MDS Symbol-Pair Repeated-Root Constacyclic Codes of Prime Power Lengths Over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$

H. Q. Dinh1,2, P. Kumam3,4,*, P. Kumam5, S. Satpati6, A. K. Singh7 and W. Yamaka8

1Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam (e-mail: dinhquanghai@tdu.edu.vn)
2Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3KMUTT Fixed Point Research Laboratory, KMUTT Fixed Point Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand (e-mail: poom.kum@kmutt.ac.th)
4Center of Excellence in Theoretical and Computational Science (TaCS-CoE), SCL 802 Fixed Point Laboratory, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand (email: poom.kumam@mail.kmutt.ac.th)
5Department of Applied Mathematics, Indian Institute of Technology (ISM), Dhanbad, India (e-mail: vikey397@gmail.com)
6Department of Applied Mathematics, Indian Institute of Technology (ISM), Dhanbad, India (e-mail: sampurna.satpati@gmail.com)
7Department of Applied Mathematics, Indian Institute of Technology (ISM), Dhanbad, India (e-mail: abhay@iitism.ac.in)
8Centre of Excellence in Econometrics, Faculty of Economics, Chiang Mai University, Chiang Mai 52000, Thailand (e-mail: woraphon.econ@gmail.com)

*Corresponding author: Poom Kumam (e-mail: poom.kum@kmutt.ac.th, poom.kumam@mail.kmutt.ac.th).

ABSTRACT MDS codes have the highest possible error-detecting and error-correcting capability among codes of given length and size. Let p be any prime, and s, m be positive integers. Here, we consider all constacyclic codes of length p^s over the ring $R = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$ ($u^2 = 0$). The units of the ring R are of the form $\alpha + u\beta$ and γ, where α, β, $\gamma \in \mathbb{F}_{p^m}$. We acquire that the $(\alpha + u\beta)$-constacyclic codes of p^s length over R are the ideals $\langle (\alpha x - 1)^j \rangle$, $0 \leq j \leq 2p^s$, of the finite chain ring $R[x]/\langle x^{p^s} - (\alpha + u\beta) \rangle$ and the γ-constacyclic codes of p^s length over R are the ideals of the ring $R[x]/\langle x^{p^s} - \gamma \rangle$ which is a local ring with the maximal ideal $\langle u, x - \gamma \rangle$, but it is not a chain ring. In this paper, we obtain all MDS symbol-pair constacyclic codes of length p^s over R. We deduce that the MDS symbol-pair constacyclic codes are the trivial ideal $\langle 1 \rangle$ and the Type 3 ideal of γ-constacyclic codes for some particular values of p and s. We also present several parameters including the exact symbol-pair distances of MDS constacyclic symbol-pair codes for different values of p and s.

INDEX TERMS Repeated-root codes, constacyclic codes, MDS codes, symbol-pair distance, finite chain ring.

I. INTRODUCTION

Initially, in the theory of error correcting codes, the message communicated in a noisy channel was divided into information units which were called individual symbols, and the operations of reading and writing were performed on these individual symbol. But due to the recent development of emerging technologies, symbol can be written and read in possible overlapping group. This method was first proposed by Cassuto and Blaum [1] in which the outputs (possibly corrupted) produced by a sequence of read operations are overlapping pairs of adjacent symbols, called pair-read symbols. These pair-read symbols were further developed to compute the symbol-pair distances of the generated codes in order to obtain the optimal codes. The method was further advanced by Cassuto and Litsyn [2] in which they studied the pair error coding theory with algebraic cyclic-code constructions and asymptotic bounds on code rates.

After the celebrating result of Cassuto and Blaum [1] and Cassuto and Litsyn [2], symbol-pair read channels gains the attraction of many coding theorists. Chee et al. [5] established the Singleton-type bound on symbol pair codes, and showed that the length of q-ary MDS symbol pair codes are $\Omega(q^2)$ corresponding to the length $O(q)$ of q-ary classical MDS codes. They also constructed infinite families of optimal symbol-pair codes, where the optimality obtained when the maximum distance of the symbol-pair codes meet the Singleton type bound of symbol-pair codes. Maximum distance separable (MDS) codes are optimal in the sense that they have the highest possible error-detecting and error-correcting capability for given code length and code size. This encour-
In particular, Kuri et al. [17] extended the result of Cassuto and Litsyn [3, Th. 10] for the case of simple-root constacyclic codes. Since then symbol-pair distances over constacyclic codes are an interesting topic to study and under scrutiny in series of papers like [6], [10], [12]–[14], [19]. Constacyclic codes play a significant role in coding theory because of their rich algebraic structure and practical implementations. Repeated-root constacyclic codes were first initiated in the most generality by Castagnoli in [4] and Van Lint in [22]. They found that the repeated-root constacyclic codes have a concatenated construction and are asymptotically bad but the optimal repeated-root constacyclic codes still exist, which motivated the researchers to further study these codes.

For \(a = (a_0, a_1, \ldots, a_{n-1}) \) and \(b = (b_0, b_1, \ldots, b_{n-1}) \) where \(\Xi \) is a code alphabet, the symbol-pair distance is defined in [1] as follows:

\[
d_{sp}(a, b) = |i : (a_i, a_{i+1}) \neq (b_i, b_{i+1})|.
\]

Then \(d_{sp}(C) = \min_{a, b \in C, a \neq b} d_{sp}(a, b) \) is the symbol-pair distance of code \(C \). Generally, the determination of symbol-pair distance of a code \(C \) is very difficult. Recently, Dinh et al. computed the Hamming and symbol-pair distances of repeated root constacyclic codes of prime power lengths over \(\mathbb{F}_{p^m} \) in [12] and over \(\mathcal{R} = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m} \) in [14].

In [12], Dinh et al. obtained MDS symbol-pair \(\lambda \)-constacyclic codes of prime power length over \(\mathbb{F}_{p^m} \), by satisfying the Singleton bound of symbol-pair codes. Motivated by the concept, in this paper, we determine all MDS symbol-pair constacyclic codes of length \(p^s \) over the ring \(\mathcal{R} = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m} \).

The paper is organized as follows. In Section 2, we discuss some preliminary results. In Section 3, the MDS symbol-pair constacyclic codes of all length \(p^t \) are identified over the ring \(\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} \). Section 4 contains some examples in which we discuss the parameter of some MDS constacyclic symbol-pair codes for different values of \(p \) and \(s \). We conclude the paper in Section 5.

II. PRELIMINARIES

Let \(\mathcal{R} = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m}, \ u^2 = 0 \) be a finite commutative ring with \(p^{2m} \) elements, where \(p \) is a prime and \(m \) is a positive integer. An ideal generated by one element is called a principal ideal and if all the ideals are principal, then the ring is called principal ideal ring. A local ring is defined if the ring has a unique maximal ideal. Further, a ring is called a chain ring if the set of all ideals of \(R \) is linearly ordered under set-theoretic inclusion. From [11], we have the following proposition for the class of finite commutative rings.

Proposition II.1. [11] Let \(\mathcal{R} \) be a finite commutative ring, then the following conditions are equivalent:

(i) \(\mathcal{R} \) is a local ring and the maximal ideal \(M \) of \(\mathcal{R} \) is principal, i.e., \(M = \langle r \rangle \) for some \(r \in \mathcal{R} \),

(ii) \(\mathcal{R} \) is a local principal ideal ring,

(iii) \(\mathcal{R} \) is a chain ring with ideals \(\langle r_i \rangle, 0 \leq i \leq N(r) \), where \(N(r) \) is the nilpotency of \(r \).

Let \(\lambda \) be an invertible element of \(\mathcal{R} \). The \(\lambda \)-constacyclic shift \(\tau_\lambda \) on \(\mathcal{R}^n \) is defined as

\[
\tau_\lambda(a_0, a_1, \ldots, a_{n-1}) = (\lambda a_{n-1} a_0, \lambda a_{n-2} a_1, \ldots, \lambda a_{n-1} a_{n-2}).
\]

If \(\tau_\lambda(C) = C \), then \(C \) is called a \(\lambda \)-constacyclic code. In the case \(\lambda = 1 \), those \(\lambda \)-constacyclic codes are called cyclic codes, and when \(\lambda = -1 \), then the \(\lambda \)-constacyclic codes are called negacyclic codes.

