Assessing rockburst hazards using a self-developed real-time microseismic monitoring system in a deep-sea goldmine

Dong Li*, Junfei Zhang**, Cunwen Wang³, Yang Chen⁴, Decheng Ge⁴

1 School of Safety Engineering, North China Institute of Science and Technology, Beijing 101601, China
2 School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth 6009, Australia
3 Shandong Energy Group CO., LTD., Jinan 250014, China
4 School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China

Corresponding author: Junfei Zhang (e-mail: junfei.zhang@research.uwa.edu.au)

* These authors contributed to the work equally and should be regarded as co-first authors.

ABSTRACT Deep-sea mining extracts ores on the ocean floor. During this process the sea water may flood into the mine due to rockburst hazards. This study proposes an effective method to assess rockburst hazards using a self-developed real-time microseismic monitoring system in Sanshandao goldmine (the first undersea mine in China). In addition, the wave dissimilation patterns of this mine have been elucidated by analyzing the signals obtained by the geophones embedded in a similar material model. The monitoring work started in December 2014 and ended in March 2015 in Sanshandao goldmine. To assess rockburst hazards, this study proposes several indexes including spatial-temporal distribution of microseismic events, microseismic activity rate, energy release rate, continuity index and average daily energy. Results show that the surrounding rock went through the stationary, active, secondary stationary and and secondary active periods before rockburst occurrence. Compared with the stationary period, a sudden change of the continuity index and average daily energy can be observed in the active period in which minor rockbursts constantly occurred. Rockburst accidents are very likely to occur in the secondary active period. However, before this period, there usually exists a secondary stationary period without rockburst risk. This study proposes a workflow for designing and applying microseismic monitoring systems.
INDEX TERMS rock burst; similar material simulation; microseismic monitoring; elastic wave; propagation; wave dissimilation

1 Introduction

Rockburst is a violent dynamic disaster caused by the sudden failure of the rock mass and is always associated with a large amount of seismic energy release [1]. Usually, rockburst hazards occur locally without influencing the general stability of the mine but can induce a variety of secondary hazards such as water burst, gas burst and dust explosion [2-4]. The past few decades have seen a number of rockburst accidents, which have caused many casualties and considerable economic loss [5, 6].

As some ore deposits are buried under the ocean floor, deep-sea mining has been developed to retrieve these minerals. In these mines, rockburst induced by mining activity may cause seawater to flood into the mine. Therefore, it is necessary to predict rockburst hazards in undersea mines in real time. By now, real-time microseismic monitoring techniques have been widely used during mining in many fields such as rock slope engineering [7], mining engineering [8, 9], tunneling [10] and hydrofracturing [11-13]. This technique can obtain spatial location, time, and magnitude of the microseismic events by analyzing the recorded acoustic signals. The mining-induced rock mass failure can then be predicted by using the obtained information [14-16]. Compared with the onshore deep mine, the water inflow of the deep-sea mine is much larger. The sea water is rich in halide, and therefore the vapor will corrode the devices in elevated temperatures. To address this problem, the devices of the microseismic monitoring system need to be specially designed for anti-corrosion purpose.

In the practice of microseismic monitoring, the static wave velocity is usually adopted; that is, the wave velocity between the focus and each geophone is equal, which results in a large location error [17]. The complex geological conditions in a mine will cause wave dissimilation such as attenuation of velocity and amplitude and disorder of first arrivals. There are three main factors that cause microseismic wave dissimilation: first, engineering defects, such as goafs, roadways, caverns, etc.; second, geological defects, such as faults, joints, bedding, subsided columns, etc., and third, lithological dissimilation, such as rock mass erosion, rock intrusion and lithological variation [18]. If the microseismic wave dissimilation is not taken into account, the fracture source of the rock cannot be located accurately [19-21].

However, the rock mass in a mine is not ideal to study wave dissimilation quantitatively due to complex geological conditions. To address this problem, a similar material model is used to simulate the mine prototype in a laboratory scale. Generally, similar materials include sand, lime, gypsum and other additives. These materials are mixed at a certain proportion and then compressed and cured to simulate any rock formation in mines [22, 23]. The material mix
proporproportions were studied by Hu et al., which can be used as guidelines for designing similar material simulation experiments for coal mining [24].

