Position Tracking Control of Tailsitter VTOL UAV with Bounded Thrust-vectoring Propulsion System

Linfeng Wu, Huanyu Li, Yingjie Li and Chunwen Li

Abstract—This paper presents an adaptive position tracking controller for a special kind of tailsitter vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). The distinctive part of this VTOL aircraft is its thrust-vectoring propulsion system, which allows the aircraft to achieve long-range flight at high-efficiency. However, there are two main problems encountered in the control design for this aircraft in vertical mode. One problem is that the mass and inertia tensor are unknown parameters because of the fuel consumption. The other problem is that the thrust vector is bounded both in amplitude and orientation, leading to the boundedness of control input. In this paper, we use a complementary filter to estimate the mass and an adaptive law to compensate the error caused by inertia uncertainty. A Lyapunov-based control law with nested saturation function is proposed to solve the problem of input boundedness. Finally, the global asymptotic stability is proven for the simplified model and the effectiveness is illustrated through simulation.

Index Terms—Tailsitter, VTOL UAV, Vectoring thrust

I. INTRODUCTION

O

VER the past few years, the tailsitter airframe has received increasing interest because of its unique advantages over the typical fixed-wing aircraft and hovercraft. Fixed-wing aircrafts are generally less expensive and more energy efficient since they do not require any additional propulsion system to take off and land, but instead, they require a suitable runway and cannot hover to interact with stationary objects. On the other hand, hovercrafts are able to hover at an arbitrarily low speed, as well as take off and land in confined areas, but their speed in horizontal cruise mode is too low to achieve long-range flight. Tailsitter aircraft combines the benefits of fixed-wing aircraft and hovercraft: it can take off and land on its tail without any additional propulsion system, and convert the mode from vertical flight to horizontal flight to achieve long-range flight as efficiently as the typical fixed-wing aircraft can do[1].

Many researchers have made great contributions to the study of the tailsitter airframe. The authors in [2] designed a T-wing tailsitter UAV, which uses propeller wash over its wing and fin control surfaces to effect control during hover flight. They first achieved the hovering control and then implemented the transition flight test successfully. In [3], a ITU-BYU tailsitter equipped with a hybrid propeller-ducted fan propulsion system has been designed as a trade-off approach between speed and power limitation. A canard-main wing-shroud propeller configuration for tailsitter was proposed and nice experimental results were presented in [4], [5]. The researchers in [6] designed a quadcopter tailsitter called VertiKUL which did not rely on control surfaces. However, most of the tailsitter aircrafts in previous studies are made with propellers or duct fans, which had low thrust and less efficiency. As a result, the cruise speed and flight range of such aircrafts are unsatisfactory.

To solve this problem, we designed a tailsitter aircraft controlled by a thrust-vectoring propulsion system, which is composed of 2 turbojet engines and 2 vectored nozzles, with the capacity of providing high-amplitude vectoring thrust, thus achieving a higher cruise speed and a larger flight range than those tailsitter aircrafts using propellers or duct fans[7]. There is no additional propulsion system required for our aircraft in the vertical flight mode, which reduces the deadweight and improves energy efficiency for the horizontal flight. However, such a configuration also brings some difficulties in control design. First, when the tailsitter aircraft is hovering at a relatively low speed, the control surfaces become invalid and the vectoring thrust bounded both in amplitude and orientation becomes the only control input, leading to the boundedness of translational thrust and rotational torque. Second, the mass and inertia tensor of aircraft are time-varying due to the consumption of aviation fuel by the turbojet engines. Besides, an undesirable rolling torque is brought in by the turbines at different rotation speed. Last but not least, the inherent coupling between translation and rotation leads to the non-minimum phase property in the dynamics of the tailsitter aircraft.

In this paper, an adaptive position tracking controller based on nested saturation function is proposed for our tailsitter VTOL UAV with the thrust-vectoring propulsion system. The problems of input boundedness, parameter uncertainty and undesired torque are addressed to a certain extent. Boundedness of control input is a common problem on VTOL control and has been explored in many studies[8], [9], [10], [11], [12], but it is difficult to prove global asymptotic stability when both input boundedness and parameter uncertainty are taken into consideration[13]. One of the main problems is that in the presence of mass uncertainty, some derivatives are unavailable to calculate the desired torque input. The authors in [14] used command filter to bypass this problem. However, to achieve asymptotic stability, this command filter technique requires filter parameters to be arbitrarily large, which violates the boundedness of control torque. To solve this problem, we use...
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942526, IEEE Access

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we expound the mathematical model of our tailsitter aircraft and point out the problems caused by the thrust-vectoring propulsion system. Some assumptions are made to simplify the model.

A. Propulsion system

For the sake of guaranteeing VTOL aircraft to achieve position tracking, the propulsion system should be able to provide translational acceleration, roll torque, pitch torque and yaw torque. At least two thrust vectors are required to fulfill the requirement. In this paper, we focus on a simple but efficient propulsion system, which is presented in Fig. 1.

This propulsion system is composed of 2 turbojet engines and 2 vectoring nozzles. Turbojet engines are installed on the aircraft’s tail and the engine axis is parallel to the longitudinal axis of aircraft’s body. The rotation directions of two turbines are opposite, so the undesired rolling torques caused by two engines can be countered partly. The axis-symmetry nozzles are controlled by 3 steers to achieve pitch and yaw movement. By changing the axial direction of nozzles, the direction of airstream is influenced, thus changing the direction of thrust. Each pair of an engine and a nozzle could generate one independent thrust vector. Specific configuration is shown in Fig. 2 and 3.

This configuration, which is easy to implement, fulfills the requirements of propulsion system for position tracking. However, due to the limited capacity of turbojet engines and the limited range of steers, the thrust vectors, as control inputs for the aircraft dynamics, are bounded both in amplitude and orientation.