Consider the polynomial \(c(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_{n-1} x^{n-1} \) in the ring \(\mathcal{R}[x]/(x^n - \lambda) \). The polynomial \(c(x) \) can be used to express the codeword \(c = (c_0, c_1, \ldots, c_n-1) \) of the code \(C \). And \(xc(x) \) corresponds to \(\lambda \)-constacyclic shift of \(c(x) \). We have a well-known result about \(\lambda \)-constacyclic codes.

Proposition II.2. [9], [16], [20] A linear code \(C \) is an ideal of \(\mathcal{R}[x]/(x^n - \lambda) \) if and only if \(C \) is a \(\lambda \)-constacyclic code of length \(n \) over \(\mathcal{R} \).

So, for any invertible element \(\lambda \) of \(\mathbb{F}_{p^m} \), \(\lambda \)-constacyclic codes of length \(p^s \) over \(\mathbb{F}_{p^m} \) are precisely the ideals of \(\mathbb{F}_{p^m}[x]/(x^{p^s} - \lambda) \).

Let \(\alpha, \beta, \gamma \) be non-zero elements of the field \(\mathbb{F}_{p^m} \). In [9], Dinh provided the construction of all constacyclic codes of \(p^s \) length over \(\mathcal{R} \) as follows.

Theorem II.3. [9] Let \(\mathcal{R} \) be a unit of the ring \(\mathcal{R} \), i.e., \(\lambda \) is of the form \(\alpha + u \beta \) or \(\alpha \), where \(0 \neq \alpha, \beta \in \mathbb{F}_{p^m} \).

- If \(\lambda = \alpha + u \beta \), then the ring \(\mathcal{R}[x]/(x^{p^s} - (\alpha + u \beta)) \) is a finite chain ring with maximal ideal \(\langle \alpha x - 1 \rangle \) and \(\langle \alpha x - 1 \rangle^n = \langle \alpha \rangle \). The \(\langle \alpha + u \beta \rangle \)-constacyclic codes of \(p^s \) length over \(\mathcal{R} \) are the ideals \(\langle \alpha x - 1 \rangle \leq j \leq 2p^s \) of the finite chain ring \(\mathcal{R}[x]/(x^{p^s} - (\alpha + u \beta)) \). The number of codewords in each code \(C_j = \langle \alpha x - 1 \rangle \) is \(mp^s(2p^s - j) \).

- If \(\lambda = \gamma \in \mathbb{F}_{p^m} \), then the ring \(\mathcal{R}[x]/(x^{p^s} - \gamma) \) is a local ring with the maximal ideal \(\langle u, x - \gamma_0 \rangle \), but it is not a chain ring. The \(\gamma \)-constacyclic codes of \(p^s \) length over \(\mathcal{R} \), i.e., ideals of the ring \(\mathcal{R}[x]/(x^{p^s} - \gamma) \), are given by four types:

 - Type 1 are the trivial ideals, i.e., \(C = \langle 0 \rangle, \ C = \langle 1 \rangle \). No codewords in these codes are 1 and \(p^{2mp^s} \) respectively.

 - Type 2 are the principal ideals generated by monic polynomials, i.e., \(C_j = \langle u(x - \gamma_0) \rangle \) where \(0 \leq j < p^s - 1 \) in this case, \(|C_j| = mp^s - j \).

 - Type 3 are the principal ideals generated by monic polynomials, i.e., \(C_j = \langle x - \gamma_0 \rangle + u(x - \gamma_0) h(x) \), where \(1 \leq j \leq p^s - 1 \), \(0 < t < j \), and either \(h(x) \) is 0 or \(h(x) \) is a unit in \(\mathbb{F}_{p^m}[x]/(x^{p^s} - \gamma) \). In this case,

 \[
 |C_j| = \begin{cases}
 p^{2mp^s - j}, & \text{if } 1 \leq j \leq p^s - 1 + \lfloor \frac{j}{2} \rfloor \\
 p^{mp^s - t}, & \text{if } p^s - 1 + \lfloor \frac{j}{2} \rfloor < j \leq p^s - 1.
 \end{cases}
 \]
○ Type 4 are the nonprincipal ideals, i.e., \((x - \gamma_0)^3 + u(x - \gamma_0)^3h(x), u(x - \gamma_0)^3\), with \(h(x)\) as in Type 3, deg \(h(x)\) \(\leq k - 1\) and \(k < T\), where \(T\) is the smallest integer such that \(u(x - \gamma_0)^T \in \langle (x - \gamma_0)^2 + u(x - \gamma_0)^2h(x) \rangle\); and \(T = j\), if \(h(x) = 0\), otherwise \(T = \min\{j, p^s - j + t\}\). The cardinality of \(C\) is given by \(|C| = p^{m(2p^s - j - k)}\).

In [21, Section 5], Norton and Sálagane provided the Singleton bound for finite chain ring \(R\) which is given by \(|C| \leq |R|^{n-d(C)+1} + d(C) \leq n - \frac{1}{2} \sum_{j=0}^{\nu-1} (\nu - i)k_i(C) + 1\) where \(\nu\) is the nilpotency index of the fixed generator of the maximal ideal of \(R\) and \(k_i(C)\) are the sizes of blocks of columns in standard form of generator matrix. A line code \(C\) for which \(d(C) = n - k(C) + 1\) and \(k(C) = \frac{1}{\nu} \sum_{j=0}^{\nu-1} (\nu - i)k_i(C)\), is called an MDS code. Since MDS codes have the best error-correcting capabilities, they form an optimal class of codes making it one of the central topics in the study of error-correcting codes. In [5], Chee et al. initiated the study of the Singleton bound for symbol-pair codes over \(\mathbb{F}_{p^m}\). They determined the Singleton bound for any symbol-pair code \(C\) of length \(n\) over \(\mathbb{F}_{p^m}\) with symbol-pair distance \(d_{sp}(C)\) such that \(2 \leq d_{sp}(C) \leq n\), \(|C| \geq p^{m(n-d_{sp}(C)+2)}\) [9, Th. 1]. A symbol-pair code is known as maximum distance separable code (MDS) symbol-pair code if it attains the Singleton bound for symbol-pair codes, i.e., \(|C| = p^{m(n-d_{sp}(C)+2)}\). Singleton bound for symbol-pair codes over the finite chain ring \(R\) is as follows.

Theorem II.4. Let \(C\) be a symbol-pair code over the finite chain ring \(R\) and let \(d_{sp}(C)\) be the minimum symbol-pair distance of \(C\), then \(|C| \leq |R|^{n-d_{sp}(C)+2}\).

Proof. Let \(C\) be a symbol-pair code over the finite chain ring \(R\). By deleting the last \(d_{sp}(C) - 2\) coordinates from all the codewords of \(C\), we observe that any \(d_{sp}(C) - 2\) consecutive coordinates contribute at most \(d_{sp}(C) - 1\) to the pair-distance. And since \(C\) has pair-distance \(d_{sp}(C)\), the resulting vectors of length \(n - d_{sp}(C) + 2\) remain distinct after deleting the last \(d_{sp}(C) - 2\) coordinates from all codewords. The maximum number of distinct vectors of length \(n - d_{sp}(C) + 2\) over \(R\) is \(|R|^{n-d_{sp}(C)+2}\). Hence, \(|C| \leq |R|^{n-d_{sp}(C)+2}\). \(\-boxed{}\)

Using the results of Theorems II.3 and II.4 and considering the symbol-pair distances of constacyclic codes of length \(p^s\) over \(\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}\) provided in [14], we compute the MDS symbol-pair constacyclic codes of length \(p^s\) over \(\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}\).

III. MDS SYMBOL-PAIR CONSTACYCLIC CODES

In this section, we will use the determination of symbol-pair distance constacyclic codes over \(\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}\) in [14, Sec. 4] to identify all MDS symbol-pair constacyclic codes of length \(p^s\) over \(\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}\).

A. \((\alpha + u\beta)\)-CONSTACYCLIC CODES

Theorem III.1. Let \(C_j = \langle (\alpha x - 1)^j \rangle \subseteq \mathbb{F}_{p^m}\langle x \rangle\) be a \((\alpha + u\beta)\)-constacyclic code of length \(p^s\) over \(R\), for \(j \in \{0, 1, \ldots, 2p^s\}\). Then \(C_j\) is a MDS symbol-pair code if and only if \(j = 0\), then \(d_{sp}(C_j) = 2\).