In this study, a self-developed microseismic monitoring system is employed to monitor and predict rockburst disasters in Sanshandao goldmine during mining. In addition, to guide the future mining work in the unexplored zone of this mine with complex geological conditions, the wave dissimilation patterns have been elucidated using the similar material simulation test.

2 Geological setting of Sanshandao goldmine

Sanshandao goldmine is located in the northwestern edge of the Jiaodong Peninsula situated along the southeastern edge of the North China Craton (NCC) that is the oldest and largest craton in China [25], shown in Fig. 1. The northwestern part of the Jiaodong Peninsula is occupied by over 50% of mesozoic granitoids which hold more than 95% of gold resources. In this region, two principle deformation phases have been identified during the Mesozoic. One is distinguished by northwest–southeast oblique compression, probably associated with the subduction of the Izanagi–Pacific plate [26]. The other one contains half-graben basins, accompanied by intrusion of mafic dikes and hydrothermal gold mineralization.

The orebody strikes about N. (20–40°) E and dips approximately 35-70 degrees towards SE, and extends offshore into the Bohai Sea. The Sanshandao deposit is composed of four major lithological groups [27]: (1) Jurassic Linglong granite; (2) Archean Jiaodong Group; (3) Cretaceous Guojialing granodiorite and (4) Cretaceous mafic dikes (Fig. 1). The Sanshandao–Cangshang fault zone controls the Sanshandao gold deposit with the Linglong granite/Guojialing granodiorite in the footwall and the Linglong granite in the hanging wall. Six orebodies with lenticular or tabular shape have been identified. The No. 1 orebody has the largest amount of reserves (69%) and is situated in the middle to upper part of the main fault footwall. This orebody is 1020 m long and 6.4 to 10.3 m thick with an approximate depth of 1450 m. The mining shaft has extended 1200 m from the surface and the operational depth will exceed 2000 m since a new large gold orebody with gold reserve larger than 500 t has been found by geological exploration [28].

In deep-sea mines, the rock strata may fracture due to high in-situ stress and mining activity, which may cause rockburst and mine flooding [29]. To address this problem, the goaf was backfilled using cemented paste backfill (CPB) with a much lower strength and density than the surrounding rock. The propagation patterns of microseismic waves in the particular geological conditions of undersea mines need to be further studied to develop and apply microseismic monitoring systems. The stope at level -780 m was mined using cut and fill method, as shown in Fig. 1.

According to the results of the geostress measurement, the maximum and minimum principal stresses are 33 MPa and 17 MPa, respectively. A large shearing stress is generated.
by the large difference of the two principal stresses, which may be the main cause of roadway deformation and failure [30], as shown in Fig. 2.

3 Similar material simulation test

3.1 Similarity theory

A mine prototype can be downscaled to a much smaller experimental model based on similarity theory for convenient analysis. Geometric similarity, kinematic similarity and dynamic similarity must be satisfied when designing the similar material model [31-35]. To prepare the similar material model, dry sand was used as the aggregate; gypsum and lime were selected as the cementitious materials. Any rock formations with different strengths can be simulated by varying the proportions of the cementitious materials. The proportion of the materials (see Table 1) was calculated according to the previous literature [35]. Based on the prototype of Sanshandao goldmine, a similar model was designed in laboratory (Fig. 3). To fabricate the model, a mould was prefabricated using steel plates. Inside the model, one end of the steel plate was fixed, while the other end can be adjusted to adjust the dip of the strata. The required materials were weighed and then poured into a mixer for mixing (10 min) until a uniform paste was formed. The paste was then poured into the mould and compacted. After that, the model was placed in a moist room for curing with a relative humidity of 95 ± 5%, and an ambient temperature of 20 ± 1 °C for 28 days. In order to distinguish each rock stratum clearly, the front surface of the model were painted. In the meantime, circular pieces of paper were bonded to the positions where the geophones were buried (Fig. 3).