B. Dynamic model

The tailsitter aircraft model is considered as a rigid body in this paper. Let the inertial frame and the body-fixed frame of the vehicle be denoted by $\mathcal{F}_i \triangleq \{\hat{e}_1, \hat{e}_2, \hat{e}_3\}$ and $\mathcal{F}_b \triangleq \{\hat{e}_{1b}, \hat{e}_{2b}, \hat{e}_{3b}\}$ respectively. Let $p \in \mathbb{R}^3$ and $v \in \mathbb{R}^3$ denote the aircraft’s position and linear velocity expressed in \mathcal{F}_i respectively, and let $\omega \in \mathbb{R}^3$ denote the angular velocity expressed in \mathcal{F}_b. The attitude of the aircraft is represented by the unit quaternion $Q \triangleq (\eta, q^T)^T$, where $\eta \in \mathbb{R}$, a scalar component, and $q \in \mathbb{R}^3$, a three-element vector component, satisfy the unity constraint: $\eta^2 + q^Tq = 1$. Rotation matrix
The inverse of a unit quaternion is defined by $Q^{-1} = (q, -q^T q)$. The multiplication between unit quaternion $Q_1 = (\eta_1, q^T_1)$ and $Q_2 = (\eta_2, q^T_2)$ is defined by $Q_1 \circ Q_2 = \left(\eta_1 q_2 + \eta_2 q_1 + S(q_1)q_2, \eta_1 q_2 - \eta_2 q_1 \right)$. Let $T_1 = (T_{11}, T_{12}, T_{13})^T$, $T_2 = (T_{21}, T_{22}, T_{23})^T$ denote the thrust vectors which are expressed in F_b and generated by the left and right engines respectively as shown in Fig. 4, and let $T = T_1 + T_2 = (T_1, T_2, T_3)^T$ denote the resultant thrust vector. Let the vectors from the center of gravity (CG) of the aircraft to the bearing points of T_1 and T_2 be denoted by $e_r \triangleq (a_1, a_2, a_3)^T$ and $e_l \triangleq (b_1, b_2, b_3)^T$, which are also expressed in F_b. To simplify the relationship between thrust and torque, the following assumption is made:

Assumption 1. Two engines are installed symmetrically with the longitudinal axis of the aircraft. The CG of our aircraft and the bearing points of T_1 and T_2 are within the same plane normal to e_{1b}. Therefore we obtain $a_1 = b_1 = 0$, $a_2 = -b_2 > 0$, $a_3 = b_3 > 0$.

The tailsitter VTOL airframe with such a propulsion system can be modeled as:

\[
\begin{align*}
\dot{p} &= v, \\
\dot{v} &= g\hat{e}_3 - \frac{T_3}{m} R(Q)^T T, \\
\dot{Q} &= \frac{1}{2} \left(-q^T \right) \omega, \\
I_f \dot{\omega} &= \tau - S(\omega) I_f \omega,
\end{align*}
\]

where g is the gravitational acceleration, m is the mass of the aircraft, and I_f is the inertia tensor expressed in F_b. Let L_{T0} denote the undesired rolling torque caused by the rotation of turbines. Under **Assumption 1** the torque τ can be formulated as:

\[
\tau = e_r \times (-T_1 + T_2) + e_l \times (-T_2) + (0, 0, L_{T0})^T.
\]

Define $z \triangleq ((T_{13} - T_{23})a_2, 0, L_{T0})^T$ and $\tau_u \triangleq ((T_{12} + T_{22})a_3, -((T_{11} + T_{21})a_3, -(T_{11} + T_{21})a_2)^T$, then we obtain

\[
\tau = \tau_u + z, \\
T = T_3 \hat{e}_3 + \frac{1}{a_3} S(\hat{e}_3) \tau_u.
\]

Although z is unknown, it should be noted that in hover mode, the longitudinal thrust is much larger than the lateral thrust, which means $T_{13} \approx ||T_1||$ and $T_{23} \approx ||T_2||$. And in practice, usually two turbojet engines received command of the same rotor speed for convenience, which means $||T_r|| = ||T_l||$ and $T_{13} - T_{23} \approx 0$. Moreover, L_{T0} is small because most of the undesired rolling torques of two engines at the same rotor speed would be counteracted. As a result, $||z||$ can be much smaller compared to $||\tau_u||$. Therefore, τ_u can be regarded as the torque input for attitude control, and z can be regarded as a bounded disturbance. By using (1), we can rewrite the aircraft dynamics as:

\[
\begin{align*}
\dot{p} &= v, \\
\dot{v} &= g\hat{e}_3 - \frac{T_3}{m} R(Q)^T T - \frac{1}{ma_3} R(Q)^T S(\hat{e}_3) \tau_u, \\
\dot{Q} &= \frac{1}{2} \left(-q^T \right) \omega, \\
I_f \dot{\omega} &= \tau_u - S(\omega) I_f \omega + z.
\end{align*}
\]

It can be seen that (2) is the position dynamics and (3) is the attitude dynamics. It should be noted that τ_u is not only the control input of attitude dynamics, but also influences the position dynamics directly. This coupling between two dynamics leads to the non-minimum phase problem in VTOL control. To simplify the stability analysis, the following assumption is made:

Assumption 2. The mass m and torque lever arm a_3 are sufficiently large such that $ma_3 \gg 1$, so the coupling term $(ma_3)^{-1} R(Q)^T S(\hat{e}_3) \tau_u \approx 0$.

Under **Assumption 2**, position dynamics (2) can be formulated as

\[
\begin{align*}
\dot{p} &= v, \\
\dot{v} &= g\hat{e}_3 - \frac{T_3}{m} R(Q)^T \hat{e}_3.
\end{align*}
\]

In this paper, the dynamics of engines and steers are ignored. It should be noted that torque input τ_u only depends on T_1 and T_2, so the longitudinal thrust T_3 and τ_u can be regarded as the independent control input of position dynamics (4) and attitude dynamics (3). According to the constrains $||T_r|| = ||T_l||$, $T_{12} = T_{22}$ and the definition of T_3 and τ_u, for any
Given $T_3 > 0$ and τ_u, T_r and T_l can be calculated through the following equations:

$$
T_{r1} = \left(0, -\frac{1}{2\alpha_3} - \frac{1}{2\alpha_2}\right) \tau_u,
$$

$$
T_{l1} = \left(0, -\frac{1}{2\alpha_3}, \frac{1}{2\alpha_2}\right) \tau_u,
$$

$$
T_{r2} = T_{l2} = \left(\frac{1}{2\alpha_3}, 0, 0\right) \tau_u,
$$

$$
T_{r3} = (T_3^2 + T_3^2 - T_{r1}^2)/2T_3,
$$

$$
T_{l3} = (T_3^2 - T_3^2 + T_{l1}^2)/2T_3.
$$

Therefore, in the rest of this paper, we use T_3 and τ_u as the control input for discussion instead of T_r and T_l.

