An Optimal Torque Distribution Control Strategy for Four-wheel Independent Drive Electric Vehicles Considering Energy Economy

JIANJUN HU1,2, JUNLONG TAO2, FENG XIAO2, XIYUAN NIU3, AND CHUNYUN FU1,2

1The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
2School of Automotive Engineering, Chongqing University, Chongqing 400044, China
3Chassis Department, GAC R&D Center, Guangzhou, Guangdong 510000, China

Corresponding author: Jianjun Hu (e-mail: hujianjun@cqu.edu.cn).

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFB0106104) and the Chongqing Key Research and Development Program (Grant No. cstc2018jszx-cyztzx0047).

ABSTRACT To further improve the energy economy of a four-wheel independent drive electric vehicle (FWIDEV) in the process of vehicle stability control, in this paper, the influence of different wheel torque distributions on vehicle stability and energy economy during vehicle steering is analyzed in detail. Then the wheel torque distribution scheme when the vehicle steering is established. Combined with the economic-based torque distribution strategy applied in the straight running condition, an optimal wheel torque distribution strategy is proposed for FWIDEV to adapt different driving conditions. And the controller designed in this paper adopts hierarchical control structure. The upper controller calculate the corrective yaw moment based on the sliding mode control. The lower controller implements wheel torque distribution according to the proposed strategy. Finally, the simulation results under different driving scenarios indicate that the proposed control strategy can achieve the same effect as the conventional control strategy in terms of vehicle stability, but the energy economy is improved by about 2.4%.

INDEX TERMS electric vehicles; stability control; optimal torque distribution; energy economy.

I. INTRODUCTION Electric vehicles are considered to be an effective way to solve problems such as environmental pollution and energy shortage due to their higher efficiency, low noise and nearly zero emissions [1,2]. From the view point of control engineering, Four-wheel independent drive electric vehicles (FWIDEVs) have much attractive potential for its four in-wheel motors can be controlled independently,, which make FWIDEV’s handling and stability control become a research hotspot in recent years [3-5].

In order to keep the vehicle stable and safety under emergency situations, a variety of chassis control systems have been developed such as four-wheel steering (4WS), active front steering (AFS), direct yaw-moment control (DYC) and so on. 4WS adjusts the steering angle of the rear wheel according to the error between the actual yaw rate of the vehicle and the reference value to change the lateral force on the rear wheel [6,7]. And AFS is to add a certain additional angle to the front wheel to produce the lateral force of the front axle [8,9]. When the lateral acceleration of the vehicle is relatively small, the lateral force has a linear relationship with the wheel side angle. At this time, both 4WS and AFS have relatively ideal control effects. While, when the lateral acceleration is large, the lateral force tends to be saturated, which will make the 4WS and AFS will lose their control ability. DYC is a method to improve vehicle handling stability by using the difference of longitudinal forces of the wheel to generate yaw moment [10,11], and it has been proven to maintain a better performance when the tire is close to the adhesion limit [12]. Most stability controllers use hierarchical control structures. The literature [13], taking the tire slip rate as the design variable, determines the required yaw moment by controlling the tire slip rate to its ideal value, thereby adjusting the longitudinal force of each wheel to achieve DYC. Sun H [14] taken the yaw rate as the control variable and constructed a robust control methodology based on the front and rear steering angle. Tian Jie [15] designed the phase plane by using the side slip angle and its derivative, and designed the DYC by controlling the actual state of the vehicle in the stable area as the control target. In fact, the yaw rate and the side slip angle of the vehicle are closely related to the stability of the vehicle. Controlling only one of the variables is not suitable for achieving vehicle stability. Therefore, many controllers use
both the yaw rate and the side slip angle as control variables, and achieve better performance than that use a single control variable [16,17]. For the calculation of the desired yaw moment, J.HAN uses the LQR method [18], and other control methods include fuzzy control [19], model predictive control, robustness control, and sliding mode variable structure control [20-22]. However, no matter which control method is adopted, the above literature mainly focuses on the research of the upper controller, and the distribution rule of the lower layer torque is relatively simple, which results in poor stability and adaptability of the control system.

