Heat Transfer Characteristics of High Speed and Heavy Load Hydrostatic Bearing

XIAODONG YU*, YU WANG, DEFAN ZHOU, GUANGPENG WU, WENKAI ZHOU AND HONGWEI BI

Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, Heilongjiang Province, China;
Corresponding author: Xiaodong Yu (yuxiaodong@hrbust.edu.cn).

This work was supported in part by the National Natural Science Foundation of China (51375123) and National Natural Science Foundation of Heilongjiang Province (E2016040).

ABSTRACT This paper investigates the heat transfer characteristics of hydrostatic bearing in a 5m vertical lathe based on fluid-solid-heat coupling analysis. The relationship among convective heat transfer coefficient of hydrostatic bearing friction pairs, rotational speed and load is deduced. The influence of rotational speed, heavy load and convection mode on heat dissipation performance of friction pairs in a hydrostatic bearing is investigated by numerical simulation and experimental test. It is found that the temperature of the upper and side surfaces of rotational workbench decreases slightly with the increase of rotational speed and heavy load, and the temperature of the upper and side surfaces are 26.6 °C and 22.4 °C respectively when its rotational speed is 60r/min and load is 25t, compared with 10r/min and 25t load, and the temperature decreases by 6.3% and 4.7% respectively, then the temperature remains basically constant, the heat transfer mode of rotational workbench is mainly forced convection. Rotational speed is the main factor that affects the heat transfer characteristics of the rotational workbench, the effect is greater when the rotational speed is less than 60r/min, and there is little effect when it is higher than 60r/min, the load has less effect on heat transfer characteristics. However, the heat transfer mode of the base is mainly heat conduction and natural convection.

INDEX TERMS High speed and heavy load, hydrostatic thrust bearing, friction pairs, heat transfer characteristic, simulation and experiment study.

I. INTRODUCTION

There is a series of advantages such as high accuracy, low friction coefficient, low driving power, long working time, good static and dynamic stiffness, vibration absorption performance and better stability in hydrostatic bearing, so hydrostatic bearing is widely used in various mechanical field, which is an important support and driving form. In recent decades, the heating mechanism of hydrostatic bearing is increasingly well understood. However, there is little research on the heat dissipation process of hydrostatic bearing. Chengpei Liu presented the performance characteristics of hydrostatic turntables through a novel integrated coupled model based on CFD method and FSI technique, and found the simulation results are in good agreement with the published experimental data\. Shimin Yu applied finite volume method and numerically investigated the mixed convection heat transfer around a permeable circular cylinder with internal heat generation in steady flow, heat transfer rate from a porous cylinder was higher than that from a solid one\. Yang Xiaodong adopted fluid-solid interaction (FSI) method and numerically analyzed the thermal load and heat transfer performance of rotary-table in a heavy vertical lathe, and found that the velocity rising not only caused oil film temperature increasing significantly, but also caused its carrying capacity decreasing\. E. Salimipour numerically and analytically investigated mixed convection in single and double-lid driven horizontal rectangular cavities filled with a Newtonian fluid and subjected to uniform heat flux along their vertical short sides, and found the transition from one dominated regime to another depends on the ratio Ra/Pe. Louaraychi numerically presented mixed convection effects on the flow and heat transfer characteristics of a horizontal circular cylinder exposed to a laminar, incompressible, and vertical stream, found that that for a fully isothermal cylinder, a critical value for the Grash of number existed.
Latour B evaluated the local convective heat transfer from a rotating disk with a transverse air crossflow using an infrared thermo graphic experimental setup, and advised this coupling was able to be taken into account in a correlation of mean Nusselt number relative to both Reynolds numbers. Astaria T reported a new governing similarity parameter and proposed a heat transfer correlation for the Nusselt number at the disk centre. Shevchuk I V developed a new evaluation approach for Nusselt numbers based on the experimental data for naphthalene sublimation in laminar, transitional and turbulent flows. Lu, D. pointed out the heat caused by the oil film shearing hydrostatic hydrodynamic hybrid bearings led to decreasing of bearing clearance and even seizure, especially at high speeds, which limited the speed of the bearing and the DN value. Li Mengyang built a coupled turbulent flows. Many scholars have done much research in terms of heat transfer. However, a heat transfer characteristics of hydrostatic bearing under working conditions of high speed and heavy load is still lacking. This paper is mainly for the heat transfer characteristics of rotational workbench and base under the working conditions of high speed and heavy load, which will be beneficial to the deformation research of hydrostatic bearing. And then, the model is verified by the experimental data.