Although fuel consumption of turbojet engines leads to changing mass and inertia tensor, the consumption rate would be much lower compared with the dynamics of our aircraft. Thus the following assumption is made about parameter uncertainty:

Assumption 3. The fuel is consumed at a relatively low rate so the mass m and inertia tensor I_f can be regarded as unknown constants in the aircraft dynamics.

Under Assumption 3, the mass m and the inertia tensor I_f can be estimated independently and regarded as constant parameters in the control design.

C. Problem formation

The objective of this paper is to design a globally asymptotically stable control law for the control input T_3 and τ_u, allowing the tail sitter aircraft to track a desired trajectory $p_d(t)$.

The tracking errors are defined as

$$
p(t) \triangleq p(t) - p_d(t), \quad \bar{v}(t) \triangleq v(t) - \bar{p}_d(t).
$$

Our task is to design an estimation method for the unknown mass m independent of the control design first, thereby designing the control law based on the boundedness of T_3 and τ_u in the presence of unknown inertia tensor I_f and bounded disturbance z. The following assumption is made about $p_d(t)$, I_f and z:

Assumption 4. There exist positive constants λ_p, λ_I and λ_z such that $\|p_d^{(n)}(t)\| \leq \lambda_p$, $\|I_f\| \leq \lambda_I$ and $\|z(t)\| \leq \lambda_z$ for all $t \geq 0$, where n is a positive integral satisfying $n \leq 4$.

Similar to [24], the intermediary variable $F \triangleq (\mu_1, \mu_2, \mu_3)^T$ and the error function $f(Q, Q_d)$ are used as the link between position and attitude dynamics, which are defined as:

$$
F \triangleq g\hat{e}_3 - \frac{T_{3d}}{m} R(Q_d)^T \hat{e}_3,
$$

$$
f(Q, Q_d) \triangleq \frac{T_3}{m} R(Q)^T \hat{e}_3 - \frac{T_{3d}}{m} R(Q_d)^T \hat{e}_3,
$$

where T_{3d} and $Q_d \triangleq (\eta_{q_d}, q_d^T)^T$ denote the desired longitudinal thrust and attitude quaternion. And then the position dynamics (4) can be rewritten as:

$$
\begin{align*}
\dot{p} & = \bar{v}, \\
\dot{\bar{v}} & = F - \bar{p}_d - f(Q, Q_d).
\end{align*}
$$

Provided that the intermediary control input F is determined, T_{3d} and Q_d can be calculated through the following attitude extraction algorithm [25]:

$$
T_{3d} = m \|g\hat{e}_3 - F\|, \\
\eta_d = \sqrt{1 + \frac{m(g - \mu_3)}{2T_{3d}}} , \quad q_d = \frac{m}{2T_{3d}} \eta_d \left(\begin{array}{c} \mu_2 \\ -\mu_1 \\
0 \end{array}\right),
$$

under the condition that $F \neq (0, 0, x)^T$, for $x \geq g$.

Condition (9) indicates that the engines should not be shut down or generate thrust in the same direction as gravity, which is reasonable in practice. Through (8) it is easy to see that the boundedness of F indicates the boundedness of T_3, and if F is differentiable, the desired angular velocity of the aircraft can be formulated as:

$$
\omega_d = \Xi(F) \bar{\dot{F}},
$$

$$
\bar{\omega}_d = \Xi(F) \bar{\dot{F}} + \bar{\Xi}(F) \bar{\dot{F}},
$$

where $\Xi(F)$ and $\Xi(F)$ are matrixes depending on F and F respectively, and related details are given in Appendix. Provided that F, $\bar{\dot{F}}$ and $\bar{\dot{F}}$ are all bounded, then $\Xi(F)$ and $\Xi(F)$ are bounded. From (10), (11) it can be concluded that ω_d and $\bar{\omega}_d$ are bounded as well.

Provided that the desired attitude Q_d and ω_d are determined, the attitude tracking error $Q = Q_d^{-1} \circ Q$, (12) and the attitude error dynamics is defined as

$$
\dot{Q} = \frac{1}{2} \left(\begin{array}{c} -\bar{q}^T \\ \bar{\eta} I_3 + S(\bar{q}) \end{array}\right) \bar{\omega},
$$

$$
\bar{\omega} = \omega - R(Q) \omega_d, \\
I_f \dot{\bar{\omega}} = \tau_u - S(\omega) I_f \omega + z.
$$

Since the dynamics of engines are not taken into consideration in this paper, the longitudinal thrust T_3 is supposed to equal to T_{3d} immediately, and then (6) can be rewritten as:

$$
f(Q, Q_d) = \frac{T_{3d}}{m} R(Q)^T (I_3 - R(Q)) \hat{e}_3 \\
= \frac{2T_{3d}}{m} R(Q)^T S(\hat{q}) \hat{q},
$$

where $\hat{q} = (\hat{q}_2, -\hat{q}_1, -\hat{q})^T$. From (14) and the boundedness of T_3 it is easy to see that $Q \rightarrow (\pm 1, 0, 0)^T$ indicates $f(Q, Q_d)$ $\rightarrow 0$.