Proof. For \((\alpha + u\beta)\)-constacyclic codes, we have \(|C| = p^{m(2p^s - j)}\) [9, Th. 4.2]. By Singleton bound, \(C_j\) is the symbol-pair MDS code if and only if \(2p^s - j = 2(p^s - d_{sp}(C_j) + 2)\), i.e., \(j = 2d_{sp}(C_j) - 4\). The symbol-pair distance \(d_{sp}(C_j)\) for all \(j \in \{0, 1, \ldots, 2p^s\}\) is established in [14, Th. 11]. We consider cases according to the range of \(j\).

Case 1: \(0 \leq j \leq p^s\). Then \(d_{sp}(C_j) = 2\), so obviously, MDS symbol-pair code can be obtained when \(j = 0\).

Case 2: \(j = 2p^s - p^s - k + 1\), where \(0 \leq k \leq s - 2\). Then \(d_{sp}(C_j) = 3p^k\), and

\[
\begin{align*}
 j &\geq 2p^s - p^s - k + 2 \\
 &= p^s - k(2p^k - 1) + 1 \\
 &\geq p^2(2p^k - 1) + 2 \\
 &\text{(equality when } k = s - 2\text{, or } k = 0) \\
 &\geq 4(2p^k - 1) + 1 \\
 &\text{(equality when } p = 2\text{, or } k = 0) \\
 &= 6p^k + 2p^k - 3 \\
 &\geq 6p^k - 1 \\
 &\text{(equality when } k = 0) \\
 &> 2d_{sp}(C_j) - 4. \\
\end{align*}
\]

Therefore, no MDS symbol-pair code can be obtained in this case.

Case 3: \(2p^s - p^s - k + 2 \leq j \leq 2p^s - p^s - k + p^s - k - 1\), where \(0 \leq k \leq s - 2\). Then \(d_{sp}(C_j) = 4p^k\), and

\[
\begin{align*}
 j &\geq 2p^s - p^s - k + 2 \\
 &= p^s - k(2p^k - 1) + 2 \\
 &\geq 4(2p^k - 1) + 2 \\
 &\text{(equality when } k = s - 2\text{ and } p = 2\text{, or } k = 0) \\
 &= 8p^k - 2 \\
 &\geq 2d_{sp}(C_j) - 4. \\
\end{align*}
\]

Therefore, no MDS symbol-pair code can be obtained in this case.

Case 4: \(2p^s - p^s - k + \delta p^s - k - 1 + 1 \leq j \leq 2p^s - p^s - k + (\delta + 1)p^s - k - 1\), where \(0 \leq k \leq s - 2\) and \(1 \leq \delta \leq p - 2\). Then
\[d_{sp}(C_j) = 2(\delta + 2)p^k, \]
and
\[j \geq 2p^s - p^{s-k} + \Delta p - \Delta p^k - 1 \]
\[= p^{s-k}(2p^k - 1) + \Delta p^{s-k - 1} + 1 \]
\[\geq p^2(2p^k - 1) + 2p + 1 \]
(equality when \(k = s - 2 \), or \(s = 2 \))
\[\geq (\delta + 2)(2p^k - 1) + \Delta p + 1 \]
(equality when \(\delta = p - 2 \), or \(s = 2 \))
\[= 4(\delta + 2)p^k + 2(\delta + p^k) - 2\Delta - 3 \]
\[\geq 4(\delta + 2)p^k + 2(\delta + 2)p^k - 2\Delta - 3 \]
\[\geq 2d_{sp}(C_j) + 1 \] (equality when \(\delta = 1 \))
\[> 2d_{sp}(C_j) - 4. \]

Therefore, no MDS symbol-pair code can be obtained in this case.

Case 5: \(j = 2p^s - p + \Delta, \) where \(0 \leq \Delta \leq p - 2. \) Then \(d_{sp}(C_j) = (\delta + 2)p^{s-1}, \) and
\[j = 2p^s - p + \Delta \]
\[= (p(2p^s - 1) + \Delta) \]
\[\geq (\delta + 2)(2p^s - 1) + \Delta \]
\[\geq 2d_{sp}(C_j) + 1 \] (equality when \(\delta = p - 2, \) or \(s = 1 \))
\[> 2d_{sp}(C_j) - 4. \]

Therefore, no MDS symbol-pair code can be obtained in this case.

Case 6: \(j = 2p^s - 1. \) Then \(d_{sp}(C_j) = p^s, \) and \(j = 2p^s - 1 = 2d_{sp}(C_j) - 1 \geq d_{sp}(C_j) - 4. \)
Since, \(j > p^s + d_{sp}(C_j) - 2, \) no MDS symbol-pair code can be obtained in this case.

Case 7: \(j = 2p^s. \) Then \(d_{sp}(C_j) = 0, \) and \(j = 2d_{sp}(C_j) + 2p^s > 2d_{sp}(C_j) - 4. \)
Since, \(j > p^s + d_{sp}(C_j) - 2, \) no MDS symbol-pair code exists in this case.

Thus, we obtain only one MDS symbol-pair \((\alpha + u/\beta)\)-constacyclic codes of length \(p^s \) over \(\mathbb{F}_p^m \), i.e., \((1) \).

Now, we consider the case where the unit \(\lambda = \gamma \in \mathbb{F}_p^m \).
From [9], we acquire that for a \(\gamma \)-constacyclic code, there are four types of ideals and the dimension of the code \(C_j \) varies with each ideal. Here, we will discuss the symbol-pair MDS codes for each type of ideal.

B. \(\gamma \)-CONSTACYCLIC CODES

1) **Type 1** (trivial ideals):
If \(C = \{0\} \), then \(|C| = 1 \) and \(d_{sp}(\{0\}) = 0. \) Thus by Singleton bound, \(C \) is a symbol-pair MDS code if and only if \(0 = 2(p^s - d_{sp}(C) + 2) \), i.e., \(p^s = -2 \), which is not possible.

Again, if \(C = \{1\} \), then \(|C| = p^{2mp^s} \) and \(d_{sp}(\{1\}) = 2. \)
Thus by Singleton bound, \(C \) is a symbol-pair MDS code if and only if \(2p^s = 2(p^s - d_{sp}(C) + 2) \), i.e., \(d_{sp}(C) = 2. \)
Thus, MDS symbol-pair codes for trivial ideals is \((1) \).

2) **Type 2** (principal ideals generated by nonmonic polynomial):
Here, we have \(C_j = \langle u(x - \gamma_0)^j \rangle \), where \(0 \leq j \leq p^s - 1 \) and \(|C| = p^{m(p^s - j)}. \) Thus by Singleton bound, \(C_j \) is a symbol-pair MDS code if and only if \(p^s - j = 2p^s - 2d_{sp}(C_j) + 4, \) i.e., \(j = 2d_{sp}(C_j) - p^s - 4. \) Hence, follows the theorem.

Theorem III.2. Let \(C_j = \langle u(x - \gamma_0)^j \rangle \subseteq \mathbb{F}[x]/(x^p - \gamma) \)
be a \(\gamma \)-constacyclic code of length \(p^s \) over \(\mathbb{F}_p \), where \(j \in 0, 1, \ldots, p^s - 1. \) Then no MDS symbol-pair constacyclic code exists.

Proof. We get MDS code for \(j = 2d_{sp}(C_j) - p^s - 4. \) The symbol-pair distance \(d_{sp}(C_j) \) for all \(\kappa \in \{1, \ldots, p^s - 1\} \) of type 2 \(\gamma \)-constacyclic code is established in [14, Th. 12]. Now, we consider the cases according to the range of \(j \).

Case 1: \(j = 0, \) then \(d_{sp}(C_j) = 2, \) and \(j = 2d_{sp}(C_j) - 4 > 2d_{sp}(C_j) - p^s - 4. \) Thus, no MDS symbol-pair constacyclic code exists in this case.

Case 2: \(j = p^s - p^{s-k} + 1, \) where \(0 \leq k \leq s - 2. \) Then \(d_{sp}(C_j) = 3p^k, \) and
\[j = p^s - p^{s-k} + 1 \]
\[\geq p^s - k(2p^k - 1) - p^s + 1 \]
\[\geq 2(2p^k - 1) - p^s + 1 \] (equality when \(k = s - 2, \) or \(s = 2 \))
\[\geq 4(2p^k - 1) - p^s + 1 \] (equality when \(p = 2 \))
\[= 2d_{sp}(C_j) - p^s + 2p^k - 3 \]
\[\geq 2d_{sp}(C_j) - p^s - 1 \] (equality when \(k = 0 \))
\[> 2d_{sp}(C_j) - p^s - 4. \]

Since, \(j > 2d_{sp}(C_j) - p^s - 4, \) no MDS symbol-pair constacyclic code exists in this case.