The large water content during curing may corrode the geophone and cause a short circuit between the positive and negative electrodes. To address this problem, the geophones were wax-sealed for waterproofing before use. Then the wax-sealed geophones were embedded in the model and connected to the data acquisition instrument by a signal cable. Acquired microseismic signals were analyzed in a desktop PC system (Fig. 4).

To achieve the best waveform during monitoring, three types of geophones with frequencies of 4.5 Hz (low sensitivity), 10 Hz (medium sensitivity) and 60 Hz (high sensitivity), were tested for their sensitivity (S) using the following formula by a vibration sensor calibrator:

\[S = \frac{(A_1 + A_2)}{2\sqrt{2}A} \]

(1)

where \(A_1 \) is the measured maximum amplitude; \(A_2 \) is the measured minimum amplitude; \(A \) is the excitation amplitude.

Fig. 5 shows the sensitivity of the geophone versus excitation frequency. It can be seen that the 10-Hz geophone has the best working linearity in the range between 30 Hz to 600 Hz. Therefore, the 10-Hz geophone (medium sensitivity) with a sampling rate of 8 k/s, sampling time of 2s, and number of compensation points of 1000 was used in this study.

During monitoring, the seismic focus was knocked to generate elastic waves in the strata. The wave velocity (v) versus depth was firstly measured using the following equation:
\[\frac{v}{t} = s \]

(2)

where \(s \) is the propagation distance, and \(t \) is the propagation time. Then the influence of the fault was analyzed by comparing the amplitudes of the waves above the fault (No.7, No.8 and No.9) and below the fault (No.2, No.3, No.4, No.12, No.13 and No.14). Finally, the wave velocity influenced by excavation and backfill was studied. After area 1 was excavated (Fig. 6b), the wave velocities between the focus and No.4 geophone as well as the focus and No.14 geophone were compared, respectively to elucidate how the wave velocity is influenced by the goaf. Area 1 was then backfilled (Fig. 6c) and area 2 was excavated. Following this order, six areas were excavated and backfilled, successively. Before the next area was excavated, the previous one was backfilled. The wave velocity and amplitude versus excavation position was studied.

3.2 Results of the similar material simulation test

To study the change of the wave velocity with depth in strata before excavation, the seismic focus was knocked to generate elastic waves. Fig. 7 shows the change of the average wave velocity between two adjacent geophones during propagation. It can be seen that the average wave velocity increases with depth. The possible reason is that the density of the lower strata was larger due to better compaction.

Fig. 8 shows the variation of wave amplitudes received by the geophones under the influence of the fault. It can be seen that in each group the amplitude decreases with increasing the distance from the seismic source. In addition, it can be observed that after the elastic waves propagated through the fault to the geophones in the orebody (No.2, No.3 and No.4) and lower strata (No.12, No.13 and No.14), its amplitude decreases significantly. This is probably due to the energy attenuation caused by the loose medium in the fault [36-38].

As can be seen from Fig. 9, before excavation, the wave velocity between No. 4 and the seismic focus is slightly larger than that between No.14 and the seismic focus. However, after mining, the former (closer to the goaf) velocity decreases significantly. This indicates that the goaf can cause large velocity attenuation to the wave during propagation. After backfill, the velocity increases again but is smaller than the original velocity as the density of the backfill material is smaller than that of the rock. The influence of the position of the goaf on the wave propagation is also studied. It should be noted that the former goaf had been backfilled before the next goaf was formed. It is found that the tail and duration of the waveform is elongated with increasing the distance between the goaf and the geophone (Fig. 10). In addition, both the amplitude and velocity increase with increasing the distance from the goaf (Fig. 11), indicating significance influence of the goaf to the nearby geophones.

The obtained propagation patterns are used to guide the deployment of the geophones in the mine. The influence of geological defects such as faults and goafs on elastic waves has been considered when installing geophones in the stope. In addition, the propagation patterns of microseismic waves can be used to detect
undiscovered geological structure during future mining.

