONS

While it is relatively straightforward to derive relational representations based on textual patterns, learning compositional representations to encode Observation 2 is challenging, because word embeddings of nouns in NCs are not sufficient to characterize the meanings of NCs with idiomatic meanings [11]. We improve the work [11] for multi-way classification of idiomaticity degrees. Let two NCs \(x^{(i)} \) and \(x^{(j)} \) be \(N_1, N_2 \) and \(N_1, N_2 \). We define the compositional similarity score \(\alpha_{i,j} \) (in Eq. (1)) between \(x^{(i)} \) and \(x^{(j)} \) as:

\[\alpha_{i,j} = \frac{1}{2} \left[\cos(\vec{v}(N_1 N_2), \vec{v}(N_1 + N_2)) - \cos(\vec{v}(N_1 N_2), \vec{v}(N_1 + N_2)) \right] \]

where \(\vec{v}(N_1 N_2) \) is the compound embedding of the NC \(N_1 N_2 \), and \(\vec{v}(N_1 + N_2) \) is the sum of the normalized embeddings of two nouns \(N_1 \) and \(N_2 \) separately:

\[\vec{v}(N_1 + N_2) = \frac{\vec{v}(N_1)}{||\vec{v}(N_1)||} + \frac{\vec{v}(N_2)}{||\vec{v}(N_2)||} \]

From this setting, we can see that i) \(\alpha_{i,j} \in [0, 1] \) and ii) NCs with similar compositionality degrees have similar \(\alpha_{i,j} \) scores.

Recall that \(x^{(i)} \) is the compositional representation of the NC \(x^{(i)} \). In order to minimize the unsupervised loss \(\sum_{x^{(i)}, x^{(j)} \in L \cup U} \alpha_{i,j} \log(\Pr(x^{(i)}|x^{(j)})) \) in Eq. (1), we adopt the idea of graph embeddings to learn such compositional representations. Let \(G(\Phi, \Psi, W) \) be a graph with edge weights, where \(\Phi \) and \(\Psi \) denote the node and edge sets, respectively. \(\Phi \) corresponds to all training and testing data instances (i.e., all \(x^{(i)} \in L \cup U \)). \(W \) is an edge weight vector that assigns a weight \(w_{i,j} \) to each \(x^{(i)}, x^{(j)} \in \Psi \). In the graph, each NC \(x^{(i)} \in D \cup U \) is associated with a compositional representation \(x^{(i)} \). To ensure that compositionally similar NCs have similar compositional representations \(x^{(i)} \), we propose a variant of the DeepWalk [20] and node2vec [39] algorithms as follows.

Let \(N(x^{(i)}) \) be the collection of “neighbors” of NC \(x^{(i)} \) in \(G \) where “neighbors” of \(x^{(i)} \) are compositionally similar to \(x^{(i)} \). Based on [20], [39] We re-write the unsupervised loss as the negative log likelihood function:

\[-\sum_{x^{(i)} \in L \cup U} \log \Pr(x^{(j)} | x^{(i)}) \]

where \(\Pr(x^{(j)} | x^{(i)}) \) is the probability of predicting \(x^{(j)} \) as the “neighbor” of \(x^{(i)} \) given its compositional representation \(x^{(i)} \).

Computing \(\Pr(x^{(j)} | x^{(i)}) \) is infeasible due to the expensive computation cost of the partition function. Besides, the label information of NCs in the training set is not considered. We propose a Label-sensitive Weighted Random Walk (LWRW) process to sample sequences of compositionally similar NCs. Let \(G \) be a complete graph. \(w_{i,j} \) is computed as follows:

\[w_{i,j} = \begin{cases} \alpha_{i,j} & x^{(i)} \in L, x^{(j)} \in L, y^{(i)} = y^{(j)} \\ 0 & x^{(i)} \in L, x^{(j)} \in L, y^{(i)} \neq y^{(j)} \\ \alpha_{i,j} \gamma & \text{Otherwise} \end{cases} \]

where \(\gamma \in (0, 1) \) is a decay factor that gives a relatively low confidence to unlabeled data. The LWRW process assumes a random walker travels from \(x^{(i)} \) to \(x^{(j)} \) with probability...
initialized randomly, with \(\alpha \) and \(\gamma \) are the self-loop probabilities. When at least one of the labels \(\alpha \) or \(\gamma \) is unknown, we set the probability \(\frac{1}{z} \sum_{z \in S} f_{\text{aux}}(z) \) to update the compositional representations with optimization details elaborated later.