Case 3: \(p^s - p^{s-k} + 2 \leq j \leq p^s - p^{s-k} + p^{s-k-1}, \) where \(0 \leq k \leq s - 2. \)
Then \(d_{sp}(C_j) = 4p^k, \) and
\[j = p^s - p^{s-k} + 2 \]
\[= p^{s-k}(2p^k - 1) - p^s + 2 \]
\[\geq 2(2p^k - 1) - p^s + 2 \] (equality when \(k = s - 2, \) or \(s = 2 \))
\[\geq 4(2p^k - 1) - p^s + 2 \] (equality when \(p = 2 \))
\[= 2d_{sp}(C_j) - p^s - 2 \]
\[> 2d_{sp}(C_j) - p^s - 4. \]

Since, \(j > 2d_{sp}(C_j) - p^s - 4, \) no MDS symbol-pair constacyclic code can exist in this case.

Case 4: \(p^s - p^{s-k} + \delta p^{s-k - 1} + 1 \leq j \leq p^s - p^{s-k} + (\delta + 1)p^{s-k - 1}, \) where \(0 \leq k \leq s - 2 \) and \(1 \leq \delta \leq p - 2. \) Then
Since, $j > 2d_{sp}(C) - p^s - 4$, no MDS symbol-pair constacyclic code exists in this case.

Case 5: $j = p^s - p + \delta$, where $0 \leq \delta \leq p - 2$. Then $d_{sp}(C) = (\delta + 2)p^{s-1}$, and

\[
j = p^s - p + \delta = p^s - p^\delta - 1 - p^\delta + \delta \quad \text{(equality when } \delta = p - 2) \]

\[
= 2(\delta + 2)p^{s-1} - p^\delta - 2 \]

\[
= 2d_{sp}(C) - p^\delta - 2 \]

\[
> 2d_{sp}(C) - p^s - 4.
\]

Since, $j > 2d_{sp}(C) - p^s - 4$, no MDS symbol-pair constacyclic code exists in this case.

Case 6: $j = p^s - 1$. Then $d_{sp}(C) = p^s$, and $j = 2p^s - p^s - 1 = 2d_{sp}(C) - p^s - 1 > 2d_{sp}(C) - p^s - 4$. Thus, no MDS symbol-pair constacyclic code exists in this case.

Hence, MDS symbol-pair code does not exist for γ-constacyclic codes of Type 2. This completes the proof. \(\square\)

3) Type 3 (principal ideals generated by monic polynomial):

Here, we have $C_j = \langle(x - \gamma_0)^{j} + u(x - \gamma_0)^{t}h(x)\rangle$, where $1 \leq j \leq p^s - 1$, $0 \leq t < j$, and either $h(x)$ is 0 or a unit in $F_{p^m}[x]/(x^p - \gamma_j)$. Thus, we get the following two cases:

Case 1: When $h(x)$ is 0 then, $|C_j| = p^{2m(p^s - j)}$. Thus by Singleton bound, C_j is a symbol-pair MDS code if and only if $p^s - j = p^s - d_{sp}(C_j) + 2$, i.e., $d_{sp}(C_j) = 2$. Hence, the MDS symbol-pair codes for Type 2 ideals are similar to the MDS λ-constacyclic symbol-pair codes over F_{p^m}. Hence, we have the following theorem:

Theorem III.3. Let $C_j = \langle(x - \gamma_0)^{j} + u(x - \gamma_0)^{t}h(x)\rangle \subseteq F_{p^m}[x]/(x^p - \gamma_j)$ be a γ–constacyclic code of length p^s over R, for $j \in 1, \ldots, p^s - 1$. Then C_j is a MDS symbol-pair code if and only if one of the following conditions holds:

- If $s = 1$, then $j = \delta$, for $0 \leq \delta \leq p - 2, \text{ then } d_{sp}(C_j) = \delta + 2$
- If $s \geq 2$, then
 - $j = 1, \text{ then } d_{sp}(C_j) = 3$
 - $j = 2, \text{ then } d_{sp}(C_j) = 4$
 - $s = 2, p = 3, j = 4, \text{ then } d_{sp}(C_j) = 6$
 - $j = p^s - 2, \text{ then } d_{sp}(C_j) = p^s$

By the above theorem, we can represent the symbol-pair distance $d_{sp}(C_j)$ for all $j \in \{1, \ldots, p^s - 1\}$ of type 3 λ-constacyclic code is established in [14, Th. 12]. We consider cases according to the range of j.

Case 2: When $h(x)$ is a unit $[9,10]$, then,

\[
|C_j| = \begin{cases}
p^{2m(p^s - j)}, & \text{if } 1 \leq j \leq p^{s-1} + \left\lfloor \frac{j}{2} \right\rfloor \\
p^{m(p^s - t)}, & \text{if } p^{s-1} + \left\lfloor \frac{j}{2} \right\rfloor < j \leq p^s - 1.
\end{cases}
\]

Therefore, when $1 \leq j \leq p^{s-1} + \left\lfloor \frac{j}{2} \right\rfloor$, MDS symbol-pair constacyclic codes can be obtained when $j = d_{sp}(C_j) - 2$, which is similar to the result in case 1 but $j \leq p^{s-1} + \left\lfloor \frac{j}{2} \right\rfloor$, i.e., when $s = 1, j = 1$ and when $s \geq 2, j \geq 2$. Hence, we conclude the following theorem:

Theorem III.4. Let $C_j = \langle(x - \gamma_0)^{j} + u(x - \gamma_0)^{t}h(x)\rangle \subseteq F_{p^m}[x]/(x^p - \gamma_j)$ be a γ–constacyclic code of length p^s over R, for $j \in 1, \ldots, p^s - 1$. Then C_j is a MDS symbol-pair code if and only if one of the following conditions holds:

- If $s = 1$, then $j = 1, \text{ then } d_{sp}(C_j) = 3$
- If $s \geq 2$, then
 - $j = 2, \text{ then } d_{sp}(C_j) = 4$
 - $s = 2, p = 3, j = 4, \text{ then } d_{sp}(C_j) = 6$
 - $j = p^s - 2, \text{ then } d_{sp}(C_j) = p^s$

When $p^{s-1} + \left\lfloor \frac{j}{2} \right\rfloor < j \leq p^s - 1$, i.e., when $0 \leq t < 2j - 2p^{s-1}$, MDS symbol-pair constacyclic codes can be obtained when $j = 2d_{sp}(C_j) - p^s - 4$, i.e., when $2j - 2p^{s-1} > 2d_{sp}(C_j) - p^s - 4$. In the following theorem we are going to discuss the case when $2j > 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4$.

Theorem III.5. Let $C_j = \langle(x - \gamma_0)^{j} + u(x - \gamma_0)^{t}h(x)\rangle \subseteq F_{p^m}[x]/(x^p - \gamma_j)$ be a γ–constacyclic code of length p^s over R, for $j \in 1, \ldots, p^s - 1$. Then C_j is a MDS symbol-pair code if and only if one of the following conditions holds:

- If $s \geq 1$ and $p \geq 5, \text{ then }$
 - $j = 2^{s-1}, \text{ then } d_{sp}(C_j) = p^s$
 - $j = p^s - 2, \text{ then } d_{sp}(C_j) = p^s$
- If $s \geq 2, \text{ then }$
 - $j = 2^{s-1}, \text{ then } d_{sp}(C_j) = 2^s$
 - $j = 3^{s-1}, \text{ then } d_{sp}(C_j) = 3^s$
 - $j = 3^{s-2}, \text{ then } d_{sp}(C_j) = 3^s$
- If $s \geq 3, \text{ then }$
 - $j = 2^{s-3}, \text{ then } d_{sp}(C_j) = 2 \cdot 2^{s-2}$
 - $j = 3^{s-5}, \text{ then } d_{sp}(C_j) = 2 \cdot 3^{s-1}$