II. Methodology

A. Temperature rise

The heat of the hydrostatic bearing comes from the pump power loss, the power loss along the pipeline, strong shear and extrusion. When the oil film temperature rises, and the heat is transmitted to the convection heat transfer mode, and then the heat is transferred to the surrounding air. Similarly, the natural convection heat transfer between the base and the surrounding air is occurred, and the heat is transferred to the surrounding air. The temperature rise control equation is as follows.

\[
\Delta T = \frac{H_p + H_f + H_v + H_e}{C_p \rho Q}
\]

Where \(H_p\) is power loss of the pump; \(H_f\) is strong shear power loss; \(H_v\) is extrusion power loss along the pipeline; \(C_p\) is specific heat; \(\rho\) is lubricant density; \(Q\) is flow rate.

B. Nussel number of natural convection

The coefficients of the natural convection and forced convection for the workbench are solved by Eq. (2). The heat transfer model of a hydrostatic bearing is shown in FIGURE 1, the heat generated from power loss and shear friction transmitted to the workbench and base through oil film, and the workbench and base are then thermally interacted with the surrounding air and foundation. A hydrostatic bearing prototype is shown in FIGURE 2, and convection heat transfer principle of a hydrostatic bearing is

\[
h = \frac{\lambda Nu}{l}
\]

Where \(\lambda\) is thermal conductivity of the fluid (W/(m K)), \(Nu\) is Nusselt number, \(l\) is characteristic length.

The solution for convective heat transfer coefficient is to calculate Nussel number, and calculation method of Nussel number under different working conditions is different.

For upper surface of rotational workbench

\[
Nu = \left(0.825 + \frac{0.387(Gr \times Pr)}{[l + (0.492/Pr)^{16/27}]} \right)^2
\]

Where \(Pr\) is Prandtl number; \(Gr\) = \(10^1\)~\(10^{12}\).

For side surface of rotational workbench

\[
Nu = \left[0.60 + \frac{0.387(Gr \times Pr)}{[l + (0.559/Pr)^{16/27}]} \right]^2
\]

C. Nussel number of forced convection

1) NUSSEL NUMBER OF UPPER SURFACE

When the Reynolds Number \(Re\leq5\times10^4\), the boundary layer is laminar flow, and the average Nusselt number is as follows.

\[
Nu = 0.664 Re_1^{0.5} Pr_1^{0.3}
\]

When the Reynolds Number \(Re\geq5\times10^4\), the boundary layer is turbulent, and if the whole plate is regarded as turbulent state, the Nussel numbers is as follows.

\[
Nu = 0.037 Re_1^{0.3} Pr_1^{0.8}
\]

2) NUSSEL NUMBER OF SIDE SURFACE

The pressure gradient can divide the flow field into several parts, but the heat transfer coefficient variation law of each part is not particularly obvious, and the average Nussel number of the lateral skimming side of the air can be calculated by Eq. (7).

\[
Nu = c Re_1^n
\]

c and \(n\) are shown in Table I.

| VALUE OF C & N ACCORDING TO DIFFERENT REYNOLDS NUMBER |
|-----------------|-----------------|
| \(Re\) | \(c\) | \(n\) |
| 4~40 | 0.809 | 0.385 |
| 40~4000 | 0.606 | 0.466 |
| 4000~40000 | 0.171 | 0.618 |
| 40000~250000 | 0.0239 | 0.805 |
shown in FIGURE 3. According to the principle of heat transfer, the heat dissipation of the workbench is as following. When the rotational workbench is working, the air produces relative motion around rotational workbench, and the forced convection heat transfer is carries out, its strength is determined by rotational speed. The surface temperature of rotational workbench is higher than surrounding temperature, the heat is transferred to air through natural convection heat transfer under no rotation of rotational workbench. The convective heat transfer mode are coexistences of forced convection heat transfer and natural convection heat transfer under rotation of rotational workbench.

1-motor; 2-pump; 3-refined oil filter; 4-oil inlet; 5-rotational workbench; 6-tank; 7-oil filter; 8-one-way valve; 9- relief valve; h-oil film thickness; Qin-heat transfer to the lubricating oil; Qout-heat from the lubricating oil; Qb-heat transfer to base; Qw- heat transfer to rotational workbench.

FIGURE 1. The heat transfer model of a hydrostatic bearing.

D. Convective heat transfer coefficient of workbench and base
Convective heat transfer coefficient of the upper surface of the workbench is equivalent to that of a fluid passing through a horizontal plate, and convective heat transfer coefficient of side surface is equivalent to that of a fluid passing across a cylinder. In order to calculate it conveniently for base, they are considered horizontal and vertical plates, and the workbench and base of hydrostatic bearing are shown in FIGURE 5 to FIGURE 8.