The general learning algorithm is presented in Algorithm 2. Compositional representations \(x_{c}^{(i)} \) in both \(U \) and \(L \) are initialized randomly, with \(G(\Phi, \Psi, W) \) constructed. Next, it starts a number of iterations. In each iteration, it samples an LWRW sequence \(S \) from the graph starting from a randomly selected node. It uses \(S \) to update the compositional representations with optimization details elaborated later.

D. JOINT OPTIMIZATION

Figure 2 shows the general neural network architecture to optimize Eq. (1) via multi-task learning. For each NC \(x^{(i)} \), RCRL extracts raw features \(F_{r} \) and computes relational representation \(x_{r}^{(i)} \) by multiplying \(M_{r} \). For compositional representation, \(x^{(i)} \) is mapped to \(x_{c}^{(i)} \), which is used to predict its neighbors \(N(x^{(i)}) \). \(x_{r}^{(i)} \) and \(x_{c}^{(i)} \) are jointly fed into a neural network. The model predicts the label \(\tilde{y}(x^{(i)}) \) based on the two sets of features \(x_{r}^{(i)} \) and \(x_{c}^{(i)} \). We re-formulate Eq. (1) as:

\[
\mathcal{J} = - \sum_{x^{(i)} \in L} \sum_{t \in T} I(t = y^{(i)}) \log \Pr(\tilde{y}(x^{(i)}) = t | F_{r}^{(i)}, x_{c}^{(i)})
\]

where \(T \) is the label collection (i.e., four idiomaticity degrees).

In practice, \(\Pr(x^{(i)} | x_{c}^{(i)}) \) is difficult to optimize due to the existence of the normalization factor over all possible values of \(x_{c}^{(i)} \). To speed up the training process, we employ the negative sampling technique for the Skip-gram model [40] to approximate

\[
-\lambda \sum_{S} \sum_{x^{(i)} \in S} \sum_{j=i-1 \text{or } j \neq i} \sum_{t \in T} I(t = y^{(i)}) \log \Pr(x^{(j)} | x_{c}^{(i)})
\]

In this technique, a binary logistic regression classifier is trained to predict whether an arbitrary NC \(x^{(j)} \) is a “neighbor” of the center NC \(x^{(i)} \) via noise-contrastive estimation. The positive samples are generated from \(S \). The negative samples are randomly paired from \(L \cup U \). By minimizing the classification error, the values of compositional representations \(x_{c}^{(i)} \) can be updated. Integrating the compositional learning process into idiomaticity degree classification, the general training algorithm is shown in Algorithm 3. The algorithm converges when the joint loss \(\mathcal{J} \) (with additional regularization terms omitted) does not decrease significantly.

IV. EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to evaluate the effectiveness of the RCRL model over two Chinese NC datasets. We also compare it with several recent approaches to make the convincing conclusion.
Algorithm 3 General Learning Algorithm of RCRL

1: for each $x^{(i)} \in L \cup U$ do
2: Randomly initialize the compositional representation $x_{c}^{(i)}$;
3: if $x^{(i)} \in L$ then
4: Compute raw features $F_{r}^{(i)}$;
5: end if
6: end for
7: Construct the graph $G(\Phi, \Psi, W)$;
8: while not converge do
9: for $i = 1$ to max iteration do
10: Sample a node $x^{(*)} \in \Phi$ from G uniformly;
11: Sample $S = \{x^{(1)}, \cdots, x^{(|S|)}\}$ where $x^{(1)} = x^{(*)}$;
12: Update compositional representations $x_{c}^{(i)}$ by training the negative sampling based classifier;
13: end for
14: Train the idiomaticity prediction classifier over L based on $x_{c}^{(i)}$ and $F_{r}^{(i)}$;
15: end while

A. DATA SOURCE AND EXPERIMENTAL SETTINGS

The Chinese text corpus is obtained by crawling 1.3 million entity pages of Baidu Baike\(^7\), consisting of 1.1 billion words (after Chinese word segmentation). A Skip-gram model \(^8\) is trained over the corpus and the word embeddings are set to 50 dimensions. We filter out incomplete sentences and build a sentence-level inverted index using Apache Lucene. The FudanNLP toolkit \(^9\) is employed for NLP analysis such as Chinese word segmentation, syntactic parsing, etc.