Proof. Here, the MDS symbol-pair constacyclic code can be obtained if and only if $2j > 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4$ and $t = 2d_{sp}(C_j) - p^s - 4 \geq 0$. When $p = 2$, then the condition for a symbol-pair constacyclic code to be MDS becomes $2j > 2d_{sp}(C_j) - 4$ and $t = 2d_{sp}(C_j) - 2^s - 4 \geq 0$. The symbol-pair distance $d_{sp}(C_j)$ for all $j \in \{1, \ldots, p^s - 1\}$ of type 3 λ-constacyclic code is established in [14, Th. 12].
Case 1: Here, \(j = p^s - p^{s-k} + 1 \), where \(0 \leq k \leq s - 2 \). And \(d_{sp} = 3p^k \), then
\[
2j = 2p^s - 2p^{s-k} + 2
\]
\[
= 2p^{s-k}(p^k - 1) + 2
\]
\[
\geq 2p^2(p^k - 1) + 2 \quad (\text{equality when } k = s - 2 \text{ or } k = 0).
\]
Now, we consider the following sub-cases:

Subcase 1.1: When \(p = 2 \), we get
\[
2j \geq 8(p^k - 1) + 2
\]
\[
= 6p^k + 2p^k - 6
\]
\[
= 2d_{sp}(C_j) - 4 + 2p^k - 2
\]
Now, \(2j > 2d_{sp}(C_j) - 4 \) if and only if \(2p^k - 2 > 0 \), i.e., \(k \geq 1 \). Thus, equality occurs when \(k = s - 2, k \geq 1 \) and \(p = 2 \) and we have \(t = 2d_{sp}(C_j) - 2s - 4 = 2s - 4 \). Now, \(2s - 4 \geq 0 \), i.e., \(s \geq 3 \), satisfying the previous condition. Therefore, MDS symbol-pair constacyclic code is obtained when \(k = s - 2, k \geq 1, s \geq 3 \) and \(d_{sp}(C_j) = 3 \cdot 2s - 2 \), where \(s \geq 3 \).

Subcase 1.2: When \(p \geq 3 \), we get
\[
2j \geq 18p^k - 16 \quad (\text{equality when } p = 3)
\]
\[
= 6p^k + 12p^k - 16
\]
\[
= 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 + p^{s-1}(p - 2) + 12p^k - 12
\]
\[
\geq 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 + p^{s-1}(p - 2)
\]
\[
(\text{equality when } k = 0)
\]
\[
> 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4
\]
Here, \(2j > 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 \), with equality \(p = 3 \) and \(k = s - 2 \). Thus we have \(t = 2 \cdot 3^{k+1} - 3^s - 4 = -3^s - 4 < 0 \), i.e., a contradiction, since \(t \geq 0 \). Thus, we can not obtain any MDS symbol-pair constacyclic code in this case.

Case 2: Here, \(p^s - p^{s-k} + 2 \leq j \leq p^s - p^{s-k} + p^{s-k-1} \), where \(0 \leq k \leq s - 2 \). And \(d_{sp} = 3p^k \). We consider \(j = p^s - p^{s-k} + r \), where \(2 \leq r \leq p^{s-k-1} \), and we get
\[
2j = 2p^s - 2p^{s-k} + 2r
\]
\[
= 2p^{s-k}(p^k - 1) + 2r
\]
\[
\geq 2p^2(p^k - 1) + 2r \quad (\text{equality when } k = s - 2 \text{ or } k = 0).
\]
Now, we consider the following sub-cases:

Subcase 2.1: When \(p = 2 \), we get
\[
2j \geq 8p^k + 2r - 8
\]
\[
= 2d_{sp}(C_j) - 4 + 2r - 4.
\]
Now, \(2j > 2d_{sp}(C_j) - 4 \) if and only if \(2r - 4 > 0 \), i.e., if \(r > 2 \), which is a contradiction, since for \(p = 2 \) and \(k = s - 2 \), \(r = 2 \). Thus, no MDS symbol-pair constacyclic code can be obtained in this case.

Subcase 2.2: When \(p \geq 3 \), we get
\[
2j \geq 18p^k + 2r - 18 \quad (\text{equality when } p = 3)
\]
\[
= 8p^k + 10p^k + 2r - 18
\]
\[
= 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 + p^{s-1}(p - 2) + 10p^k + 2r - 14
\]
\[
\geq 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 + p^{s-1}(p - 2)
\]
\[
(\text{equality when } k = 0 \text{ and } r = 2)
\]
\[
> 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4
\]
Thus, \(2j > 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 \) with equality \(k = s - 2, p = 3 \). Then \(t = 8 \cdot 3^k - 3^s - 4 = -3^s - 4 < 0 \), which is contradiction, since \(t \geq 0 \). Thus, no MDS symbol-pair constacyclic code can be obtained in this case.

Case 3: \(p^s - p^{s-k} + \delta p^{s-k-1} + 1 \leq j \leq p^s - p^{s-k} + (\delta + 1)p^{s-k-1} \), where \(0 \leq k \leq s - 2 \) and \(1 \leq \delta \leq p - 2 \). Then \(d_{sp} = 2(\delta + 2)p^k \). We consider \(j = p^s - p^{s-k} + \delta p^{s-k-1} + r \), where \(1 \leq r \leq p^{s-k-1} - 1 \), and we get
\[
2j = 2p^s - 2p^{s-k} + 2\delta p^{s-k-1} + 2r
\]
\[
= 2p^{s-k}(p^k - 1) + 2\delta p^{s-k-1} + 2r
\]
\[
\geq 2p^2(p^k - 1) + 2\delta p + 2r \quad (\text{equality when } k = s - 2 \text{ or } k = 0)
\]
\[
\geq 2(\delta + 2)p(p^k - 1) + 2\delta p + 2r
\]
\[
(\text{equality when } \delta = p - 2)
\]
\[
= 2(\delta + 2)p^{k+1} - 4p + 2r.
\]
Now, we consider two sub-cases:

Subcase 3.1: When \(p = 2 \), we get
\[
2j \geq 4(\delta + 2)p^{k+1} + 2r - 8
\]
\[
= 2d_{sp}(C_j) - 4 + 2r - 4.
\]
Now, \(2j > 2d_{sp}(C_j) - 4 \) if and only if \(2r - 4 > 0 \), i.e., if \(r > 2 \), which is a contradiction, since for \(p = 2 \) and \(k = s - 2 \), \(1 \leq r \leq 2 \). Thus, no MDS symbol-pair constacyclic code can be obtained in this case.

Subcase 3.2: When \(p \geq 3 \), we get
\[
2j \geq 6(\delta + 2)p^{k+1} + 2r - 12 \quad (\text{equality when } p = 3)
\]
\[
= 4(\delta + 2)p^k + 2(\delta + 2)p^{k+1} + 2r - 12
\]
\[
= 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 + p^{s-1}(p - 2) + 2(\delta + 2)p^k + 2r - 8
\]
\[
\geq 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 + p^{s-1}(p - 2)
\]
\[
(\text{equality when } k = 0, \delta = 1 \text{ and } r = 1)
\]
\[
> 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4.
\]
Thus, \(2j > 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 \) with the equality \(k = s - 2, p = 3 \). Then \(t = 12p^k - p^s - 2 \geq 0 \), i.e., \(3^{s-1} \geq 4 \), i.e., \(s \geq 3 \). Thus, MDS symbol-pair constacyclic codes can be obtained at \(j = 3^s - 5 \) and \(d_{sp}(C_j) = 2 \cdot 3^{s-1} \), where \(s \geq 3 \).
Case 4: \(j = p^s - p + \delta \), where \(0 \leq \delta \leq p - 2 \). Then \(d_{sp} = 2(\delta + 2)p^{s-1} \) and,
\[
2j = 2p^s - 2p + 2 \delta \\
= 2p(p^{s-1} - 1) + 2 \delta \\
\geq 2(\delta + 2)(p^{s-1} - 1) + 2 \delta \quad \text{(equality when } \delta = p - 2) \\
= 2(\delta + 2)p^{s-1} - 4 \\
= 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 + p^{s-1}(p - 2) \\
\geq 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 \quad \text{(equality when } \delta = p - 2)
\]
Thus, \(2j > 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 \) with the equality \(\delta = p - 2 \) and \(p \geq 3 \). Now, \(t = p^s - 4 \geq 0 \), i.e., when \(p = 3, s \geq 2 \) and when \(p \geq 5, s \geq 1 \). Thus MDS symbol-pair constacyclic code exist when \(j = 3^s - 2 \), \(d_{sp}(C_j) = 3^s \), where \(s \geq 2 \) and \(j = p^s - 2 \), \(d_{sp}(C_j) = p^s \), where \(p \geq 5, s \geq 1 \).