4 Microseismic monitoring in Sanshandao goldmine

4.1 Development of the microseismic monitoring system

4.1.1 Hardware structure of the microseismic monitoring system

The microseismic monitoring system was developed by our group and installed in Sanshandao goldmine (see Fig. 12). The system is composed of ten uniaxial geophones, a substation for data acquisition and processing, power supply and signal transmission cables. The maximum output, frequency and sensitivity of the geophones are $-5V~+5V$, $5-50$ kHz and 30 V/g, respectively. The substation containing a 24-bit analog-to-digital (A/D) converter has an acquisition of 20000 Hz. The geophones were installed at the end of the rock bolt at a height of 2.5 m from the floor. The rock bolts (2.5 m in length) were anchored in boreholes on the sidewalls using rapid-hardening hydraulic cement. The included angle between the borehole and the horizontal direction is $25~30^\circ$ (see Fig. 13). This system includes the underground part and above ground part. The underground part is composed of geophones, monitoring substation and monitoring host computers. Each substation has 12 monitoring channels which can connect 12 geophones. During monitoring, the elastic waves generated by rock fractures are detected by the geophones and transmitted through signal cables in the form of analog signals. Then the analog signals are digitized in the substation and transmitted into the web server through optical fibers and the industrial ring net. The digital data are then automatically recorded and displayed in the host computer.

4.1.2 Software structure of the microseismic system

The software system consists of the data acquisition software, data processing software and locating software. The data acquisition software is used to monitor and record the microseismic events. The data processing software is able to display microseismic waves, pickup first arrivals, and calculate microseismic energy. The function of the locating software is to display the microseismic events based on its occurring time, space and energy.

4.2 Anticorrosive Design of monitoring equipment

As stated before, the inflow of the sea water rich in halide will corrode the devices in elevated temperatures. Therefore, the corrosive environment must be taken into consideration when designing geophones and computer cases.

To prevent corrosion, the chip of the geophone is firstly wrapped by a plastic shell and a metal inner shell. An anti-corrosive outer shell is then applied to protect the whole structure of the geophone, as shown in Figs. 14 and 15. In addition, the surface of the computer case is protected using sprayed plastic coatings, as shown in Fig. 16.
4.3 Identification and location of microseismic events

Ten geophones were installed at levels -690 m, -765 m, and -780 m, respectively, as shown in Fig. 17. A variety of microseismic signals were received during tunneling, among which a large proportion were interfering signals induced by blasting, electric pulse and the electric fan, as shown in Fig. 18. The microseismic signals can be recognized and filtered out by comparing the wave forms and conducting spectral analysis. Then, the source location was calculated using the filtered microseismic signals through the Geiger iteration algorithm [39]:

$$\sqrt{(x-x_i)^2+(y-y_i)^2+(z-z_i)^2} = v_p(t-t_i) \quad (3)$$

where \((x_i, y_i, z_i, t_i)\) and \((x, y, z, t)\) are the coordinates of the \(i\)-th geophone and seismic source, respectively; \(v_p\) represents the P-wave velocity. The initial coordinate of the seismic source is randomly assigned and iterated using least square algorithm until the required accuracy is achieved. The P-wave velocity is calculated by calibration blasting in Sanshandao goldmine. From the calibration results, the P-wave velocities ranged from 4500 m/s to 5500 m/s. The average location error of \(x\), \(y\) and \(z\) coordinates versus wave velocity was compared to select the optimum P-wave velocity for the microseismic monitoring system (see Fig. 19). It can be seen that the optimum P-wave velocity is 5000 m/s with the smallest location error of 10.2 m.

4.4 Rockburst risk assessment based on microseismic monitoring

4.4.1 Rockburst risk assessment based on spatial-temporal distribution of microseismic events

The microseismic monitoring system was installed in December, 2014. Fig. 20 demonstrates the spatial-temporal distribution of the microseismic events during mining from December, 2014 to March, 2015. It can be seen that 36 and 30 events were captured by the microseismic monitoring system in December, 2014 and January, 2015, respectively, among which a large proportion are low-energy events. This indicates that the rock mass at this mining level is stable. In February, 2015, only 14 microseismic events with low energy were recorded (see Fig. 20c). This is because secondary reinforcement was conducted in the roadways. In March, 2015 several large-energy microseismic events were recorded near the crosscut (Fig. 20d), which induced a rockburst accident on 31, March, 2015. Some anchors, cables and rock mass were damaged seriously in this accident, as shown in Fig. 21.