To the best of our knowledge, SemTransCNC \(^2\) is the only Chinese NC dataset of semantic transparency. However, it focuses on how Chinese characters form Chinese words, i.e., word formation. It does not have a clear labeling of idiomaticity degrees as well. For example, this dataset considers how the Chinese word “马虎(carelessness)” is formed by the two Chinese characters “马(horse)” and “虎(tiger)”. Additionally, the linguistic characteristics of Chinese word formations in this dataset are significantly different from the problem w.r.t. Chinese NCs that we consider in this work. Hence, although relevant, this dataset is not suitable for evaluating our task. Another dataset used in existing research is created by Qi et al. \(^3\), which contains Chinese short expressions (not necessarily noun phrases) derived from a sememe knowledge base HowNet\(^8\). This dataset is used for sememe prediction and semantic similarity computation, which is also not suitable evaluating our task.

We construct two new datasets to evaluate the RCRL model. The first dataset is CNCBaike, a subset of entity-category pairs taken from Baidu Baike. 2,500 pairs are randomly selected and sent to a group of native Chinese speakers with sufficient linguistic knowledge to label the idiomaticity degrees. We discard pairs with inconsistent labels across different annotators, and generate the CNCBaike dataset, consisting of 1,330 NCs and their labeled idiomaticity degrees. The second dataset is CNCWeb, consisting of 815 labeled NC pairs. The NCs are extracted from the same corpus, detected by POS rules and methods in \(^{40}\). The annotation process of this dataset is the same as of CNCBaike.

In the experiments, we set the default values of hyperparameters as $k = 500$, $r_a = r_v = 3$, $\tau = 2$, $r_c = 20$ and $p = 16$ for raw feature generation. We randomly partition the CNCBaike dataset into training, development and testing sets, with the ratio as 70%:10%:20%. Because the size of CNCWeb is relatively small, all the pairs in CNCWeb are taken as the testing set with all pairs in CNCBaike as the training set. For LWRW based sampling, we run the algorithm in 5000 iterations with $|S| = 100$. We train the compositional representation learning model with $l = 5$, $\lambda = 0.1$, $\gamma = 0.8$ and dimensions of two representations $d = 50$. We also report how changes of hyper-parameters affect the model performance over the development set in subsequent sections.

B. GENERAL PERFORMANCE COMPARISON

To our knowledge, there is no prior work that directly deals with the prediction of idiomaticity degrees of Chinese NCs. However, our task is closely related to several NLP tasks, such as lexical relation classification, idiom token classification and compositionality analysis of NCs. In this work, we consider the following models as strong baselines:

- **Lexical relation classification**: Three classical distributional models are employed to classify idiomaticity degrees using word embeddings of N_1 and N_2 as features, including the Concat model $\vec{v}(N_1) \oplus \vec{v}(N_2)$, the Sum model $\vec{v}(N_1) + \vec{v}(N_2)$ and Diff model $\vec{v}(N_1) - \vec{v}(N_2)$. They are frequently used as baselines for lexical relation classification \(^{44}\), \(^{45}\). An SVM classifier is employed to predict idiomaticity degrees over these features.

- **Idiom token classification**: It is a recent neural network model for the task of idiom token classification based on word embeddings and lexico-syntactic patterns \(^9\). We train the model for four-way classification of idiomatic-
ity degrees, instead of the two-way classification in the original paper (i.e., idiomatic vs. literal).