III. Control Design

A. Mass estimation based on complementary filter

Although the mass of our aircraft is unknown, there are severable useful methods to estimate it in application. It should be noted that the fuel consumption of turbojet engines is the main reason for mass change, so the following equation can be established:
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942526, IEEE Access

usual to obtain estimated rate of fuel consumption, which can be formulated by the following equation:

\[\hat{m} = -f_c, \]

where \(f_c \) denotes the rate of fuel consumption. Through the analysis of ground experiment data in [29], we can find that there is a linear relationship between the rate of fuel consumption \(f_c \) and the rotor speed \(n_T \) when the thrust changes in a small scope, modelled by the following equation:

\[f_c(n_T) = \beta_T n_T + \beta_0, \]

where \(\beta_T \) and \(\beta_0 \) are constant parameters, and \(n_T \) can be measured accurately by the hall sensor. Let \(\hat{f}_c \) denote the estimated rate of fuel consumption, which can be formulated by the following equation:

\[\hat{f}_c(n_T) = \hat{\beta}_T n_T + \hat{\beta}_0, \]

where \(\hat{\beta}_T \) and \(\hat{\beta}_0 \) are constant parameters modelled from the ground experiment. In the presence of modelling error, it is usual to obtain \(\hat{\beta}_T \neq \beta_T \) and \(\hat{\beta}_0 \neq \beta_0 \). Then the modelling error \(e_f \) can be formulated by the following equation:

\[e_f \triangleq \hat{f}_c(n_T) - f_c(n_T) = (\hat{\beta}_T - \beta_T)n_T + \hat{\beta}_0 - \beta_0. \]

By integrating \(f_c \), we can obtain the estimate of the UAV’s mass, denoted by \(\hat{m}_b \). However, the modelling error \(e_f \) is also integrated, leading to the estimate diverging over time.

Another method for mass estimation relies on Newton second law of motion. Let \(\ddot{m} \) and \(a_m \) denoted the estimated mass and the acceleration measured by the accelerometer respectively. Assuming the thrust of turbojet engines is the only force imposed on our UAV except the gravity force, the estimate of mass can be calculated by the following equation:

\[\ddot{m} = \frac{\|T\|}{\|a_m\|}, \]

where \(T \) is the thrust vector. It should be noted that in the presence of vibration and other external disturbances, some high-frequency noises are added to this estimated value.

In order to get a better estimation result, a complementary filter is designed to combine the two estimate values \(\hat{m}_b \) and \(\ddot{m} \) to obtain a new estimate value \(\hat{m} \). This complementary filter is based on the attitude estimation approach in flight control [30]. The main idea is to design a high-pass filter on \(\hat{m}_b \) and a low-pass filter on \(\ddot{m} \). The block diagram of this complementary filter is shown in Fig. 5. A classical proportional integral compensation is adopted in this filter. The parameter \(k_P \) is used to adjust the cross frequency of high-pass and low-pass filtering, while the parameter \(k_I \) is used to compensate the integral error of \(\hat{m}_b \). The mathematical relation of \(\hat{m}, \hat{m}_b \) and \(\ddot{m} \) in Laplace form (with Laplace operator \(s \)) are as follows:

\[\ddot{m} = \frac{1}{s} \hat{m}_b + \frac{k_P}{s} (\ddot{m} - \hat{m}) + \frac{k_I}{s^2} (\ddot{m} - \hat{m}). \]

The error equation of \(\hat{m} \) can be formulated as:

\[\delta \hat{m} = \frac{k_P s \ddot{m}_b + (k_P s + k_I) \delta \hat{m}}{s^2 + k_P s + k_I}. \]

According to equation (16) and the final value theorem, it is easy to see that the estimated mass error converges to the error of the mass calculated from the accelerometer:

\[\lim_{t \to \infty} \delta \hat{m} = \delta \hat{m}, \]

which indicates that in a short time the filter uses the estimated rate of fuel consumption to improve estimation accuracy of mass, while in a long time the estimated mass error is limited within a certain range by using the data from accelerometer. This complementary filter is able to overcome the adverse effect caused by high-frequency noises and the integral error. Since the estimation of mass is independent to the control law, it is reasonable to consider \(m \) as a known parameter in the following control design.

B. Intermediary position control design

First we introduce the non-decreasing differentiable scalar saturation function \(\sigma_i(x) \) for scalar \(x \in \mathbb{R} \), which is defined as:

\[
\begin{align*}
(a) & \; x \sigma_i(x) \geq 0, \quad \forall x \\
(b) & \; \sigma_i(x) = k_i x, \quad \forall |x| \leq l_i \\
(c) & \; \sigma_i(x) = M_i (\text{sign}(x)), \quad \forall |x| \geq L_i \\
(d) & \; 0 \leq \frac{\partial \sigma_i(x)}{\partial x} \leq k_i, \quad \forall x \\
(e) & \; \left| \frac{\partial^2 \sigma_i(x)}{\partial x^2} \right| \leq \frac{M_i - k_i l_i}{L_i - l_i}, \quad \forall x
\end{align*}
\]

where \(k_i, l_i, M_i \) and \(L_i \) are some positive design parameters with \(M_i > k_i l_i \) and \(L_i > l_i \). For any given vector \(\bar{x} \triangleq (x_1, x_2, x_3)^T \), the vector saturation function \(\vec{\sigma}_i(\bar{x}) \) is defined as:

\[
\vec{\sigma}_i(\bar{x}) = \begin{pmatrix}
\sigma_i(x_1) \\
\sigma_i(x_2) \\
\sigma_i(x_3)
\end{pmatrix},
\]

where \(\sigma_i(\cdot) \) is the saturation function defined in (18).

Motivated by [16], the intermediary control input \(F \) is designed as:

\[F = \vec{p}_d - \vec{\sigma}_2 (\vec{v} + \vec{\sigma}_1 (\vec{p})), \]

where \(\vec{\sigma}_1(\cdot) \) and \(\vec{\sigma}_2(\cdot) \) represent the vector saturation function defined in (19) satisfying the following conditions:

\[
\begin{align*}
k_1 l_1 & > l_2, \\
k_2 l_2 & > \frac{T_m \gamma_T}{\bar{m}} + k_1 (l_2 + M_1),
\end{align*}
\]

where \(T_m \) denotes the upper bound of \(T_3 \), and \(\gamma_T \) is a positive constant satisfying \(\gamma_T < 1 \). It is easy to see that \(F, \vec{F}, \vec{F} \) are all bounded, and according to (8), (10) and (11), the desired
variables T_{3d}, ω_d and $\dot{\omega}_d$ are bounded as well. The following assumption is made:

Assumption 5. $T_m \geq m(g + \lambda_p + M_2)$.