4.4.2 Rockburst risk assessment based on microseismic activity rate and energy release rate

In order to ensure mining safety, it is insufficient to analyze the spatial-temporal distribution of the microseismic events only. The microseismic monitoring system is required to be able to analyze the change of event count and energy in real time to predict the possible time of rockburst occurrence.

The microseismic activity rate and energy
release rate are the changes of the event number and event energy, respectively [40]. The sudden increase of microseismic event number indicates that the rock mass is fracturing. It can be seen from Fig. 22 a-d that the event energy is positively correlated with the event number. Rockburst is very likely to occur when both the event number and event energy increase simultaneously. Also, the energy saltation always lags behind the number saltation of the microseismic events. Usually, sudden changes in energy often indicate the occurrence of rockburst disasters. Therefore, real-time analysis of microseismic activity rates can obtain the trend of the energy release rate, which is convenient for predicting the occurrence time of rockburst. It can be observed from Fig. 22e that the whole period from December 2014 to March 2015 can be divided into four sub-periods: stationary period, active period, secondary stationary period and secondary active period. In the stationary period, the total number and energy of microseismic events are small because there are no tunneling and mining activity in this period; in the active period, the total number and energy of microseismic events increase suddenly due to tunneling; in the secondary stationary period, the total number and energy of microseismic events fluctuate within a small range due to shotcrete support; and in the secondary active period, the total number and energy of microseismic events increase suddenly again due to mining at level -780 m. The results agree well with the mining activity in the mine.

4.4.3 Rockburst risk assessment based on continuity index and average daily energy

If microseismic events are continuously generated for a period of time, rockburst is likely to occur. In order to characterize the daily continuity of microseismic events, the continuity index is introduced in this study. It is defined as the ratio of the total number of events received since the system was established to the number of days, which can be expressed as:

\[U = \frac{\sum N_D}{D} \]

where \(N_D \) is the total number of microseismic events on the \(D \)th day; \(D \) is the number of continuous monitoring days. It is known that rockburst is induced mainly by large-energy microseismic events. Large daily energy release may not cause rockburst if there exists a large number of small-energy events. To address this problem, this study introduces average daily energy:

\[\overline{EI}_D = \frac{\sum EI}{N_D} \]

where \(\sum EI \) is the total daily energy of microseismic events; \(N_D \) is the total daily number of microseismic events.

Fig. 23 shows statistics of continuity index and average daily energy from December, 2014 to March, 2015, which can be also divided into four periods (the same as Fig. 22). A sudden change of continuity index and average daily energy can be observed in the active period in comparison with the stationary period. Minor rockbursts constantly occurred, which induced roadway spalling, rock bolt failure and roadway deformation. In the secondary stationary period, the continuity index constantly decreases and the average daily energy
fluctuates within a small range, indicating no risk of rockburst. In the secondary active period (after, 10, March, 2015), the continuity index and average daily energy increase again and, indicating this mine was facing high risk of rockburst. The rockburst that occurred on 31, March, 2015 agrees with the analysis.

5 Conclusions

Rockburst hazards were monitored using a self-developed microseismic monitoring system in a deep-sea mine. In addition, the propagation patterns of microseismic waves influenced by geological defects have been studied using a similar material simulation model.

The following conclusions are drawn:

- A microseismic monitoring system with anticorrosive equipment is developed for assessing rockburst hazards in undersea mines.
- Geological defects (goafs and faults) will cause amplitude and velocity attenuation of elastic waves, while after back filling, the wave attenuation can be reduced;
- From microseismic monitoring results, the surrounding rock went through four periods: stationary, active, secondary stationary and secondary active periods. Compared with the stationary period, a sudden change of continuity index and average daily energy can be observed in the active period in which minor rockbursts constantly occurred. Rockburst accidents are very likely to occur in the secondary active period. However, before this period, there usually exists a secondary stationary period without rockburst risk.