- **Compositionality prediction**: We consider two word embedding based models [29], [11] to compute a compositionality score for each NC. Because our task is a classification task, instead of real-value score prediction, we learn threshold-based cuts over the measures using the development set. Using three cuts, we map the learned compositional scores in (0, 1) to four idiomaticity degrees as model prediction results.

- **Raw pattern-based method**: It is an SVM-based classification model based on the proposed pattern-based raw features. We denote it as the Pattern model.

- **Variant of RCRL**: It is a variant of our approach without compositional representations, denoted as RRL.

Experimental results are in Table 3. As seen, distributional lexical relation classification models are not effective for our task, with F1 score generally around 40% to 60%. The most possible cause is that they simply learn the lexical meanings of two nouns within NCs, rather than how the two nouns are related to each other within NCs. A similar phenomenon (called lexical memorization) is also reported in [34] for other supervised relation prediction tasks. In contrast, our RCRL model leverages linguistics-motivated relational representations to learn how nouns with Chinese noun compounds are related to each other. The method [9] has similar performance, compared to the three distributional models.

The compositionality prediction models [29], [11] are most relevant to our task. The performance is still not satisfactory because they do not model how these compositional scores can be mapped to the four idiomaticity degrees. Additionally, the Chinese language characteristics (i.e., specific language patterns) are not considered in these baselines. By comparing the performance of RCRL and its variants Pattern and RRL, we can see that the compositional representations contribute to idiomaticity prediction, increasing the F1 score from 2% to 5%. Compared to all the baselines, the proposed RCRL model improves the performance by a large margin, which clearly proves the effectiveness of RCRL.

C. PARAMETER ANALYSIS

During the raw feature extraction process, we employ the following steps to determine feature values: \(k, p, r_a, r_v, r_c \) and \(\tau \). The choices of \(k \) and \(p \) are mostly related to the size and the quality of the text corpus. We carry out a preliminary experiment to set the default values of \(k \) and \(p \). As for \(k \), we vary the value of \(k \) from \(\{50, 100, 200, 500, 1000, 2000\} \) and randomly select 50 textual patterns as queries to retrieve their corresponding top-k sentences. We find that when \(k \geq 500 \), almost no more sentences that match the search queries can be retrieved. Therefore, \(k \) is set to 500 to guarantee the high recall of sentence retrieval. A similar tuning process is conducted to determine the choice of \(p \). When \(p \) is overly small, the expanded patterns are semantically similar to the original patterns, but the effect of query expansion is limited.

In contrast, a large \(p \) may lead to the “semantic drift” phenomenon. We suggest that a suitable choice over our corpus is \(p = 16 \).

Next, we tune the values of \(r_a, r_v, r_c \) and \(\tau \). To determine which values are the most suitable in an efficient way, we employ a classifier-based trick. Each time after the raw features \(F^{(e)} \) based on a specific parameter configuration are extracted, we directly train a logistic regression classifier for idiomaticity degree prediction using \(F^{(r)} \) over the development set. The macro-averaged F1 score is utilized to measure the “goodness” of parameter settings for feature extraction. The optimal settings are as: \(r_a = r_v = 3, \tau = 2 \) and \(r_c = 20 \). We also report how the changes of parameters affect the performance in Figure 3. We vary one parameter once, while the rest of parameters are fixed to default values.

After raw features are extracted, we tune two parameters of RCRL (i.e., \(\gamma \) and \(d \)). Figure 4(a) and Figure 4(b) illustrate the prediction performance in term of F1 over the development set. We set the default values as \(\gamma = 0.8 \) and \(d = 60 \) and change one parameter each time. From the experiments, we can draw the two conclusions. i) The use of \(\gamma \) in the LWRW process enhances the representation learning of compositionality, mostly because this process considers both training and testing data in a transductive learning setting. iii) When the dimension of representations \(d \) is set to the number close to the dimensions of word embeddings, the model is more accurate.

Additionally, we report how the model performance changes during iterations in Algorithm 3. Each time, we run the compositional representation learning algorithm in 500 iterations, train the idiomaticity degree prediction model and report the F1 score. The result is shown in Figure 4(c). As seen, the F1 score increases steadily when the algorithm iterates. After 4,500 iterations (i.e., the algorithm runs for nine outer loops), the performance becomes stable.