Loosely speaking, Assumption 5 states that the available thrust is large enough such that the desired intermediary control law (20) is feasible. And to satisfy (21) the following condition holds:

$$\gamma_T < \frac{k_0 l_2 - k_1 (l_2 + M_1)}{g + \lambda_p + M_2}. \quad (22)$$

Under Assumption 5, there always exist a set of parameters satisfying (21) and (22) simultaneously.

C. Attitude control design

According to the boundedness of ω_d and $\dot{\omega}_d$, there exist positive constants $\lambda_{\omega 1}$ and $\lambda_{\omega 2}$ satisfying $\|\omega_d(t)\| \leq \lambda_{\omega 1}$ and $\|\dot{\omega}_d(t)\| \leq \lambda_{\omega 2}$ for all $t \geq 0$. Similar to [21], for attitude dynamics (13) the control input torque $\tau_u \triangleq (u_1, u_2, u_3)^T$ is designed as:

$$u_i = -\frac{u_m s_i}{|s_i| + k\delta}, \quad i = 1, 2, 3$$

$$s \triangleq (s_1, s_2, s_3)^T = \omega + k^2 \bar{q}, \quad (23)$$

where u_m and δ are positive constants, and k is an adaptive variable to ensure asymptotic disturbance rejection. The error quaternion vector $\bar{q} \triangleq (\bar{q}_1, \bar{q}_2, \bar{q}_3)^T$ and the error angular velocity $\dot{\omega} \triangleq (\dot{\omega}_1, \dot{\omega}_2, \dot{\omega}_3)^T$ are calculated through (12) and (13) respectively. The adaptive law of $k(t)$ is designed as:

$$\dot{k} = \frac{\gamma k}{1 + 4\gamma (1 - \eta)} \left\{ u_m \sum_{i=1}^{3} \left[\frac{|\omega_i \bar{q}_i|}{|s_i| + k^2 \delta} - \frac{|\omega_i| (1 + \delta)}{|\omega_i| + k^2 (1 + \delta)} \right] - q^T s \right\}. \quad (24)$$

The parameter γ is a sufficiently small positive constant satisfying the following condition:

$$\gamma \left\{ (u_m (1 + \delta) / \delta + c_k (\gamma)^2) c_1(\gamma) + c_2(\gamma) \right\} \leq (k_0^2 - k^2), \quad (25)$$

where k_0 denotes the initial value of $k(t)$ and \bar{k} is a positive constant satisfying $k < k_0$. $c_k(\gamma), c_1(\gamma)$ and $c_2(\gamma)$ are positive functions satisfying

$$k(t) < c_k(\gamma), \quad \forall t$$

$$\int_0^\infty k^4(x)q^T(x)\bar{q}(t)dx < c_2(\gamma). \quad (26)$$

It is clear that the control input τ_u is bounded by $\pm u_m$. The following assumption is made:

Assumption 6. $u_m > \lambda_1 (\lambda_{\omega 1} + \lambda_{\omega 2}) + \lambda_2$.

In fact, assumption 6 states that the available control torque is sufficient to simultaneously track the desired attitude Q_d and angular velocity ω_d with rejecting bounded disturbances.

IV. Stability analysis

In this section, the global asymptotic stability of the tracking error system is proven. We demonstrate in Theorem 1 that the states of position dynamics (7) with the intermediary control law (20) are ultimately bounded by the error function $f(Q, Q_d)$ under some conditions. And then in Theorem 2 it is proved that the attitude dynamics (13) with the control law (23) and the adaptive law (24) are globally asymptotically stable. The stability of the whole system is a direct conclusion of these two theorems.

For any scalar value $\tilde{x}(t) \in R, \lambda \in R^+$, we write $\tilde{x}(t) \approx O(\lambda)$ to denote that $\tilde{x}(t)$ and λ have the same order. Before proving the ultimate boundedness of position error dynamics, we first demonstrate the ultimate boundedness of a simple scalar system in the following lemma:

Lemma 1. Consider the following system

$$\begin{align*}
\dot{x}_1 &= x_2, \\
\dot{x}_2 &= u + d(t).
\end{align*} \quad (27)$$

with states $(\tilde{x}_1, \tilde{x}_2) \in \mathbb{R} \times \mathbb{R}$, disturbance $d(t) : \mathbb{R}^+ \rightarrow \mathbb{R}$, and control law $u \triangleq -\sigma_2(\tilde{x}_2 + \sigma_1(\tilde{x}_1))$, \quad (28)

where σ_1 and σ_2 are the saturation functions defined in (18). If the parameters satisfy the following conditions:

$$k_1 l_1 > l_2,$$ \quad (29)

$$k_2 l_2 > \lambda_d + k_1 (l_2 + M_1),$$

where λ_d denotes the upper bound of $|d(t)|$, then the states $(\tilde{x}_1, \tilde{x}_2)$ are ultimately bounded by $O(\lambda_d)$.

Proof: It is easy to see that if all states reach the linear unsaturated region of the saturation function in a finite time, then the system (27) becomes

$$\begin{bmatrix}
\dot{\tilde{x}}_1 \\
\dot{\tilde{x}}_2
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix} + \begin{bmatrix}
d(t)
\end{bmatrix},$$

$$A = \begin{bmatrix}
0 & 1 \\
-k_1 l_2 & -k_2
\end{bmatrix}. \quad (30)$$

Since A is a Hurwitz matrix, for initial time t_o there always exist positive constants a and b satisfying

$$\|\tilde{x}(t)\| \leq ae^{-b(t-t_0)} \|\tilde{x}(t_0)\| + \frac{a}{b} \lambda_d,$$

which indicates the Input-to-State stability on $d(t)$, so to complete the proof we only need to demonstrate that all states reach the linear unsaturated region in a finite time.