Case 5: Here, \(j = p^s - 1 \). Then \(d_{sp} = p^s \) and,
\[
2j = 2p^s - 2 \\
= 2d_{sp}(C_j) - p^{s-1}(p - 2) + 2 \\
\geq 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 \n\]
Now, \(2j > 2d_{sp}(C_j) - p^{s-1}(p - 2) - 4 \) and MDS symbol-pair constacyclic codes can be obtained if \(t = p^s - 4 \geq 0 \), i.e., when \(p = 2, s \geq 2 \), when \(p = 3, s \geq 2 \) and when \(p \geq 5, s \geq 1 \).

This completes the proof.

4) Type 4 (nonprincipal ideals):
Here, we have \(C = ((x-\gamma_0)^j + u(x-\gamma_0)^s)h(x), u(x-\gamma_0)^s \), where \(1 \leq j \leq p^s - 1 \), \(0 \leq t < j \), and either \(h(x) \) is either 0 or a unit in \(\mathbb{F}_{p^m}[x]/(x^{p^m} - x) \), \(\deg(h) \leq \kappa - t - 1 \), and
\[
\kappa < T = \begin{cases} j, & \text{if } h(x) = 0 \\ \min\{j, p^s - j + t\}, & \text{if } h(x) \neq 0 \end{cases}
\]
In this case, \(|C| = p^{m(2p^j - j - \kappa)} \). Thus by Singleton bound, \(C \) is a symbol-pair MDS code if and only if \(2p^s - j - \kappa = 2(p^s - d_{sp}(C) + 2) \), i.e., \(\kappa = 2d_{sp}(C) - 4 - j \). Let \(j = p^s - m \), where \(1 \leq m \leq p^s - 1 \). Thus, the condition for \(C \) to be a symbol-pair MDS constacyclic code becomes \(\kappa = 2d_{sp}(C) - 4 - p^s + m \).

Hence, we can conclude the following theorem:

Theorem III.6. Let \(C = ((x-\gamma_0)^j + u(x-\gamma_0)^s)h(x), u(x-\gamma_0)^s \) \(\subseteq \mathbb{F}_{p^m}[x]/(x^{p^m} - x) \) be a \(\gamma \)-constacyclic code of length \(p^s \) over \(\mathcal{R} \), for \(j \in 1, \ldots, p^s - 1 \), \(0 \leq t < j \), and either \(h(x) \) is either 0 or a unit in \(\mathbb{F}_{p^m}[x]/(x^{p^m} - x) \), \(\deg(h) \leq \kappa - t - 1 \) and \(\kappa < T \), where
\[
T = \begin{cases} j, & \text{if } h(x) = 0 \\ \min\{j, p^s - j + t\}, & \text{if } h(x) \neq 0 \end{cases}
\]
Then, no MDS symbol-pair constacyclic code exists.

Proof. We get MDS code for \(\kappa = 2d_{sp}(C) - 4 - p^s + m \), where \(1 \leq m \leq p^s - 1 \). The symbol-pair distance \(d_{sp}(C) \) for all \(\kappa \in \{1, \ldots, p^s - 1\} \) of type 4 \(\lambda \)-constacyclic code is established in [14, Th. 12]. Now, we consider the cases according to the range of \(\kappa \).

Case 1: \(\kappa = p^s - p^s - k + 1 \), where \(0 \leq k \leq s - 2 \). Then \(d_{sp}(C) = 3p^k \), and
\[
\kappa = p^s - p^s - k + 1 \\
= p^s - k(2p^k - 1) - p^s + 1 \\
\geq 2(p^k - 1) - p^s + 1 \quad \text{(equality when } k = s - 2, \text{ or } s = 2) \\
\geq 4(2p^k - 1) - p^s + 1 \quad \text{(equality when } p = 2) \\
\geq 2d_{sp}(C) - p^s + 2p^k - 3 \\
\geq 2d_{sp}(C) - p^s - 1 \quad \text{(equality when } k = 0)
\]
Now, \(\kappa \geq 2d_{sp}(C) - 4 - p^s + m \) if and only if \(3 \geq m \) i.e., equality when \(m = 3 \). Thus, equality occurs when \(p = 2, k = s - 2, i.e., \(\kappa = 2^s - 3 \) and \(j = 2^s - 3 \), which is a contradiction, since \(\kappa < j \). Thus, no MDS symbol-pair constacyclic code exists in this case.

Case 2: \(p^s - p^s - k + 2 \leq \kappa \leq p^s - p^s - k + p^s - k - 1 \), where \(0 \leq k \leq s - 2 \). Then \(d_{sp}(C) = 4p^k \), and
\[
\kappa = p^s - p^s - k + 2 \\
= p^s - k(2p^k - 1) - p^s + 2 \\
\geq 2(p^k - 1) - p^s + 2 \quad \text{(equality when } k = s - 2, \text{ or } s = 2) \\
\geq 4(2p^k - 1) - p^s + 2 \quad \text{(equality when } p = 2) \\
\geq 2d_{sp}(C) - p^s - 2
\]
Now, \(\kappa \geq 2d_{sp}(C) - 4 - p^s + m \) if and only if \(2 \geq m \) i.e., equality when \(m = 2 \). Thus, equality occurs when \(p = 2, k = s - 2, i.e., \(\kappa = 2^s - 2 \) and \(j = 2^s - 2 \), which is a contradiction, since \(\kappa < j \). Thus, no MDS symbol-pair constacyclic code can exist in this case.

Case 3: \(p^s - p^s - k + \delta p^s - k - 1 + 1 \leq \kappa \leq p^s - p^s - k + (\delta + 1)p^s - k - 1 \), where \(0 \leq k \leq s - 2 \) and \(1 \leq \delta \leq p - 2 \). Then \(d_{sp}(C) = 2(\delta + 2)p^k \), and
\[
\kappa \geq p^s - p^s - k + \delta p^s - k - 1 + 1 \\
= p^s - k(2p^k - 1) - p^s + \delta p^s - k - 1 \\
\geq p^2(2p^k - 1) - p^s + \delta + 1 \quad \text{(equality when } k = s - 2, \text{ or } s = 2) \\
\geq (\delta + 2)^2(2p^k - 1) - p^s + \delta(\delta + 2) + 1 \quad \text{(equality when } \delta = p - 2) \\
\geq 2(\delta + 1)(\delta + 2)p^k - p^s + 2(\delta + 2)(p^k - 1) + 1 \\
\geq 4(\delta + 2)p^k - p^s + 6(p^k - 1) + 1 \quad \text{(equality when } \delta = 1) \\
\geq 2d_{sp}(C) - p^s + 1 \quad \text{(equality when } \delta = 0)
\]
Now, \(\kappa \geq 2d_{sp}(C) - 4 - p^s + m \) if and only if \(5 \geq m \) i.e., equality when \(m = 5 \). Thus, equality occurs when \(\delta = 1, p = 3, k = 0, s = 2, m = 5, i.e., \(\kappa = 4 \) and \(j = 4 \), which
is a contradiction. Thus, no MDS symbol-pair constacyclic code exists in this case.

Case 4: \(\kappa = p^s - p + \delta \), where \(0 \leq \delta \leq p - 2 \). Then \(d_{sp}(C) = (\delta + 2)p^{s-1} \), and

\[
\kappa = p^s - p + \delta = p(2p^{s-1} - 1) - p^s + \delta \\
\geq (\delta + 2)(2p^{s-1} - 1) - p^s + \delta \quad \text{(equality when } \delta = p - 2) \\
= 2(\delta + 2)p^{s-1} - p^s - 2 \\
= 2d_{sp}(C) - p^s - 2.
\]

Now, \(\kappa \geq 2d_{sp}(C) - 4 - p^s + m \) if and only if \(2 \geq m \) i.e., equality when \(m = 2 \). Thus, equality occurs when \(\delta = p - 2 \), i.e., when \(\kappa = p^s - 2 \) and \(j = p^s - 2 \). Thus, no MDS symbol-pair constacyclic code exists in this case.

Case 5: \(\kappa = p^s - 1 \). Then \(d_{sp}(C) = p^s \), and \(\kappa = 2p^s - p^s - 1 = 2d_{sp}(C) - p^s - 1 \).

Now, \(\kappa \geq 2d_{sp}(C) - p^s + m - 4 \) if and only if \(3 \geq m \) i.e., \(m = 3 \). Thus, \(j = p^s - 3 < \kappa \), which is a contradiction. Thus, no MDS symbol-pair constacyclic code exists in this case.