FIGURE 2. A hydrostatic bearing prototype.

FIGURE 3. Convection principle of a hydrostatic bearing.

FIGURE 4. Heat transfer model of workbench.

FIGURE 5. Workbench prototype.
The workbench rotates at high speed, its forced convection heat transfer is far greater than the natural convection heat transfer, so the natural convection heat transfer can be ignored. The base is still, there is only natural convection, and there is no forced convection, the calculation results of convective heat transfer coefficient are shown as Table II and Table III.

Table II: Convective Heat Transfer Coefficient of Workbench under Different Rotational Speed

<table>
<thead>
<tr>
<th>Rotational speed (r/min)</th>
<th>Upper surface W/(m²*K)</th>
<th>Side surface W/(m²*K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6.3174</td>
<td>15.9127</td>
</tr>
<tr>
<td>20</td>
<td>11.1215</td>
<td>28.6135</td>
</tr>
<tr>
<td>30</td>
<td>17.1328</td>
<td>42.0556</td>
</tr>
<tr>
<td>40</td>
<td>22.7452</td>
<td>55.2783</td>
</tr>
<tr>
<td>50</td>
<td>28.0786</td>
<td>68.3213</td>
</tr>
<tr>
<td>60</td>
<td>33.2027</td>
<td>81.2341</td>
</tr>
<tr>
<td>70</td>
<td>38.1583</td>
<td>94.0476</td>
</tr>
<tr>
<td>80</td>
<td>42.9747</td>
<td>106.7679</td>
</tr>
</tbody>
</table>

Table III: Convective Heat Transfer Coefficient of Base under Different Rotational Speed

<table>
<thead>
<tr>
<th>Rotational speed (r/min)</th>
<th>Base vertical plate 1 W/(m²*K)</th>
<th>Base horizontal plate 2 W/(m²*K)</th>
<th>Base vertical plate 2 W/(m²*K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.7814</td>
<td>2.9426</td>
<td>3.0174</td>
</tr>
<tr>
<td>20</td>
<td>3.2745</td>
<td>3.3798</td>
<td>3.4796</td>
</tr>
<tr>
<td>30</td>
<td>3.7348</td>
<td>3.7396</td>
<td>3.8732</td>
</tr>
<tr>
<td>40</td>
<td>4.1007</td>
<td>4.0177</td>
<td>4.2352</td>
</tr>
<tr>
<td>50</td>
<td>4.4086</td>
<td>4.3472</td>
<td>4.6573</td>
</tr>
<tr>
<td>60</td>
<td>4.6775</td>
<td>4.7439</td>
<td>5.1212</td>
</tr>
<tr>
<td>70</td>
<td>4.9174</td>
<td>5.0185</td>
<td>5.6019</td>
</tr>
<tr>
<td>80</td>
<td>5.1351</td>
<td>5.3738</td>
<td>6.1187</td>
</tr>
</tbody>
</table>

E. Experiment rig

In order to find out the heat transfer mechanism of hydrostatic bearing, and verifies the correctness of the mathematical model of heat transfer and the numerical simulation based on fluid-solid-heat coupling analysis, and according to the heat transfer characteristics of hydrostatic bearing, the heat transfer characteristics of bearing friction pairs are tested by using thermal imager camera. Flir-A40M is a non-handheld thermal imaging camera, which needs to be securely installed in a bracket manner, and the installation method is shown in FIGURE 9.
III. Simulation and Experiment of Temperature Field

A. Meshing

The grid quality directly affects the accuracy of analysis results of CFX. The hexahedral grid is adopted and established by means of O-grid and boundary layer in order to make the quality of grid meet all conditions. The total number of the grid is 1000296, and the quality distribution below 0.8 is 0, 0.9-1.0 is 992603, and meshing models of workbench and base are shown in FIGURE 13 and FIGURE 14.

FIGURE 10. Installation of thermal imaging camera.

FIGURE 11. Temperature measurement area of thermal imaging camera.

The reference point temperature and surroundings temperature are measured by thermometer, the emissivity is set to 0.85, and the humidity is set to 20%.

The return oil temperature is measured by armored thermal resistance, and the return oil temperature is the average temperature, the measuring device is shown in FIGURE 12.