Let $y = \tilde{x}_2 + \sigma_1(\tilde{x}_1)$, first we show that $y(t)$ reach the region $\Omega_y \triangleq \{ y : |y| \leq l_2 \}$ in a finite time. For initial time t_o, assume $y(t_0) \geq l_2$ without loss of generality. If $y(t)$ does not reach Ω_y in a finite time, using (28) and (29), we obtain

$$\begin{align*}
\dot{\tilde{x}}_2 &= -\sigma_2(y) + d(t) \\
\Rightarrow \dot{\tilde{x}}_2 &\leq -k_2 l_2 + d(t) \\
\Rightarrow \tilde{x}_2(t) &\leq \tilde{x}_2(t_0) - (k_2 l_2 - \lambda_d)t \\
\Rightarrow y(t) &\leq y(t_0) + \sigma_1(\tilde{x}_1(t_0)) - \sigma_1(\tilde{x}_1(t_0)) - (k_2 l_2 - \lambda_d)t \\
\Rightarrow y(t) &\leq y(t_0) + 2M_1 - (k_2 l_2 - \lambda_d)t.
\end{align*} \quad (31)$$
The right-hand side of the last equation in (31) goes to negative infinity as \(t \to \infty \), leading to a contradiction with the assumption. Thus \(y(t) \) reaches \(\Omega_2 \) in a finite time, and we can obtain the upper-bound of this reaching time \(t_1 \):

\[
t_1 \leq t_0 + \frac{y(t_0) + 2M_1 - l_2}{k_2l_2 - \lambda_d}.
\]

Then we show \(y(t)\dot{y}(t) < 0 \) at the boundaries of \(\Omega_2 \). Under the condition \(|y(t)| = l_2 \), using (28) and (29) we obtain

\[
y\dot{y} = y\left(-\sigma_2(y) + d(t) + \frac{\partial \sigma_1(\bar{x}_1)}{\partial x_1} \dot{\bar{x}}_1 \right)
= y\left(-k_22l_2\text{sign}(y) + d(t) + \frac{\partial \sigma_1(\bar{x}_1)}{\partial x_1} (y - \sigma_1(\bar{x}_1)) \right)
\leq |y| \left(-k_2l_2 + \lambda_d + k_1(l_2 + M_1) \right) < 0.
\]

This proves \(\Omega_2 \) is positively invariant.

Next, the same technique is used to prove that \(\bar{x}_1(t) \) would reach the region \(\Omega_1 \) in a finite time. Without loss of generality, assume \(\bar{x}_1(t_1) \geq l_1 \). If \(\bar{x}_1 \) does not reach \(\Omega_1 \) in a finite time, using (28) we obtain

\[
\dot{x}_1(t) = y(t) - \sigma_1(\bar{x}_1(t))
\leq l_2 - k_1l_1
\Rightarrow \bar{x}_1(t) \leq \bar{x}_1(t_1) - (k_1l_1 - l_2)(t - t_1).
\]

where the right-hand side of the last equation goes to negative infinity as \(t \to \infty \), so \(\bar{x}_1(t) \) reaches \(\Omega_1 \) in a finite time, and we can obtain the upper-bound of the time point \(t_2 \):

\[
t_2 \leq t_1 + \frac{\bar{x}_1(t_1) - l_1}{k_1l_1 - l_2}.
\]

And under the condition \(|\bar{x}_1(t)| = l_1 \), we have

\[
\dot{x}_1\bar{x}_1 = \bar{x}_1(y - \sigma_1(\bar{x}_1))
= \bar{x}_1(y - k_1l_1\text{sign}(\bar{x}_1))
\leq |\bar{x}_1| (l_2 - k_1l_1) < 0.
\]

This indicates that \(\Omega_1 \) is positively invariant and completes the proof.

Lemma 1 simplifies the proof for the following theorem:

Theorem 1. Consider the closed-loop error system (7) with the intermediary control law (20) satisfying the condition (21). If there exist some \(\epsilon > 0 \) and \(t_f > 0 \) such that \(\|f(Q, Q_d)\| \leq \epsilon \) for all \(Q(t), Q_d(t) \) with \(t > t_f \), and the following condition holds:

\[
\epsilon < \frac{T_m}{m}\gamma T,
\]

then the states \((\bar{p}, \bar{q})\) ∈ \(\mathbb{R}^3 \times \mathbb{R}^3 \) of system (7) are ultimately bounded by \(O(\epsilon) \).

Proof: It should be noted that the system (27) with the control law (28) is just the scalar form of the position error dynamics (7) with the control law (20). For \(t > t_f \), \(f(Q, Q_d) \) can be regarded as the disturbance bounded by \(\lambda_d \), and from (21) and (33) the conditions (29) hold. According to Lemma 1, the states \((\bar{p}, \bar{q})\) are ultimately bounded by \(O(\epsilon) \).

Theorem 1 states that if \(f(Q, Q_d) \) is bounded by a sufficiently small positive constant \(\epsilon \) after a finite time, the tracking error is ultimately bounded. Moreover, if \(\lim_{t \to \infty} f(Q, Q_d) = 0 \), the the tracking error is also approximating zero and the whole system is asymptotically stable. To illustrate this, the following theorem is presented:

Theorem 2. Consider the attitude error system (13) with the control law (23) and adaptive law (24). If a sufficiently small \(\gamma \) satisfying condition (25) is chosen, then \(\lim_{t \to \infty} \bar{\omega}(t) = \lim_{t \to \infty} \bar{\omega}_d = 0 \), and moreover, \(\lim_{t \to \infty} f(Q, Q_d) = 0 \).

Proof: Similar to [21], the following Lyapunov function is chosen:

\[
V = \frac{1}{2} \left(\bar{\omega}^T I_f \bar{\omega} + 2k^2 \left(\bar{q}^T \bar{q} + (\bar{\eta}^2 - 1)^2 \right) + k^2/\gamma \right).
\]

Using (23) and (24), we can obtain

\[
\dot{V} \leq -|\bar{\omega}|(u_m - |H|| - \lambda_z - k^2\bar{q}^T \bar{q}),
\]

where \(H \triangleq (R(\bar{\omega})\omega_d - I_f(R(\bar{\omega})\omega_d + I_f(\bar{\omega})\omega_d) \). It should be noted that pre-multiplying any vector by the rotation matrix \(R(\bar{\omega}) \) will lead to a new vector with the same magnitude of the old one, which means \(|R(\bar{\omega})\omega_d| = |\omega_d| \leq \omega_1 \) and \(|R(\bar{\omega})\omega_d| = |\omega_d| \leq \omega_2 \). According to Assumption 4, we can obtain \(|I_f| \leq \lambda_f \). The following relation holds:

\[
\|H\| \leq |R(\bar{\omega})\omega_d||I_f||R(\bar{\omega})\omega_d| + |I_f||R(\bar{\omega})\omega_d|
= \omega_1||I_f||\omega_d| + |I_f||\omega_d|
\leq (\lambda_f^2 + \lambda_f)\lambda_f.
\]