D. ERROR ANALYSIS AND CASE STUDIES

We analyze prediction errors made by our model, with several cases in Table 4. In total, 300 cases are presented to human annotators to determine the underlying causes of such errors. Overall, there exist two types of errors: MDE (Metaphor Detection Error) and LPE (Lack-of-Pattern Error).

MDE accounts for 43.8% of all the prediction errors. This type of errors occurs when the model underestimates idiomaticity degrees of NCs. This is because it is challenging to detect signs of idiomaticity within NCs and use them as features. For example, although “知识青年(sent-down youth)”\(^9\) is idiomatic, patterns such as “有知识的青年(youth with knowledge)”, “没有知识的青年(youth without knowledge)” can be matched, misleading the classifier due to the existence of the auxiliary word “的(de)”. The rest of errors is LPE. RCRL requires the presence of textual patterns to

\(^9\)“Sent-down youth” refers to young, educated people who left urban areas to live and work in rural areas during 1950s until the end of the so-called “Cultural Revolution” in China. It is literally translated as “knowledge youth”.
TABLE 3. Performance summarization of different approaches over two datasets: CNCBaike and CNCWeb.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>CNCBaike</th>
<th>CNCWeb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Precision</td>
<td>Recall</td>
</tr>
<tr>
<td>Sum Model</td>
<td>0.622</td>
<td>0.631</td>
</tr>
<tr>
<td>Concat Model</td>
<td>0.663</td>
<td>0.660</td>
</tr>
<tr>
<td>Diff Model</td>
<td>0.567</td>
<td>0.606</td>
</tr>
<tr>
<td>Model [9]</td>
<td>0.664</td>
<td>0.691</td>
</tr>
<tr>
<td>Model [29]</td>
<td>0.675</td>
<td>0.665</td>
</tr>
<tr>
<td>Model [11]</td>
<td>0.704</td>
<td>0.693</td>
</tr>
<tr>
<td>Pattern</td>
<td>0.770</td>
<td>0.766</td>
</tr>
<tr>
<td>RRL</td>
<td>0.785</td>
<td>0.776</td>
</tr>
<tr>
<td>RCRL</td>
<td>0.801</td>
<td>0.783</td>
</tr>
</tbody>
</table>

FIGURE 3. Tuning of parameters r_a, r_v, r_c, and τ for raw feature extraction.

FIGURE 4. Feature analysis for RCRL.
TABLE 4. Cases of prediction errors by RCRL. Each Chinese NC is accompanied by English literal translation and correct translation. Modifiers of Chinese NCs are underlined with linguistic heads printed in bold.

<table>
<thead>
<tr>
<th>Example</th>
<th>Translation</th>
<th>Predicted</th>
<th>Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>知识青年 (Knowledge Youth)</td>
<td>Sent-down youth</td>
<td>Type I</td>
<td>Type III</td>
</tr>
<tr>
<td>青铜时代 (Bronze Age)</td>
<td>The Bronze Age</td>
<td>Type II</td>
<td>Type III</td>
</tr>
<tr>
<td>邮政编码 (Postal service Coding)</td>
<td>Postal code</td>
<td>Type IV</td>
<td>Type II</td>
</tr>
<tr>
<td>宗教仪式 (Religion Ceremony)</td>
<td>Religious ceremony</td>
<td>Type III</td>
<td>Type II</td>
</tr>
</tbody>
</table>

TABLE 5. Idiomaticity degree distributions of Chinese NCs detected from the Web corpus (%).