On the other hand, in the vehicle stability control, the required yaw moment calculated based on different control variables or by different methods needs to be realized by the motor and the wheel of the execution layer, that is, the wheel torque needs to be distributed. The current research is mainly based on two methods of distribution: one is based on the economical torque distribution method. Dongmei Wu [23] proposed an optimal wheel torque distribution strategy based on the motor loss model. Yamakawa [24] proposed a wheel driving force distribution method to reduce the friction loss of each wheel, thereby improving vehicle economy. Energy recovery is one of the important ways to save energy in electric vehicles. The literature [25] details the current status and development of braking energy recovery. For electric vehicles, the improvement of motor efficiency has more significant economic improvement performance [26,27]. The main idea is to optimize the torque distribution based on the motor efficiency characteristics, so that the motor operating point is always in the high efficiency area. Although the above research can improve the efficiency of the transmission system, most of them are less concerned with the stability control of the vehicle. Another type of method is a torque distribution strategy based on vehicle stability. Osama proposed a mathematical optimization method that optimizes tire utilization to distribute wheel torque [28]. This method of setting objective function ignores vehicle dynamics. There is a certain limitation in the single use of stability or economic methods for torque distribution, and most of the research focus on the straight driving condition of vehicles, while few researches on the economic improvement in the process of vehicle stability control under steering condition.

In summary, wheel torque distribution is extremely important for FWIDEV stability control. There are many different torque distribution methods under the premise of meeting the stability requirements. However, the research on the influence of different wheel torque distribution forms on vehicle performance is not deep enough. In addition, most wheel torque distribution strategies are less concerned with the difference between the vehicle's steering conditions and the straight running conditions, making the vehicle's control effect in the actual driving process is not good. Therefore, in order to make up for the above deficiencies, this paper optimizes the stability controller, and deeply analyzes the impact of different torque distribution forms on vehicle performance, and improves the vehicle economy in the steering process according to its influence law. On the basis, a wheel torque optimization distribution control strategy suitable for the whole driving conditions of the vehicle is applied, thereby comprehensively improving the economy on the basis of ensuring the stability of the vehicle.

The paper is structured as follows. The control strategy begins with a 8-DOF vehicle model in Section II. In Section III, the sliding mode control algorithm is adopted to design the stability controller. Then, a wheel torque optimal distribution control strategy suitable for different driving conditions is established. Section IV shows the simulation results to evaluate the proposed driving control strategy. Finally, the conclusions are provided in Section V.

II. VEHICLE MODELING

A. 8-DOF VEHICLE MODEL

This paper takes a four-wheel independent drive electric vehicle as the research object, and the vehicle parameters are shown in Table 1. The most commonly used nonlinear vehicle models include 7-DOF, 8-DOF and 14-DOF. As to vehicle yaw stability control, the 8-DOF vehicle model is taken in this study for the higher accuracy of vehicle response and avoiding excessive computation load. Based on the Matlab/Simulink, the eight degrees of vehicle model that contains vehicle longitudinal, lateral, roll and yaw motions and the rotational motion of each wheel is built (Fig.1).

| TABLE 1. Vehicle parameters of FWIDEV |
| --- | --- | --- |
| Symbol | Quantity | Value |
| m | Vehicle total mass | 1300 kg |
| m_s | Sprung mass | 1170 kg |
| l_f | Distance form CG to front axle | 1.2 m |
| l_r | Distance form CG to rear axle | 1.3 m |
| d | Wheel base | 1.4 m |
| h | Mass center height | 0.5 m |
| h_s | Distance | 0.4 m |
| h_re | Front roll center height | 0.1 m |
| h_rce | Front roll center height | 0.13 m |
| l_x | Roll moment of inertia | 700 kg · m² |
| l_y | Yaw moment of inertia | 2500 kg · m² |
| J | Inertia of wheel assembly | 2.1 kg · m² |
| K_f | Front suspension roll stiffness | 25200 Nm/ rad |
| K_r | Rear suspension roll stiffness | 19800 Nm/ rad |
| K_o | Roll stiffness | 45000 Nm/ rad |
| C_f | Front suspension roll damping | 1300 Nms |
| C_r | Rear suspension roll damping | 1300 Nms |
| C_g | Roll damping | 2600 Nms |
| R | Tire radius | 0.316 m |
where, XOY is the geodetic coordinate system, xoy is the vehicle coordinate system, and $x'o'y'$ is the tire coordinate system.