Under Assumption 6, applying the relation (36) to the inequality (35) we finally obtain \(\dot{V} \leq 0 \), which implies that \(\bar{\omega} \) and \(\bar{K} \) are all bounded. As a result, \(V \) is bounded. Define \(c \triangleq u_m - \lambda_f(\lambda_f + \lambda_f) \). By integrating (35) we obtain

\[
V(0) - V(\infty) \geq c \int_0^\infty |\bar{\omega}(x)| dx + \int_0^\infty k^2(x)\bar{q}^T(x)\bar{q}(x) dx.
\]

Because the term on the left-hand side is bounded, it follows that \(V \in L^1 \) and \(k^2 \bar{q} \in L^2 \). From the boundedness of \(\bar{\omega} \), \(k \) and \(\bar{q} \), it is easy to see that \(\dot{\bar{\omega}} \) and \(\dot{\bar{q}} \) are all bounded, as well as \(c_1(\gamma), c_1(\gamma) \) and \(c_2(\gamma) \) are finite functions. Using the Barbalat’s lemma we obtain

\[
\lim_{t \to \infty} \bar{\omega}(t) = \lim_{t \to \infty} k^2(t)\bar{q} = \lim_{t \to \infty} s = 0,
\]

which indicates that there exist constants \(g_1 \) and \(g_2 \) such that \(|\bar{\omega}(t)| \leq g_1 \) and \(|s| \leq g_2 \) hold for all \(t \geq 0 \). From (24), with the same derivation in [21] we obtain

\[
k \geq -\bar{\gamma}k \left[g_1(1 + \frac{1}{\delta}) \right] (2 + \delta) + g_2 \right].
\]

This inequality can be integrated to obtain

\[
k(t) \geq k_0 \exp(-\bar{\gamma}t),
\]

where \(\xi \triangleq g_1(1 + \frac{1}{\delta})(2 + \delta) + g_2 \). This indicates \(k(t) \geq 0 \) for all time with \(k(t) = 0 \) possible only at \(t = \infty \).

From (24) we can also obtain the following inequality:

\[
kk \geq -\bar{\gamma} \left[\left(\frac{1}{\delta} + c_k(\gamma)^2 \right) |\bar{\omega}| + k^4\bar{q}^T \bar{q} \right].
\]
By integrating this inequality we obtain

\[k^2(\infty) \geq k_0^2 - 2\gamma \left[\frac{1}{\delta} \left(\frac{1 + \delta}{\delta} + c_k(\gamma)^2 \right) \int_0^\infty \| \ddot{\omega}(x) \| \, dx \right. \\
\left. + \int_0^\infty k^4(x) \ddot{q}(x) \dddot{q}(x) \, dx \right]. \]

Hence if a sufficiently small positive constant \(\gamma \) satisfying the condition (25) is found, then \(k(t) \geq \hat{k} \) hold for all \(t \geq 0 \). Therefore, \(\lim_{t \to \infty} k^2(t) \ddot{q} = 0 \) leads to \(\lim_{t \to \infty} \ddot{q} = 0 \). According to (14), we obtain \(\lim_{t \to \infty} f(Q, Q_d) = 0 \), which completes the proof.

From Theorem 1 and Theorem 2, it is concluded that the tracking error system (7), (13) with the intermediary controller (20) and the adaptive attitude controller (23), (24) satisfying conditions (21), (25) is globally asymptotically stable.

V. SIMULATION RESULTS

We use SIMULINK as the simulation tool to illustrate the effectiveness of the proposed control scheme. As described in Section III-A, the changing rate of the mass is considered as a linear function of the thrust, and the modelling error is set as \(\beta_T - \beta_{T_0} = 4.75 \times 10^{-3} \) and \(\beta_q - \beta_q = 0.002 \). White Gaussian noises are added to the measured acceleration with variance 0.0005. The initial values of mass and estimated mass are 28.8 kg and 28 kg respectively. All initial states of the aircraft are set to zero except the initial attitude quaternion, which is set to \((0.9, 0.2517, 0.2517, -0.2517)^T \). The initial adaptive parameter \(k(0) \) is set to 1. The inertia tensor is set to \((20, 2, 0.9)^T, (2, 17, 0.5)^T, (0.9, 0.5, 15)^T \), which remains unchanged according to Assumption 3. The moment disturbance \(z \) caused by the two different longitudinal thrusts is considered as a gaussian noise, the variance of which is proportional to thrust with the scaling factor \(\rho_T = 0.0005 \) m. The desired trajectory is set as \(p_d(t) = (20 \cos (0.2t + 2), 20 \sin (0.2t + 2.4), 4t)^T \) m. Let \(T_m = 400 \) N and \(u_m = 20 \) N \(\cdot \) m denote the maximum of thrust and control torque. The controller parameters are chosen as shown in Table I to satisfy the conditions (9), (21), (22) and (25) and (29). The simulation results are presented in Figs. 6~14.