<table>
<thead>
<tr>
<th>Method</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
<th>Type IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern</td>
<td>47.2</td>
<td>33.6</td>
<td>15.0</td>
<td>4.2</td>
</tr>
<tr>
<td>RRL</td>
<td>53.1</td>
<td>31.2</td>
<td>14.2</td>
<td>1.5</td>
</tr>
<tr>
<td>RCRL</td>
<td>51.1</td>
<td>34.6</td>
<td>12.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Human Est.</td>
<td>(49.2±1.4)</td>
<td>(38.1±1.5)</td>
<td>(10.8±0.4)</td>
<td>(1.9±1.4)</td>
</tr>
</tbody>
</table>

B. HOW IDIOMATICITY AFFECTS MACHINE TRANSLATION

As shown in the literature [4], the presence of idiomatic expressions may cause significant challenges for machine translation. In this work, we specifically study the relations between language idiomaticity and machine translation accuracies in terms of Chinese NCs. We consider two popular machine translation engines that are widely used in the industry (i.e., Google Translation and Bing Microsoft Translator) to translate Chinese NCs in CNCBaike into English. Because classical metrics such as BLEU aim at evaluating sentence translation qualities, hence they are not suitable for evaluating translation qualities of NCs. Here, we ask human annotators to label the correctness of results and report the accuracies directly, with results reported in Table 6. It is shown that the translation accuracies strongly correlate with idiomaticity degrees. The machine-generated translations of transparent NCs are generally correct, i.e., 98.2% and 97.4% accurate. NCs with higher degrees of idiomaticity have poorer translation results.

In Table 7, we present three cases of translation results generated by the two translation engines, together with their literal and true translation results. We can see that errors occur when machines translate Chinese NCs (especially NCs with cultural-specific meanings) word-by-word, ignoring their idiomatic meanings and indecomposable nature (e.g., “couple lung pieces” for “Mr and Mrs Smith”). In a few cases, the translation engine even gives unexplainable, random outputs (e.g., “becoming” for “citizen-managed teacher”).

This phenomenon indicates that current machine translation models still have difficulty in dealing with idiomatic expressions. The most possible cause is that machine translation systems (either statistical machine translation or neural machine translation that employ attention mechanisms such as [46]) encode word alignments across languages in order to generate translated results. The learning of word alignments ignores the processing of idiomatic expressions, which heavily involve semantic composition of words. We can see that our task has the potential to be combined with other NLP tasks to increase the models’ ability for semantic understanding.

C. EXPERIMENTS OVER THE ENGLISH LANGUAGE FOR COMPOSITIONALITY PREDICTION

Although our work mostly addresses the idiomaticity issue of Chinese NCs, we investigate whether RCRL can be applied...
to the English language. A closely related task in English is to predict the compositionality of NCs. In this paper, we implement a variant of RCRL to address to the NC compositionality prediction task for English, and evaluate it over a widely used dataset Reddy [13]. In the implementation, because we exploit the auxiliary pattern in Chinese for raw feature extraction, we manually translate such pattern into English. The patterns that we use include: “[...]'s [...]'”, “[...]'s [...]'”, “[...]'has [...]'”, etc. The compositional representations are computed using the same approach for Chinese, as it is language-independent. For compositional score prediction, we replace the cross entropy approach for Chinese, as it is language-independent. For compositional representations are computed using the same English. The patterns that we use include: “[...]'of [...]'”, “[...]'is [...]'”, “[...]'has [...]'”, “[...]'which is [...]'”, etc. The compositional representations are computed using the same approach for Chinese, as it is language-independent. For compositional score prediction, we replace the cross entropy approach for Chinese, as it is language-independent. For compositional representations are computed using the same English.

\[J = \sum_{x^{(i)} \in L} \left(\tilde{y}(x^{(i)}, \mathbf{F}_{r}^{(i)}, \mathbf{x}_{c}^{(i)}) - y(x^{(i)}) \right)^2 - \lambda \sum_{S} \sum_{x^{(i)} \in S} \sum_{j=i-l(j \neq i)} \log \Pr(x^{(j)} | x^{(i)}) \]

where \(\tilde{y}(x^{(i)}, \mathbf{F}_{r}^{(i)}, \mathbf{x}_{c}^{(i)}) \) is the predicted compositionality score of the English NC \(x^{(i)} \), given the features \(\mathbf{F}_{r}^{(i)} \) and \(\mathbf{x}_{c}^{(i)} \), \(y(x^{(i)}) \) is the ground-truth compositionality score.