Applying Newton’s second law, the equations of the longitudinal, lateral, roll and yaw motions are obtained:

$$
\Sigma_{i=1}^{4}(F_{xi}\cos\delta - F_{yi}\sin\delta) - F_w - F_f - F_l - F_j = m(\dot{v}_x - v_y r) + m_s h_s p r
$$

(1)

$$
\Sigma_{i=1}^{4}(F_{xi}\sin\delta + F_{yi}\cos\delta) = m(\dot{v}_y + v_x r) + m_s h_s \dot{p}
$$

(2)

$$
\Sigma_{i=1}^{4}x_i(F_{xi}\sin\delta + F_{yi}\cos\delta) - \Sigma_{i=1}^{4}y_i(F_{xi}\cos\delta - F_{yi}\sin\delta) = l_x \dot{r} - l_z \dot{p}
$$

(3)

$$
-k_0 \phi + m_s g x_s \sin\phi - c_0 p = l_z \dot{p} - l_x \ddot{r} - m_s h_s (\dot{v}_y + v_x r)
$$

(4)

where F_{xi} and F_{yi} represent the longitudinal and lateral tyre forces respectively, F_w, F_f, F_l, and F_j denote the air resistance, rolling resistance, grade resistance and acceleration resistance, respectively, r is the yaw rate, p, ϕ and δ are the roll rate, roll angle and the front wheel steer angle respectively. l_{xz} denotes the product of inertia with respect to the xz plane, v_x and v_y represent the longitudinal velocity and lateral velocity of the vehicle.

Note that the subscript i takes on values 1, 2, 3 and 4, and represents the front left, front right, rear right and rear left wheel respectively, as shown in Figure 1. Besides, when the car is driving, the equation on each tire is that:

$$
\int \frac{\omega dt}{I} = T - F_x R - F_z
$$

(5)

where J denotes the rotational inertia of the wheel, ω represents the rotation of the wheel angular velocity, F_z and F_x are the normal reaction force from the ground and the longitudinal force of the tyre, respectively.

B. STEERING SYSTEM MODEL

In order to give consideration to the flexibility and stability of vehicle steering, a steering system with variable steering ratio is established in this paper [29]. The expression is shown in (6).

$$
y = \begin{cases}
10, & 0 < v_x < 30 \\
0.00139 \times (v_x - 30)^2 + 10, & 30 \leq v_x < 90 \\
0.00139 \times (v_x - 150)^2 + 20, & 90 \leq v_x < 150 \\
20, & \text{others}
\end{cases}
$$

(6)

C. TYRE MODEL

As the only connection between the vehicle and the ground, the tyre plays an important role in vehicle dynamic. Literature [26] also points out that compared with the number of degrees of freedom of vehicles, the overall accuracy of vehicle models is more significantly affected by the tire model. Therefore, it is necessary to establish an accurate tyre model to describe tyre forces which directly affect the analysis results. In this study, the Magic Formula tyre model is adopted for dynamic analysis, and its mathematical expressions are as follows:

$$
\begin{cases}
\gamma(x) = D \sin(\arctan(Bx - E(Bx - \arctan(Bx)))) \\
Y(X) = y(x) + 5\nu \\
x = X + S_H
\end{cases}
$$

(7)

where, $Y(X)$ represents the tyre force, X denotes the tyre slip ratio λ_i or wheel slip angle α_i, coefficients B, C, D and E are the stiffness factor, shape factor, peak factor and curvature factor respectively, and S_X and S_H represent the vertical shift and horizontal shift respectively.

The wheel slip ratio of Magic Formula tyre model is given by:

$$
\lambda_i = \begin{cases}
\frac{R_0 - V_{wi}}{R_0}, & R_0 \lambda_i \geq V_{wi} \\
\frac{V_{wi} - R_0 \lambda_i}{V_{wi}}, & R_0 \lambda_i \leq V_{wi}
\end{cases}
$$

(8)

The velocities of each wheel center in the wheel heading direction are obtained as follows:

$$
V_{w1} = (v_x - \frac{d_f}{2} r) \cos \delta + (v_y + l_f r) \sin \delta
$$

(9)

$$
V_{w2} = (v_x + \frac{d_f}{2} r) \cos \delta + (v_y + l_f r) \sin \delta
$$

(10)

$$
V_{w3} = v_x + \frac{d_f}{2} r
$$

(11)

$$
V_{w4} = v_x - \frac{d_f}{2} r
$$

(12)