The microseismic monitoring results obtained in this study agree well with feedback of rockburst accidents that occurred in Sanshandao goldmine. This method is applicable in other deep-sea mines with similar geological conditions. However, various geological factors can affect microseismic wave propagation, such as joints, bedding, subsided columns, rock intrusion and lithological variation. The wave propagation patterns need to be further analyzed when applying the microseismic monitoring system in mines with such geological conditions. In the future work, other seismic parameters, such as energy index, cumulative apparent volume, Schmidt number, etc. will be further investigated to predict rockburst hazards.

References

M.-G. Zhai and M. Santosh, "The early Precambrian odyssey of the North China

[36] K. T. Law, Y. Cao, and G. He, "An

Figures and tables

Fig. 1 Geological profile and stope layout of Sanshandao goldmine.
Fig. 2 Roadway damage caused by high shearing stress.

Fig. 3 Experimental model: front (a) and back (b).

Fig. 4 Schematic of the microseismic monitoring system.
Fig. 5 Sensitivity versus excitation frequency for three types of geophones.

Fig. 6 Excavation (a), backfill (b) and excavation sequence (c).

Fig. 7 Wave velocity versus depth.
Fig. 8 Variation of amplitudes influenced by the fault.

Fig. 9 Wave velocity influenced by excavation.

Fig. 10 Waveform received by No.4 geophone after area 6 was mined (a), and area 1 was mined (b).
Fig. 11 Variation of wave velocity and amplitude received by No. 4 geophone versus goaf position.

Fig. 12 Configuration of the microseismic monitoring system at Sanshandao goldmine.
Fig. 13 Installation of geophones

Fig. 14 The shell of the anti-corrosion geophone: 1—anchor bolt; 2—screw; 3—rubber gasket; 4—upper joint pin; 5—inner metal shell; 6—Acrylic AB Adhesive; 7—Geophone chip; 8—acrylic AB adhesive; 9—lower joint pin; 10—upper cover; 11—plastic isolating frame; 12—cable; 13—outer anti-corrosion shell; 14—Vaseline; 15—lower cover
Fig. 15 Bare Geophone (a); geophone with anticorrosion shell (b); packaged underground monitoring station (c) and inner structure of the monitoring station (d).

Fig. 16 Anticorrosive computer case using sprayed plastic coating.
Fig. 17 Sensor deployment at Levels -690 m, -765 m, and -780 m in Sanshandao goldmine.

Fig. 18 Typical wave forms of the microseismic signal and interfering signals.
Fig. 19 Location error versus p-wave velocity.

Fig. 20 Spatial-temporal distribution of microseismic events in (a) December, 2014; (b) January, 2015; (c) February, 2015; (d) March 2015.
Fig. 21 Photos of the rockburst accident.

(a) Graph showing the total event energy and number with time difference and energy salitation.

(b) Graph showing the total event energy and number with time difference and energy salitation.
Fig. 22 Statistics of total event count and energy during December, 2014 (a), January, 2015 (b), February, 2015 (c), March, 2015 (d), and between December, 2014 to March, 2015 (e).

Fig. 23 Statistics of continuity index and daily average energy from December, 2014 to March, 2015.
Table 1 Proportion of the similar materials.

<table>
<thead>
<tr>
<th>Strata</th>
<th>Volume (m³)</th>
<th>Sand (kg)</th>
<th>Lime (kg)</th>
<th>Gypsum (kg)</th>
<th>Dry weight (kg)</th>
<th>Water (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>0.18</td>
<td>300</td>
<td>52.5</td>
<td>22.5</td>
<td>374</td>
<td>41.60</td>
</tr>
<tr>
<td>Orebody</td>
<td>0.05</td>
<td>78</td>
<td>18.2</td>
<td>7.8</td>
<td>104</td>
<td>11.56</td>
</tr>
<tr>
<td>Upper 1</td>
<td>0.025</td>
<td>44</td>
<td>4</td>
<td>4</td>
<td>52</td>
<td>5.78</td>
</tr>
<tr>
<td>Upper 2</td>
<td>0.428</td>
<td>712</td>
<td>89</td>
<td>89</td>
<td>891</td>
<td>98.92</td>
</tr>
<tr>
<td>Total</td>
<td>0.683</td>
<td>1134</td>
<td>163.7</td>
<td>123.3</td>
<td>1421</td>
<td>157.85</td>
</tr>
</tbody>
</table>