FIGURE 12. Measuring device of return oil temperature

The temperature fields of workbench and base are simulated by ANSYS Workbench software. The model is imported into the ANSYS Workbench software, and the material properties of each part are defined\cite{24}. The material of the rotational workbench is 45# steel, the material of the base is HT300, the material of the oil pad is copper, and the material characteristics of them are shown in Table IV.

<table>
<thead>
<tr>
<th>Material</th>
<th>(\rho) kg/m(^3)</th>
<th>(E) GPa</th>
<th>(\sigma_b) MPa</th>
<th>(\mu)</th>
<th>(\alpha) 1/(10(^5)K)</th>
<th>(\lambda) W/mK</th>
<th>(c) J/(kgK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT300</td>
<td>7350</td>
<td>130</td>
<td>245</td>
<td>0.26</td>
<td>10.5</td>
<td>46.05-50.24</td>
<td>502.43-544.28</td>
</tr>
<tr>
<td>Steel</td>
<td>7850</td>
<td>200</td>
<td>180</td>
<td>0.31</td>
<td>12</td>
<td>60.5</td>
<td>434</td>
</tr>
<tr>
<td>Copper</td>
<td>8200</td>
<td>106</td>
<td>400</td>
<td>0.324</td>
<td>17.2</td>
<td>401</td>
<td>390</td>
</tr>
</tbody>
</table>

B. Initial and boundary conditions
Because the steady state problem is studied, the initial conditions can not be added. The boundary conditions are set up according to the third kinds of boundary conditions, that is, the convective heat transfer coefficient of the rotational workbench and the surrounding air and the surroundings temperature. When the temperature field of the workbench and base is solved, the oil film temperature field needs to be used as the steady heat source, and the upper and lower surface temperature of the oil film is coupled to the corresponding contact surface of the rotational workbench and base respectively. The oil film temperature fields from 10r/min and 80r/min are shown in FIGURE 15 and FIGURE 16. Boundary conditions of workbench and base are shown in FIGURE 17 and FIGURE 18.

C. Initial and boundary conditions
The temperature fields of the workbench under different rotational speed are simulated, and the temperature distribution of different positions of workbench are given, which is limited to the results from 10r/min to 80r/min, as shown in FIGURE 19 to FIGURE 24.
It can be seen that the oil film contact surface temperature is the highest and the outside diameter edge temperature is the lowest. The upper surface temperature gradually decreases along the radius.

The highest temperature on the side surface is concentrated in the middle of two "T" grooves. The model diagram shows that this part is directly connected with the oil film contact surface, and the connection part has no cooling.
holes, resulting in higher temperature, and different positions temperature of workbench under different rotational speed is shown as Table V.

<table>
<thead>
<tr>
<th>Rotational speed (r/min)</th>
<th>10 r/min</th>
<th>20 r/min</th>
<th>30 r/min</th>
<th>40 r/min</th>
<th>50 r/min</th>
<th>60 r/min</th>
<th>70 r/min</th>
<th>80 r/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>30.012</td>
<td>30.509</td>
<td>31.054</td>
<td>31.498</td>
<td>31.993</td>
<td>32.501</td>
<td>33.008</td>
<td>33.512</td>
</tr>
<tr>
<td>Side surface</td>
<td>23.851</td>
<td>23.316</td>
<td>22.771</td>
<td>22.582</td>
<td>22.611</td>
<td>22.392</td>
<td>22.338</td>
<td>22.297</td>
</tr>
<tr>
<td>Oil film contact surface</td>
<td>30.012</td>
<td>30.509</td>
<td>31.054</td>
<td>31.498</td>
<td>31.993</td>
<td>32.501</td>
<td>33.008</td>
<td>33.512</td>
</tr>
</tbody>
</table>

From the Table V, it can be seen that temperature rise of oil film contact surface increases with the increase of rotational speed, while upper and side surface temperature rises of workbench show a decreasing trend and tend to flatten, which is due to the increase of convection heat exchange between workbench and surroundings. However, the heat transmitted by the contact surface is basically equal to the heat dissipation of rotational workbench at high speed, so the temperature change trend is not obvious.

The numerical simulation results of base are shown in FIGURE 25 to FIGURE 28, it is found that the highest temperature position appears in the oil pad, because it is contact with the oil film. The side surface temperature rise increases and then decreases from bottom to top, and the highest temperature position is the junction of the horizontal plate and the vertical plate. Air flow field of base at 60 r/min is shown in FIGURE 29. It can be seen that the rotational speed is 60 r/min, the change of air flow field has a certain influence on the convection heat transfer strength of workbench from the figures.

FIGURE 25. Temperature field of base with 10r/min.

FIGURE 26. Temperature field of base with 80r/min.