Apart from the tyre slip ratio, the calculation of the Magic Formula parameters also requires the wheel slip angle which is defined as the angle between the wheel heading direction and the velocity vector of the wheel center. The wheel slip angle for each tire is expressed as:
\[
\alpha_1 = \arctan \left(\frac{v_y + \frac{1}{2} v_r}{u_x - \frac{1}{2} u_f} \right) - \delta - C_{\delta f} \varphi \tag{13}
\]
\[
\alpha_2 = \arctan \left(\frac{v_y + \frac{1}{2} v_r}{u_x + \frac{1}{2} u_f} \right) - \delta - C_{\delta f} \varphi \tag{14}
\]
\[
\alpha_3 = \arctan \left(\frac{v_y - \frac{1}{2} v_r}{u_x + \frac{1}{2} u_f} \right) - C_{\delta r} \varphi \tag{15}
\]
\[
\alpha_4 = \arctan \left(\frac{v_y - \frac{1}{2} v_r}{u_x - \frac{1}{2} u_f} \right) - C_{\delta r} \varphi \tag{16}
\]

where \(C_{\delta f} \) and \(C_{\delta r} \) represent the front and rear roll steer coefficients, respectively.

In the MF tyre model, the tyre load affects the scale of the peak factor \(D \). The normal reaction forces for each wheel considering both longitudinal and lateral load transfers are written as follows:

\[
F_{x1} = \frac{1}{2I} (mg_u - h \sum F_x) - \frac{1}{d_f} (K_{\delta f} \varphi + C_{\delta f} p + h_f \sum F_yf) \tag{17}
\]
\[
F_{x2} = \frac{1}{2I} (mg_u - h \sum F_x) + \frac{1}{d_f} (K_{\delta f} \varphi + C_{\delta f} p + h_f \sum F_yf) \tag{18}
\]
\[
F_{x3} = \frac{1}{2I} (mg_u + h \sum F_x) + \frac{1}{d_r} (K_{\delta r} \varphi + C_{\delta r} p + h_r \sum F_yr) \tag{19}
\]
\[
F_{x4} = \frac{1}{2I} (mg_u + h \sum F_x) - \frac{1}{d_r} (K_{\delta r} \varphi + C_{\delta r} p + h_r \sum F_yr) \tag{20}
\]

where \(h_f \) and \(h_r \) denote the front and rear roll center height respectively.

D. NUMERICAL MODELING OF IN-WHEEL MOTOR

The vehicle model established in this paper is equipped with an in-wheel motor, whose performance parameters are shown in Table 2. According to the characteristics of the motor, the efficiency of the motor is different at each working point, so this paper builds a numerical model of motor efficiency considering the complexity and accuracy, which can been see clearly in Figure 2. Thus, the driving/braking efficiency of the motor can be obtained by looking up the table.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_e)</td>
<td>Nominal power</td>
<td>7 kw</td>
</tr>
<tr>
<td>(P_{\text{max}})</td>
<td>Peak power</td>
<td>15 kw</td>
</tr>
<tr>
<td>(T_e)</td>
<td>Nominal torque</td>
<td>120 N⋅m</td>
</tr>
<tr>
<td>(T_{\text{max}})</td>
<td>Peak torque</td>
<td>260 N⋅m</td>
</tr>
<tr>
<td>(n_e)</td>
<td>Nominal speed</td>
<td>550 r/min</td>
</tr>
<tr>
<td>(n_{\text{max}})</td>
<td>Maximum speed</td>
<td>1200 r/min</td>
</tr>
</tbody>
</table>

III. CONTROLLER DESIGN

The stability controller designed in this paper adopts hierarchical control structure, as shown in Figure 3. The upper controller calculates the corrective yaw moment and longitudinal force needed to control the vehicle to back to the stable state based on the deviation between the actual driving state and the expected state. According to the corrective yaw moment, the lower controller determines the target torque of each wheel, and then distribute it to each wheel by controlling the motor.

![Schematic of the hierarchical control structure](image)
The vehicle system has nonlinear, time-varying and uncertain characteristics during high-speed steering of vehicles, especially for a FWIDEV. And as a typical nonlinear control method, sliding mode control (SMC) is adopted in this paper to solve the control problem of nonlinear systems.