<table>
<thead>
<tr>
<th>(k_1)</th>
<th>(k_2)</th>
<th>(l_1)</th>
<th>(l_2)</th>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(M_1)</th>
<th>(M_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.66</td>
<td>0.86</td>
<td>10</td>
<td>65</td>
<td>20</td>
<td>70</td>
<td>12</td>
<td>60</td>
</tr>
</tbody>
</table>

\[\begin{array}{cccccc}
\gamma_T & \gamma & \delta & u_m & k_p & k_I \\
0.02 & 0.01 & 0.5 & 20 & 1 & 0.15
\end{array} \]

TABLE I – Controller parameters

Fig. 6 shows that the estimated mass converges rapidly to the true value and the estimated mass error converges to the error of the mass calculated according to accelerometer data. By adjusting the PI parameters we are able to adjust the convergence speed. From Fig. 7 it is clear that the adaptive parameter \(k(t) \) asymptotically converges to a positive value. Figs. 8, 9, 10 and 11 illustrate that the position tracking error, velocity tracking error, attitude tracking error and angular velocity tracking error asymptotically converge to zero respectively. From Fig. 12 and Fig. 13, it can be seen that the control input thrust and torque are limited by the saturation function, which satisfies \(T_3 \leq T_m, |u_1| \leq u_m, |u_2| \leq u_m, |u_3| \leq u_m \). In Fig. 14, a 3-D plot of the UAV’s position with the desired trajectory is given to illustrate the position tracking. From these figures, it is clear that the asymptotic stability is guaranteed in the presence of input boundedness and parameter uncertainty.
VI. CONCLUSIONS

In this paper, we first introduce the tailsitter VTOL UAV equipped with the thrust-vectoring propulsion system and then design an adaptive control approach by combining the nested saturation function and variable structure techniques for this UAV to solve the input boundedness problem. An explicit complementary filter is utilized to solve the mass uncertainty problem. The disturbances on control torque are rejected through the adaptive attitude control approach. Some assumptions are made to simplify the model, and under these assumptions the global asymptotic stability of the closed-loop system is proven. Simulation results are presented to illustrate the effectiveness of our method. With simple modification, this control method can be applied to other tailsitter models equipped with different thrust-vectoring propulsion systems.

Future work will concentrate on practical experiments. As shown in Fig. 15, we have assembled a real tailsitter VTOL UAV equipped with the thrust-vectoring propulsion system described in Section II-A. During the experiments, it was found that the disturbances caused by wind have become the main problem for our position tracking control. Sometimes the wind is so strong that our adaptive controller becomes invalid in the presence of input boundedness. Right now, we are trying to find some new control strategies based on the adaptive controller presented in this paper to reduce the disturbances from wind. For example, by adjusting the attitude of our aircraft, especially the roll angle, we could dramatically reduce the disturbances caused by the wind in a certain direction. Besides, we ignore the dynamics of our thrust-vectoring propulsion system in this paper. However, there is a time lag between command sending and engine response, which limits the changing rate of the thrust. In the future, a more comprehensive model will be built by taking the dynamics of our thrust-vectoring propulsion system into account, which allows us to design a more practical controller for experiments.

APPENDIX

We derive the boundedness of angular velocity ω_d and angular acceleration $\dot{\omega}_d$ from (10) and (11) in this part.

Fig. 10 – Attitude tracking error vs. time.

Fig. 11 – Angular Velocity tracking error vs. time.

Fig. 12 – Thrust vs. time.

Fig. 13 – Control torque vs. time.

Fig. 14 – 3D plot of the VTOL vehicle trajectory (red) with the desired trajectory (blue)
According to [25], the function $\Xi(F)$ is in the following form:

$$
\Xi(F) = \frac{1}{\gamma_1 \gamma_2} \left(\begin{array}{ccc}
-\mu_1 \mu_2 & -\mu_2^2 + \gamma_1 \gamma_2 & \mu_2 \gamma_2 \\
\mu_1 \gamma_1 - \gamma_2 & \mu_1 \mu_2 & -\mu_1 \gamma_2 \\
-\mu_1 \gamma_1 & -\mu_1 \gamma_1 & 0
\end{array} \right),
$$

where $\gamma_1 = T_X / m$, $\gamma_2 = \gamma_1 + (g - \mu_3)$. From (9), γ_1 and γ_2 are positive and bounded if F is bounded. With simple derivation, we obtain the following formulation:

$$
\begin{align*}
\dot{\gamma}_1 &= \frac{1}{\gamma_1} \left(\mu_1 \mu_2 - (g - \mu_3) \right) F, \\
\dot{\gamma}_2 &= \dot{\gamma}_1 - \mu_3.
\end{align*}
$$

From the formulation, it is clear that γ_1, γ_2, $\dot{\gamma}_1$ and $\dot{\gamma}_2$ are all bounded when F and \tilde{F} are bounded. And under this situation, as a function of F, \tilde{F}, $\dot{\gamma}_1$ and $\dot{\gamma}_2$, $\Xi(F)$ is also bounded. From (10) and (11) it is concluded that ω_d and $\dot{\omega}_d$ are both bounded if F, \tilde{F} and \tilde{F} are bounded.

By using the intermediary control law (20), we obtain the following formulation:

$$
\begin{align*}
F &= \ddot{p}_d - \sigma_2 \left(\ddot{p} + \sigma_1 \dot{p} \right), \\
\tilde{F} &= p^{(4)}_d - \sigma_2 \left(\tilde{p} + \sigma_1 \tilde{p} \right) \cdot \left(\ddot{p} + \sigma_1 \dot{p} \right), \\
\tilde{F} &= p^{(4)}_d - \sigma_2 \left(\tilde{p} + \sigma_1 \tilde{p} \right) \cdot \left(\ddot{p} + \sigma_1 \dot{p} \right) \cdot \left(\ddot{p} + \sigma_1 \dot{p} \right) \cdot \left(\ddot{p} + \sigma_1 \dot{p} \right),
\end{align*}
$$

Under Assumption 4 the desired trajectory p_d and its derivatives are all bounded, and from (18) the saturation functions $\hat{\sigma}_i(\cdot)$, $i = 1, 2$ are also bounded. It should be noted that the error function $f(Q, Q_d)$ is always bounded, no matter whether the attitude error \tilde{q} is asymptotically stable. So according to Theorem 1, it is concluded that the states (\tilde{p}, \tilde{v}) are bounded.

And by substituting (20) into (7), we can obtain the following formulation:

$$
\ddot{p} = -\sigma_2 \left(\ddot{p} + \sigma_1 \dot{p} \right) + f(Q, Q_d).
$$

It is clear that \ddot{p} is also bounded. Because of the boundedness of $p_d^{(n)}$, $n = 1, 2, 3, 4$, σ_i, $i = 1, 2$, \ddot{v} and \ddot{p}, we can draw the conclusion that F, \tilde{F} and \tilde{F} are all bounded, which leads to the boundedness of angular velocity ω_d and angular acceleration $\dot{\omega}_d$.

References