FIGURE 27. Temperature field of vertical cylindrical surface with 10r/min.

FIGURE 28. Temperature field of vertical cylindrical surface with 80r/min.

FIGURE 29. Flow field of convective heat transfer at 60r/min.
D. Experimental procedure

Experiment procedure is as followed. The surface temperature field of the workbench is measured by thermal imaging camera, and the thermal resistance temperature converter is adjusted. The initial temperature is measured, including return oil temperature, surrounding temperature. The double-columns CNC vertical lathe DVT500 is designed with a maximum speed of 80rpm and an infinitely adjustable speed, with a rotational speed level of every 5r/min. From the lowest level of the machine speed to the maximum speed until the temperature field achieve stability. During the operation of the machine, thermal imaging camera is used to measure the temperature field of the workbench and base every 15 minutes, and a thermometer is used to measure surrounding temperature and return oil temperature. Because of the limitation of the installation position of the thermal imager, this paper only verifies the temperature field distribution of the worktable, and explains its heat conduction characteristics through the temperature field distribution.

E. Experimental results and discussion

Numerical simulation temperature field and experiment temperature field of workbench are shown in FIGURE 30 to FIGURE 35, where in the temperature $T_{20rpm} = 8.6$ °C, $T_{40rpm} = 4.4$ °C, $T_{60rpm} = 5.4$ °C. Comparing the experimental results with the numerical simulation of the temperature field, it is known that the temperature is the highest above the bearing oil film, and the temperature gradient decreases gradually to the outer edge, contrast between experimental results and numerical simulation results is shown in FIGURE 36.
The heat transfer characteristics of the friction pairs in a 5m hydrostatic bearing is studied based on fluid-solid-heat coupling analysis. The relationships among convective heat transfer coefficient of friction pairs, rotational speed and load are deduced. Through the modeling, simulation and experiment results, the characteristics of temperature distribution of hydrostatic bearing friction pairs are found, and then the influence law of rotational speed, load and convention mode on mechanism heat dissipation is obtained by temperature field. Increasing with the increase of rotational speed and load, temperature rise of the oil film contact surface increases, while temperature rise of the workbench upper and side surfaces shows a decreasing trend and tend to flatten, which is due to the increase of convection heat exchange between the speed increase workbench and the surroundings. The temperature rise of base increases and then decreases from bottom to top, and the highest temperature position is the junction of the horizontal plate and the vertical surface, the position of the heat dissipation is not good, in addition to the oil film is close to the oil pad to receive more heat, so the temperature is the highest. Rotational speed is the main factor that affects the heat transfer characteristics of the rotational workbench, the effect is greater when the rotational speed is less than 60r/min, and there is little effect when it is higher than 60r/min. However, the effect of the load on heat transfer characteristics is relatively small. The heat transfer mode of base is mainly heat conduction and natural convection.

ACKNOWLEDGMENT

The financial support for this work was provided by National Natural Science Foundation of China (51375123) and National Natural Science Foundation of Heilongjiang Province (E2016040).

REFERENCES

XIAODONG YU was born in 1971. He received BS and MS in Mechanical Design and Theory from Yan Shan University in 1992 and Harbin University of Science and Technology in 2003, respectively, he has a PhD in Mechanical Design and Theory from Northeast Forestry University in 2007. Now he is a Professor at Harbin University of Science and Technology. His current research interests include lubrication theory and bearing manufacturing.

YU WANG is currently pursuing a master's degree in mechanical engineering at Harbin University of Science and Technology. He has been conducting research in the Electromechanical and Fluid Integration Laboratory since 2018. His research interests include hydrostatic thrust bearing thermal conduction and hydrostatic thrust bearing eccentricity prediction and corresponding measures.

DEFAN ZHOU was born in 1963. He received BS in Mechanical Design and Theory from Yan Shan University in 1982. Now he is a Professor at Harbin University of Science and Technology. His current research interests include fluid transmission and control.

GUANGPENG WU is currently pursuing a master's degree in mechanical and electrical engineering at Harbin University of Science and Technology. Since 2018, he has been studying at the Institute of Electro-Mechanical and Hydraulic Integration Technology and Product Development. His research interests include hydrostatic bearings and static pressure hybrid bearings.

HONGWEI BI is currently pursuing a master's degree in mechanical and electrical engineering at Harbin University of Science and Technology. Since 2018, he has been studying hydrostatic thrust bearings, high speed and heavy duty static support. His research interests include tribology and lubrication techniques, modern hydraulic control engineering, elastoplastic theory and modern static pressure support technology.