The variables to be controlled in this study are the yaw rate r and the sideslip angle β. Form a 2-DOF vehicle model [30], we can obtain the steady-state yaw rate response.

$$ r_d = \frac{v_{xd}}{l(1+kv_{zd}^2)} \delta $$

Combining the (21) with the variable steering ratio steering system in the 8-DOF model, the desired yaw rate can be obtained.

$$ r_d = \frac{v_{xd}}{l(1+kv_{zd}^2)} \frac{\theta_w}{j} = \frac{v_{xd}}{l(1+kv_{zd}^2)} \frac{J\delta}{j} $$

where, v_{xd} represents the ideal vehicle longitudinal speed, θ_w is the steering wheel angle, j denotes the fixed steering ratio and its value is 15, j_v represents the variable steering ratio. K is the stability factor.

Considering the limitation of the adhesion conditions, the yaw rate r has the following relationship with the road surface adhesion coefficient and the vehicle speed.

$$ |r| \leq 0.85 \frac{\rho g}{v_{xd}} $$

Combining (22) and (23), we can obtain the desired yaw rate of the vehicle.

$$ r_d = \min \left(\left| \frac{v}{l(1+kv_{zd}^2)} \frac{J\delta}{j} \right|, \left| 0.85 \frac{\rho g}{v_{xd}} \right| \right) \operatorname{sgn}(\delta) $$

In order to ensure that the yaw rate transient response does not appear large oscillation or overshoot, the desired value in (24) is required for filtering. And the desired yaw rate is calculated at last.

$$ r_d = \min \left(\left| \frac{v}{l(1+kv_{zd}^2)} \frac{J\delta}{j} \right|, \left| 0.85 \frac{\rho g}{v_{xd}} \right| \right) \operatorname{sgn}(\delta) $$

where, s_ϵ and μ represent the Laplacian and road adhesion coefficient respectively.

Referring to the related literature [31, 32], the value of the ideal sideslip angle is 0. And it is also limited by the road adhesion conditions

$$ \beta \leq \arctan(0.02 \mu g) $$

The following optimized switching function is adopted [30].

$$ s = \frac{\rho}{|\Delta r|_{\max}} |r - r_d| + \frac{1 - \rho}{|\Delta \beta|_{\max}} |\beta - \beta_d| $$

where $|\Delta r|_{\max}$ and $|\Delta \beta|_{\max}$ are the maximum tolerable error of each control variable, and the range of weighting factor ρ is $[0, 1]$.

Deriving (27) and combining the yaw motion equation (3) of the vehicle, and using the exponential approach law shown in (28) to obtain the required yaw moment of the vehicle ΔM_z.

$$ s = -\varepsilon \text{sgn}(s) - k_d s, \quad \varepsilon > 0, k_d > 0 $$

$$ \Delta M_z = l_e \left\{ \frac{|\Delta r|_{\max}}{\rho} \left[-\varepsilon \text{sgn}(r - r_d)s - k_2 \text{sgn}(r - r_d) \right] + r_d - \frac{\beta}{|\Delta \beta|_{\max}} \beta \text{sgn}(r - r') \right\} - F_r $$

where ε and k_d are the boundary layer thicknesses. Note that to reduce the chattering effects of the sign function, the saturation function ‘sat’ is adopted instead.

Since the vehicle has various types of resistance during running, it is necessary to control its longitudinal driving force to follow the desired vehicle speed. This paper will use SMC to realize the longitudinal driving force control of the vehicle. And the switching function is:

$$ s_x = v_{xd} - v_x $$

Let ΔF_x denotes the longitudinal demand force, and derive the (30) and combine the longitudinal motion equation (1) of the vehicle body, and adopt the exponential approach law shown in (29) to obtain the longitudinal demand force of the vehicle:

$$ \Delta F_x = m(\dot{v}_{xd} + v_x + \varepsilon \text{sgn}(s) + k_1 s) + F_{y1} \sin \delta + F_{y2} \sin \delta + F_w + F_m h_s p r $$

where v_{xd} represents the desired vehicle speed, v_x is the actual vehicle speed, and ε and k_d are controller design parameters.