Hence, MDS symbol-pair code does not exist for \(\gamma \)-constacyclic codes of Type 4. This completes the proof. \(\square \)

Consequently, we have the list of all MDS symbol-pair constacyclic codes of length \(p^s \) over \(R = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m} \).

Theorem III.7. All MDS symbol-pair \(\lambda \)-constacyclic codes of length \(p^s \) over \(R \) are determined as follows:

- \((\alpha + u\beta)\)-constacyclic codes: \(C = \langle (\alpha x - 1)^j \rangle \subseteq \mathbb{F}_{p^m}[x] \), \(0 \leq j \leq 2p^s \). Then \(C \) is a MDS symbol-pair constacyclic code if and only if \(j = 0 \), i.e., \(\langle 1 \rangle \), in such case \(d_{sp}(C) = 2 \).

- For \(\gamma \)-constacyclic codes, there are four types of ideals:
 - Type 1 (trivial ideals): \(\langle 1 \rangle \) is the only symbol-pair constacyclic code with \(d_{sp}(C) = 2 \).
 - Type 2 (principal ideals generated by nonmonic polynomial): \(C = \langle u(x-\gamma_0)^j \rangle \), where \(0 \leq j \leq p^s - 1 \). No MDS symbol-pair constacyclic codes can be obtained in this case.
 - Type 3 (principal ideals generated by monic polynomial): \(C = \langle (x-\gamma_0)^j + u(x-\gamma_0)^t \rangle \), where \(1 \leq j \leq p^s - 1 \), \(0 \leq t < j \), and \(h(x) \) is 0 or a unit in \(\mathbb{F}_{p^m}[x] \). When \(h(x) = 0 \), then \(C \) is a MDS symbol-pair code if and only if \(j \) satisfies one of the following conditions holds:
 - \(j = 1, \) then \(d_{sp}(C) = j + 2 \).
 - \(j = 2, \) then \(d_{sp}(C) = j + 2 \).
 - Type 4 (nonprincipal ideals): \(C = \langle (x-\gamma_0)^j + u(x-\gamma_0)^t \rangle \), where \(1 \leq j \leq p^s - 1 \), \(0 \leq t < j \), and \(h(x) \) is either 0 or a unit in \(\mathbb{F}_{p^m}[x] \). When \(h(x) = 0 \), then \(C \) is a MDS symbol-pair code if and only if one of the following conditions holds:
 - \(j = 1 \), then \(d_{sp}(C) = j + 2 \).
 - \(j = 2, \) then \(d_{sp}(C) = j + 2 \).

IV. EXAMPLES

In this section, we present some examples of constacyclic codes of length \(p^s \) over \(\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} \).

Example IV.1. Consider the ring \(\mathbb{F}_2 + u\mathbb{F}_2 \), where \(p = 2 \), \(m = 1 \). The units in the ring \(\mathbb{F}_2 + u\mathbb{F}_2 \) of the form \(\alpha + u\beta \) is \(1 + u \) and of the form \(\gamma \) is \(1 \). For \((1 + u) \)-constacyclic codes, the generators are of the form \(\langle (x-1)^j \rangle \), where \(0 \leq j \leq 2^{s+1} \). The only MDS symbol-pair constacyclic codes in this case has the parameters \(\langle 2^s, 4^2, 2 \rangle \) with the Singleton bound \(j = 2d_{sp}(C) - 4 \).

We obtain cyclic codes corresponding to the unit \(\gamma = 1 \). Different generators of the cyclic codes and their corresponding conditions to be MDS symbol-pair codes are given as follows:

- **Type 1:** \(\langle 0 \rangle \), \(\langle 1 \rangle \). For these codes the condition for MDS code is given by \(p^s = d_{sp}(C) - 2 = d_{sp}(C) \).
 - As mentioned in Section 3, the only MDS symbol-pair constacyclic codes in this case is \(\langle 1 \rangle \) with the parameters \(\langle 2^s, 4^2, 2 \rangle \).
- **Type 2:** \(\langle u(x-1)^j \rangle \), where \(0 \leq j \leq 2^s - 1 \). The condition for MDS code is given by \(j = 2d_{sp}(C) - p^s - 4 \).
MDS symbol-pair constacyclic codes are non-existent in this case.

- **Type 3:** \((x - 1)^j + u(x - 1)^j h(x)\), where \(1 \leq j \leq 2^n - 1, 0 \leq t < j,\) and either \(h(x) = 0\) or \(h(x)\) is a unit in \(\mathbb{F}_p[x]/(x^{2^n - 1})\). For \(h(x) = 0\), the MDS code condition is given by \(j = 2 d_{sp}(C_d) - 1\). And if \(h(x)\) is unit, the MDS code condition are \(j = d_{sp}(C_d) - 1\) when \(1 \leq j \leq 2^n - 1 + \left\lfloor \frac{t}{2} \right\rfloor\) and \(t = 2 d_{sp}(C_d) - p - 4\), when \(p + 1 \leq \left\lfloor \frac{t}{2} \right\rfloor < j \leq p - 1\). We present some parameters of MDS codes for \(h(x) = 0\) in Table 1.

- **Type 4:** \(((x - 1)^j + u(x - 1)^j h(x), u(x - 1)^\gamma)\), with \(h(x)\) as in Type 3, \(\deg(h(x)) \leq \kappa - t - 1\), and \(\kappa \leq T\), where \(T\) is the smallest integer such that \(u(x - 1)^T \notin \langle (x - 1)^j + u(x - 1)^j h(x) \rangle\) and \(T = j\), if \(h(x) = 0\), otherwise \(T = \min(j, 2^t - j + t)\). The MDS code condition is given by \(\kappa = 2 d_{sp}(C_d) - j - 4\). In this case also, no MDS symbol-pair constacyclic code exists.

Example IV.2. Consider the ring \(\mathbb{F}_4 + u \mathbb{F}_4\), where \(p = 2, m = 2\). The units in the ring \(\mathbb{F}_4 + u \mathbb{F}_4\) of the form \(\alpha + u \beta\) is \(1 + u\) and of the form \(\gamma = 1\). For \((1 + u)\)-constacyclic codes, the generators are of the form \(\langle (x - 1)^j \rangle\), where \(0 \leq j \leq 2^n - 1\). The only MDS symbol-pair constacyclic codes in this case has the parameters \(2^n - 2^{n+2} + 2\). We also provide some parameters of MDS symbol-pair codes in Table 2 for \(\gamma\)-constacyclic codes.

TABLE 1: Examples of \(\gamma\)-constacyclic codes over \(\mathbb{F}_2 + u \mathbb{F}_2\)

<table>
<thead>
<tr>
<th>(s)</th>
<th>(\gamma)</th>
<th>Generator</th>
<th>((n, M, d_{sp}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>((2, 2^1, 2))</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>((x - 1)^1)</td>
<td>((4, 2^1, 3))</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>((x - 1)^2)</td>
<td>((4, 2^1, 4))</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>((x - 1)^1)</td>
<td>((8, 2^2, 3))</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>((x - 1)^2)</td>
<td>((8, 2^2, 4))</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>((x - 1)^1)</td>
<td>((16, 2^3, 3))</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>((x - 1)^2)</td>
<td>((16, 2^3, 4))</td>
</tr>
</tbody>
</table>

Example IV.3. Consider the ring \(\mathbb{F}_4 + u \mathbb{F}_4\), Here \(p = 3, m = 1\). The units in the ring \(\mathbb{F}_4 + u \mathbb{F}_3\) of the form \(\alpha + u \beta\) are \(1 + u, 1 + 2u, 2 + u, 2 + 2u\) and of the form \(\gamma = 1, 2\). For units \((1 + u)\) and \((1 + 2u)\) the generators of constacyclic codes are given by \(\langle (x - 1)^j \rangle\), where \(0 \leq j \leq 2 \cdot 3^m\) and for units \((2 + u)\) and \((2 + 2u)\), the generators of constacyclic codes are of the form \(\langle (2x - 1)^j \rangle\), where \(0 \leq j \leq 2 \cdot 3^m\). For \(\gamma = 1\), we obtain cyclic code of length \(5^s\) over \(\mathbb{F}_3 + u \mathbb{F}_3\). The only MDS symbol-pair \((\alpha + u \beta)\)-constacyclic codes have the parameters \((3^s, 9^t, 2)\). We also provide some parameters of MDS symbol-pair codes in Table 4 for \(\gamma\)-constacyclic codes.