During the testing stage, the prediction scores are evaluated against the ground truth ratings using the Spearman Correlation Coefficient \(\rho \). We follow the exact experimental settings and use the same English text corpus as in [11], with the experimental results presented in Table 8. As seen, our approach has the performance \(\rho = 0.81 \), which outperforms previous methods for NC compositionality prediction (e.g., [13]) and is comparable to two recent state-of-the-art approaches [29], [11]. Therefore, RCRL is not entirely language-specific and can be applied to English as well.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a Relational and Compositional Representation Learning model (RCRL) to predict the idiomaticity degrees of Chinese NCs. The model predicts idiomaticity of Chinese NCs based on relational textual patterns and compositionality analysis via an integrated neural network. We conduct extensive experiments over two datasets to evaluate RCRL. The experimental results show that RCRL outperforms all the baselines. Additionally, the usefulness of RCRL and the roles of idiomaticity prediction of NCs in NLP are illustrated by three studies. Future works include: i) applying our work to the interpretation and machine understanding of Chinese NCs; and ii) extending our method to other languages and lexical units.

REFERENCES

TABLE 6. Machine translation accuracy of Chinese NCs divided into four idiomaticity degrees (%).

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
<th>Type IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Translation</td>
<td>98.2</td>
<td>92.6</td>
<td>75.0</td>
<td>64.2</td>
</tr>
<tr>
<td>Microsoft Translator</td>
<td>97.4</td>
<td>90.2</td>
<td>78.2</td>
<td>58.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chinese NC</th>
<th>Result of Google Translation</th>
<th>Result of Microsoft Translator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bamboo book year</td>
<td>The Annals of Bamboo Books</td>
<td></td>
</tr>
<tr>
<td>Mr and Mrs Smith</td>
<td>Sliced beef and ox organs</td>
<td>in chili sauce</td>
</tr>
<tr>
<td>Couple lungs</td>
<td>Couple lung slices</td>
<td></td>
</tr>
<tr>
<td>Mr and Mrs Smith</td>
<td>Sliced beef and ox organs</td>
<td>in chili sauce</td>
</tr>
</tbody>
</table>

TABLE 8. The performance of NC compositionality prediction in terms of Spearman Correlation Coefficient ρ.

<table>
<thead>
<tr>
<th>Method</th>
<th>Spearman Correlation Coefficient ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model [13]</td>
<td>0.71</td>
</tr>
<tr>
<td>Model [29]</td>
<td>0.80</td>
</tr>
<tr>
<td>Model [11]</td>
<td>0.82</td>
</tr>
<tr>
<td>RCRL</td>
<td>0.81</td>
</tr>
</tbody>
</table>

YAN FAN received the master degree in software engineering from East China Normal University (ECNU) in 2019. She is an algorithm engineer in Alibaba Group. Her research interests include question answering, dialogue systems and the construction and application of knowledge graphs.

XIAOFENG HE received the PhD degree from Pennsylvania State University. He is a professor of computer science with the School of Computer Science and Technology, East China Normal University, China. His research interests include machine learning, data mining, and information retrieval. Prior to joining ECNU, he worked with Microsoft, Yahoo Labs, and Lawrence Berkeley National Laboratory. He is a member of the IEEE.

HONGYUAN ZHA received the PhD degree in scientific computing from Stanford University in 1993. He is a professor with East China Normal University and the School of Computational Science and Engineering, College of Computing, Georgia Institute of Technology. He has been working on information retrieval, machine learning applications, and numerical methods. He received the Leslie Fox Prize (1991, second prize) of the Institute of Mathematics and its Applications, the Outstanding Paper Awards of the 26th International Conference on Advances in Neural Information Processing Systems (NIPS 2013), and the Best Student Paper Award (advisor) of the 34th ACM SIGIR International Conference on Information Retrieval (SIGIR 2011). He once served as an associate editor of IEEE Transactions on Knowledge and Data Engineering.

AOYING ZHOU is a professor with East China Normal University. He is now acting as a vice-director of ACM SIGMOD China and the Database Technology Committee of the China Computer Federation. He is serving as a member of the editorial boards of the VLDB Journal, the WWW Journal, etc. His research interests include data management for data-intensive computing, and memory cluster computing. He is a member of the IEEE.