B. THE LOWER CONTROLLER

There are several ways to distribute wheel torque under the premise of meeting control requirements and actuator limitations. Therefore, it is necessary to study the influence of different wheel torque distribution forms on vehicle stability and economy, and obtain the optimal distribution method of wheel torque under different working conditions. There is a relationship expressed by (32) between the upper layer demand and the lower wheel torque distribution in vehicle stability control.

$$ A_u x = b_u $$

where, $x = [T_1 \ T_2 \ T_3 \ T_4]^T$, $b_u = [\Delta F_x \ \Delta M_z]^T$, T_i represents the torque of each wheel, and $d = d_y = d_z$.

$$ A_u = \frac{1}{R} \left[\begin{array}{cccc}
\cos \delta & \cos \delta & 1 & 1 \\
\frac{d}{2} \cos \delta + l_y \sin \delta & \frac{d}{2} \cos \delta + l_y \sin \delta & \frac{1}{2} & -\frac{1}{2}
\end{array} \right] $$

1) ANALYSIS OF THE INFLUENCE OF DESIRED YAW MOMENT DISTRIBUTION ON DIFFERENT WHEELS ON VEHICLE PERFORMANCE

Different front-to-rear wheel torque distributions

According to the mathematical relation (33), the desired yaw...
moment is converted into the additional wheel torque ΔT. Study the effects of different torque distribution ratios on vehicle stability and economy under the condition of single lane change manoeuvre at 40 km/h. Take the direction of the required yaw moment as counterclockwise for example. In order not to affect the longitudinal speed of the vehicle, make the additional torques of the right and left coaxial wheels equal and opposite which can be seen in Fig. 4.

$$\Delta T = \frac{2\Delta M_z}{d} R$$ (33)

Let ‘a’ be the ratio of the front axle torque to the total demand torque. Simulate and compare the vehicle yaw rate and the trajectory corresponding to different ‘a’ values, and obtain the results shown in Fig. 5.

As can be seen in Fig. 5, when the value of a is 0.5 (note: the closer the value is to the ratio of the front and rear wheelbases), the yaw rate and the trajectory of the vehicle are best for tracking the ideal values. And the worst results are achieved when the front or rear axle alone assumed all the required torque.

The simulation shows the economic performance of the vehicle (characterized by the motor comprehensive efficiency (34)).

$$J_e = \frac{T_1 \eta_1 n_1 + T_2 \eta_2 n_2 + T_3 \eta_3 n_3 + T_4 \eta_4 n_4}{\eta_1 n_1 + \eta_2 n_2 + \eta_3 n_3 + \eta_4 n_4}$$ (34)

The simulation results show that when the vehicle is turning (0.5-2.5 seconds), the economic performance is best when the proportional coefficient a is equal to 0.5, and the economic performance of a ratio equal to 0.25 or 0.75 is second. It means that when the value of the proportional coefficient a is closer to the ratio of the front and rear wheelbase of the vehicle, the vehicle is in a very stable state, and the economy is optimal in the steering process.

FIGURE 4. Schematic diagram of wheel torque distribution between front and rear axles

FIGURE 5. Vehicle yaw rate (a), driving trajectory (b) and motor comprehensive efficiency map (c) corresponding to different ‘a’ values

Different torque distribution on the coaxial left and right wheels

The front and rear axles each bear half of the required yaw moment, and compare the effects of the left and right wheels on the stability and economy of the vehicle when the ΔT is distributed in different ways.

In addition to the variable distribution of the torque distribution between the left and right wheels, there are various combinations between the torque directions. So this paper proposes a method to screen the possible left and right wheel torque distribution forms. Considering that the vehicle speed is not affected, the sum of the additional driving forces of the four wheels needs to be zero.

$$F_{x1}' + F_{x2}' + F_{x3}' + F_{x4}' = 0$$ (35)

where, F_{xi}' represents the longitudinal force of each wheel required to satisfy the desired yaw moment.

In addition to meeting the requirements of equation (36), it is also required that the yaw moments formed by the front and rear axles are counterclockwise and equal. According to the above requirements, formulate a flow chart for the selection of the distribution plan. According to the flow shown in Fig.6, the schemes with the numbers ①, ②, and ③ satisfying all the requirements are finally obtained.
Definition b is the ratio of the torque on the left wheel to the total torque assumed by the axle. First, the solution ① is analyzed to compare the effects of different distribution ratios b on vehicle stability and economy, and the results shown in Fig.7 are obtained.

As can be seen from Fig.7, the yaw rate and the trajectory of the left and right wheels cannot track the ideal value well regardless of the torque distribution ratio of the left and right wheels. And when $b>0.5$, the torque direction formed by the wheel is clockwise, which is opposite to the desired torque direction, making the control effect worse.