<table>
<thead>
<tr>
<th>(s)</th>
<th>(\gamma)</th>
<th>Generator</th>
<th>((n, M, d_{sp}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>((x - 1)^1)</td>
<td>((5, 5^1, 5))</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>((x - 3)^1)</td>
<td>((5, 5^1, 4))</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>((x - 4)^1)</td>
<td>((5, 5^1, 5))</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>((x - 1)^1) + ((x - 1)^2)</td>
<td>((5, 5^1, 5))</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>((x - 3)^1) + ((x - 3)^2)</td>
<td>((25, 5^3, 4))</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>((x - 4)^1)</td>
<td>((25, 5^3, 5))</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>((x - 2)^1) + ((x - 2)^2)</td>
<td>((25, 5^1, 5))</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>((x - 3)^1) + ((x - 3)^2)</td>
<td>((25, 5^1, 5))</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>((x - 4)^1) + ((x - 4)^2)</td>
<td>((25, 5^1, 4))</td>
</tr>
</tbody>
</table>
Motivated by the work of Dinh et al. [12], we determine all MDS symbol-pair codes among repeated-root constacyclic codes of prime power length over the ring \(F_{p^m} + uF_{p^m} \). We know that the units of the ring \(F_{p^m} + uF_{p^m} \) are of the form \(\alpha + u\beta \) and \(\gamma \), where \(0 \neq \alpha, \beta, \gamma \in F_{p^m} \). MDS symbol-pair codes from \((\alpha + u\beta)\)-constacyclic codes \(C_j = \langle (x^j + u)^{t}\rangle \) over the ring \(F_{p^m} + uF_{p^m} \) are obtained when \(j = 2d_{sp}(C_j) - 4 \). We obtained that the only MDS symbol-pair \((\alpha + u\beta)\)-constacyclic code is the trivial code \(\langle 1 \rangle \). For \(\gamma\)-constacyclic codes there are four types of ideals. Type 1 consists of trivial ideals for which we point out that only \(\langle 1 \rangle \) is a MDS symbol pair code. Type 2 consists of the principal ideals generated by non monic polynomial which are of the form \(C_j = \langle u(x - \gamma_0)^4 \rangle \). MDS symbol-pair codes for these codes can not be obtained in this case, with the Singleton bound \(j = 2d_{sp}(C_j) - p^s - 4 \). Type 3 is the principal ideals generated by the monic polynomials which are of the form \(C_j = \langle (x - \gamma_0)^4 + u(x - \gamma_0)h(x) \rangle \), where \(0 \leq t < j \), and either \(h(x) = 0 \) or \(h(x) \) is a unit in \(\frac{F_{p^m}[x]}{(x^p - \gamma_0)} \). The condition for MDS symbol-pair codes varies here and depends on both \(t \) and \(j \). We find the constraints on \(s \), \(j \) and \(t \) to obtain MDS symbol-pair codes for this type. Finally, Type 4 contains non-principal ideals of the form \(C = \langle (x - \gamma_0)^4 + u(x - \gamma_0)^4 h(x), u(x - \gamma_0)^\kappa \rangle \), where \(1 \leq j \leq p^s - 1 \), \(0 \leq t < j \), and either \(h(x) \) is either 0 or a unit in \(\frac{F_{p^m}[x]}{(x^p - \gamma_0)} \), \(\deg(h) \leq \kappa - t - 1 \), and

\[
\kappa < T = \begin{cases}
 j, & \text{if } h(x) = 0 \\
 \min\{j, p^s - j + t\}, & \text{if } h(x) \neq 0.
\end{cases}
\]

MDS symbol-pair codes in this case depend on \(\kappa \), which is given by \(\kappa = 2d_{sp}(C_j) - p^s + m - 4 \), for \(1 \leq m \leq p^s - 1 \). We found out that the condition for \(\kappa < T \), is contradicted at every interval of \(\kappa \). Thus, no MDS symbol-pair constacyclic codes can be deduced in this type. Codes satisfying the Singleton bound form an optimal class of codes with respect to symbol-pair metric, and we obtained some parameters of such codes for different types of units.

These results can be further generalized for computing MDS \(h\)-symbol constacyclic codes of length \(p^s \) over \(\mathcal{R} \). Though it is presumed to give a similar conclusion, it will be interesting to observe the outcome for some new MDS constacyclic codes. Similarly, MDS symbol-pair constacyclic codes of length \(2p^s \) over \(\mathcal{R} \) can be computed to obtain some more optimal codes.

ACKNOWLEDGMENTS

The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT.

REFERENCES

H. Q. Dinh is a professor in Applied Mathematics at the Department of Mathematical Sciences, Kent State University, USA. After completed his B.Sc. (1998), M.Sc. (2000), and Ph.D. (2003) in Mathematics at Ohio University, USA, he worked one year as a visiting professor at North Dakota State University, USA. Since 2004, Prof. Dinh has been working at Kent State University as a tenure professor in mathematics. Prof. Dinh research interests include Algebra and Coding Theory. Since 2004, he has published more than 75 papers at high level SCI(E) research journals such as Journal of Algebra, Journal of Pure and Applied Algebra, IEEE Transactions in Information Theory, IEEE Communication Letters, Finite Fields and Their Applications, Applicable Algebra in Engineering Communication and Computing, Discrete Applied Mathematics. Prof. Dinh has been a well known invited/keynote speaker at numerous international conferences and mathematics colloquium. Other than universities in the US, he also gave many honorary tutorial lectures at international universities in China, Indonesia, Kuwait, Mexico, Singapore, Thailand, Vietnam.

P. Kumam received the B.S. degree in mathematics from Burapha University (BUU), and the M.Sc. degree in mathematics from Chiang Mai University (CMU), and Ph.D. degree in mathematics from Naresuan University (NU). In 2008, he received a grant from Franco - Thai Cooperation for short-term research at Laboratoire de Mathématiques, Université de Bretagne Occidentale, France. In 2012, he took the same role, a Visiting Professor, at the University of Alberta, AB, Canada for short research with Professor Anthony To-Ming Lau. He is currently a Full Professor at the Department of Mathematics in King Mongkut’s University of Technology Thonburi (KMUTT). He is the Founding Head of Theoretical and Computational Science (TaCS) Center of KMUTT. Professor Poom Kumam was also a visiting professor at Korea, Taiwan, Japan, Australia, UK, France, Austria, Switzerland and Germany.

Since 2003, he is the author/coauthor of more than 500 international peer reviewed journals his main research interests include fixed point theory and applications, computational fixed point algorithms, nonlinear optimization and control theory, and optimization algorithms. And areas of interest Inverse problems, Traffic network equilibria, bandwidth allocation problem, wireless sensor network, image restoration, signal and image processing, game Theory and computational science, coding theory and cryptography.

S. Satpati received a B.Sc. degree in Mathematics from University of Calcutta, West Bengal, in 2014 and a M.Sc. degree in Mathematics & Computing from Indian Institute of Technology (ISM), Dhanbad, India, in 2016. She is pursuing her Ph.D from Indian Institute of Technology (ISM), Dhanbad, India, since 2016. Her research interests include Algebraic Coding Theory and Code based Cryptography.

A. K. Singh received a M.Sc. degree in Mathematics from Institute of Science, Banaras Hindu University, Varanasi, India, in 2002, and a Ph.D degree in Algebra from IIT (BHU) Varanasi, India, in 2007. From 2007 to 2009 he was a Lecturer with Department of Mathematics, CSJM University, Kanpur. He joined M G Kashi Vidyapith University, as an Assistant Professor from 2009 to 2010. Since July of 2010, he has been with Indian Institute of Technology (ISM) Dhanbad, India, and currently is a Senior Assistant Professor. He has been working on the areas of Theory of Rings and Modules, Algebraic Coding theory, Code base cryptography, etc.

W. Yamaka received the Bachelor, Master and Ph.D degrees in economics from Chiang Mai University, Chiang Mai, Thailand, in 2011, 2014 and 2017, respectively. He has been working as the lecture at the Faculty of Economics, Chiang Mai University, Chiang Mai, Thailand, since 2018. Also, He is currently the vice-Director of the Centre of Excellence in Econometrics, Chiang Mai University. Dr.Yamaka research interests focuses the Economics and Econometrics. Since 2015, he has published more than 90 papers which indexed in the SCOPUS.