Secondly, the effect of different distribution ratios between the left and right wheels on the vehicle performance in the case of option ② is studied, and the results shown in...
Comparing the simulation results of schemes ① and ②, we can find that the impact of the two on stability and economy is the same. The reason for this phenomenon is that the torque distribution methods of the two are essentially the same. The two schemes can be transformed from each other by different b values. This is illustrated by the fact that the stability and economic performance of the vehicle when b is 0 in Scheme ① is exactly the same as that when b is 1 in Option 2.

Finally, the third scheme is analyzed to obtain the results shown in Fig.9. Figure 9 shows that the stability control effect is best when b equals 0.5, that is, the two coaxial wheels distribute the required yaw moment in opposite directions. And when a single wheel (b=0 and b=1) generates all the required yaw moments, the control effect is the worst, which means that the stability control of the vehicle is significantly affected by the position of the centroid. Meanwhile, it can be seen from figure 13 that the economic performance during the steering of the vehicle is best when b is equal to 0.5.

Based on the analysis results of the above three schemes, it is known that when the scheme ③ is used and the torque is distributed by the front and rear axles proportional to the centroid position, the stability and economic performance of the vehicle when steering are the best. And the corresponding wheel torques are as follows:

$$T_1 = \left(0.25\Delta F_x - \frac{\Delta M_y}{2d_f}\right)R$$ \hspace{1cm} (36)
\[T_2 = \left(0.25\Delta F_x + \frac{\Delta M_z}{2d_f} \right) R \]
(37)

\[T_3 = \left(0.25\Delta F_x + \frac{\Delta M_z}{2d_f} \right) R \]
(38)

\[T_4 = \left(0.25\Delta F_x - \frac{\Delta M_z}{2d_f} \right) R \]
(39)

2) WHEEL TORQUE OPTIMAL DISTRIBUTION CONTROL STRATEGY

The above studies only consider the torque distribution during the steering process of the vehicle. In order to comprehensively improve the economic performance of the vehicle, a torque distribution strategy with the optimal overall motor efficiency as the objective function is constructed.

\[J_u = \max \left\{ \eta_f \left[\frac{\lambda_f \eta_f}{\eta_f} + \frac{(1-\lambda_f)\eta_r}{\eta_r} \right] \right\} = \max \left(\frac{\lambda_f}{\eta_f} + \frac{1-\lambda_f}{\eta_r} \right)^{-1} \]
(40)

where, \(\lambda_F \) represents the front axle torque distribution coefficient, \(\eta_f \) and \(\eta_r \) represent the efficiency of the front and rear axle drive motors, respectively.

Constraints are as follows:

\[\begin{align*}
0 & \leq \lambda_F \leq 0.5 \\
0 & \leq 0.5\lambda_F T_d \leq T_{\text{max}} \\
0 & \leq 0.5(1 - \lambda_F) T_d \leq T_{\text{max}}
\end{align*} \]
(41)

Using the motor efficiency characteristic map, the front axle distribution coefficient can be solved as shown in Fig.10.

FIGURE 10 Front axle torque distribution coefficient

According to the above research, in order to improve the economy while ensuring the stability of the vehicle, the optimal torque distribution control strategy for the vehicle under full working conditions is established, that is, the torque distribution is performed with the highest motor efficiency as the objective function when the vehicle goes straight, and the formula (36) - (39) is used when the vehicle turns. The torque distribution scheme shown is shown in Fig.11.

FIGURE 11 Block diagram of optimal torque distribution control strategy

IV. SIMULATION RESULTS

The purpose of this paper is to improve the economy while ensuring the stability of the vehicle. In order to verify the effectiveness of the control strategy and test its impact on vehicle stability, the comparative simulation results of three different methods are presented. They are the proposed control strategy, the conventional stability control strategy and the passive system which constantly sends identical torque commands to the motors. In the following, for brevity, the three systems are referred to as the “proposed method”, “conventional method” and “uncontrolled”, respectively.

A. THE CONVENTIONAL STABILITY CONTROL STRATEGY

The conventional method means that the minimum surface adhesion consumption rate is the objective function to optimize the distribution of wheel torque expressed in (42).

\[\min J = \sum_{i=1}^{4} \mu_i \left(\frac{F_i^2}{u_{\text{min}}^2} + \frac{F_i^2}{u_{\text{max}}^2} \right) \]
(42)

Standardizing the objective function:

\[\min J = u_c^T W_u u_c \]
(43)

The constraints are as follows:

\[\begin{align*}
B_c u_c &= v_c \\
u_{\text{cmin}} &\leq u_c \leq u_{\text{cmax}}
\end{align*} \]
(44)

where, \(W_u \) represents the weighting coefficient of the
control variable \(u_c \). Ignore the lateral force \(F_{yl} \) in (42), then \(W_u = \text{diag}\left(\frac{1}{(\mu F_{yl})}\right) \), \(u_c = [F_{x1} \ F_{x2} \ F_{x3} \ F_{x4}]^T \),

\[
v_c = [\Delta F_x \ \Delta M_x]^T,
\]

\[
B_c = \begin{bmatrix}
\frac{\cos \delta}{2} & \frac{\cos \delta}{2} & \frac{1}{2} & -\frac{1}{2}
\end{bmatrix}
\]

Substitute \(B_c u_c = v_c \) with \(\min \|B_c u_c - v_c\|_2 \), and the sequence least squares programming problem is transformed into a weighted least squares method by introducing a weight coefficient \(\gamma \).

\[
u_c = \arg \min_{u_{c_{\text{min}}} \leq u_c \leq u_{c_{\text{max}}}} (\|W_u u_c\|^2 + \gamma \|W_x (B_c u_c - v_c)\|^2) \tag{45}
\]

where, \(W_u \) is the weight matrix to define the priority of each generalized control input. And the optimisation problem can be solved using active set methods.

B. SINGLE LANE CHANGE MANOEUVRE TEST

1) **HIGH ADHESION COEFFICIENT ROAD**

For this manoeuvre, the vehicle drives on a dry road with \(\mu = 0.8 \) and the longitudinal speed is 40 km/h. The simulation results of the stability and economy of the vehicle under different control strategies are shown in Figure 12.

It can be seen from Fig.16 that in the aspect of stability control, both the proposed method and the conventional method can achieve better driving trajectory tracking effect, and the corresponding vehicle speeds can better follow the ideal value under the two control strategies that can meet the driving requirements. However, as for energy economy, the maximum and average values of the overall efficiency of the motor are improved under the comprehensive control strategy proposed in this paper, and the average value of the overall efficiency of the motor is increased by 2.44%. At the same time, the motor efficiency curve is more stable, and the standard deviation is 51.49% lower than the stability control strategy, which can reduce the motor torque ripple (Table 3).

TABLE 3. Motor comprehensive efficiency data statistics

<table>
<thead>
<tr>
<th>Motor efficiency</th>
<th>Control strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conventional method</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.8912</td>
</tr>
<tr>
<td>Average</td>
<td>0.8563</td>
</tr>
<tr>
<td>Standard variance</td>
<td>0.0202</td>
</tr>
</tbody>
</table>

2) **LOW ADHESION COEFFICIENT ROAD**

For this manoeuvre, the vehicle drives on a slippery road with \(\mu = 0.3 \) and the longitudinal speed is 40 km/h. The simulation results of the stability and economy of the vehicle under different control strategies are shown in Figure 13.

Fig.13 shows that under the road with low adhesion coefficient, the conventional method and the integrated control strategy proposed in this paper have similar performance in vehicle stability. Comparing the motor comprehensive efficiency of the two control strategies, the overall economic performance of the vehicle controlled by proposed method is better than that of the conventional...
method, and the superiority is more obvious when the vehicle goes straight. Table 4 shows the details.

<table>
<thead>
<tr>
<th>TABLE 4. Motor comprehensive efficiency data statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor efficiency</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>Standard variance</td>
</tr>
</tbody>
</table>

The above simulation results show that the integrated control strategy proposed in this paper can effectively improve the energy economy in the control process under the premise of ensuring vehicle stability.

V. CONCLUSION

In this paper, the influence of different wheel torque distribution forms on vehicle stability and economy during the steering process is analyzed in depth, and then the wheel torque optimization distribution scheme during steering is proposed. A torque distribution scheme with the optimal motor efficiency as the objective function is constructed to improve the economy when the vehicle goes straight. On this basis, the optimal wheel torque distribution control strategy for the vehicle under full working conditions is proposed, and the effectiveness of the proposed control strategy is verified under single lane change manoeuvre.

The simulation results illustrate that compared with the conventional stability control strategy, the wheel torque optimization distribution control strategy proposed in this paper has the same stability control performance, but it performs better in terms of energy economy. That means it can reduce the energy consumption while ensuring vehicle stability.

REFERENCES

