Stability Evaluation on the Droop Controller Parameters of Multi-Terminal DC Transmission Systems Using Small-Signal Model

Yanbo Che¹, Jingjing Jia¹, Jiebei Zhu¹, Xialin Li¹, Zihan Lv¹, Ming Li²

¹ Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
² College of computer, Qinghai Nationalities University, Xi’ning 810007, China

ABSTRACT For a complex multi-terminal DC (MTDC) transmission system, controller parameter settings exert tremendous influence on the system dynamics and transient stability. Traditional droop control scheme, which aims to locally control the converter’s power by regulating its DC voltage according to the pre-defined droop slopes, does not normally employ communications for coordination with other terminals. The droop scheme is designed for power sharing purpose and its controller gains’ impact on the MTDC network voltage is usually ignored. Moreover, the droop controller parameters are selected without considering various operating states of the MTDC terminals. This paper proposes a droop controller parameters select criterion to cater for MTDC network voltage stability. To do so, a detailed small signal model for a four-terminal MTDC system candidate with typical network topology, considering each converter station’s electrical characteristics and cascaded control loops, is established. In order to maintain the fidelity for DC network modeling, the model also takes account of the DC network electrical dynamics and losses. A time-domain simulation model is built in Matlab Simulink to verify the correctness of the small signal model.

INDEX TERMS Droop control, Small signal analysis, Stability, VSC-MTDC

I. INTRODUCTION

The new-generation technology of flexible Voltage-Source-Converter-based (VSC) high-voltage direct current (HVDC) transmission system compared to conventional Line-Commutated-Converter-based (LCC) HVDC technology brings new opportunity of fast power control and independent multi-terminal operations [1]. With the existing trend of MTDC being expanded to possess more terminals and DC circuits, the structural complexity of the future MTDC system will dramatically grow, and oscillation problems have been frequently observed as reported in [2]-[4]. The occurrence of oscillation will lead to DC voltage oscillation, and even cause the outage of converter station. In order to avoid power or DC voltage fluctuations, control parameters of MTDC system shall be considered in the steady and dynamic-state stability [5][6]. Therefore, to solve this problem, it is technically necessary to obtain its mathematical model and evaluate its stability problems. One of the widely accepted issues is the stability of the entire MTDC voltage as a prior control objective. Reasonable selection of converter parameters may effectively improve the damping characteristics of the system and reduce the risks of operational oscillation or failure.

Time-domain simulation may assist with MTDC controller gain selection. However, for a large-scale MTDC system with significant controller interactions, the MTDC model is gone complex and it is subject to all-round contingency analysis, simulation speed & accuracy constraints due to large computation load. In addition, in multi-terminal systems, as operating conditions of external converter stations change or dynamic interactions among subsystems take place, the most ideal controller gain may deviate and considerable effort can be spent to evaluate the controller gains and identify right ones.

Small signal stability analysis (SSSA) for VSC-MTDC system is usually carried out instead of time-domain simulation [5]-[14], which mainly falls into two categories with different emphasis for VSC systems: SSSA on the converter control system [12]-[20] itself including the influence of PLL and AC system strength [9][10], and SSSA on the system-wide stability (e.g. system stability with multiple VSC integrations [11]). An SSSA model for Modular Multilevel Converter (MMC) including capacitance energy...
and circulating current of sub-modules is established in [12] to analyze the internal parameters, but the application in the overall dynamics of HVDC has not been developed. An SSSA model for SC rectifier and inverter systems connected to weak networks is utilized for developing an improved reactive power control method in [13]. The main state variables affecting the dominant poles are analyzed by the derived participation factor matrix but further research is needed to verify the applicability of the improved reactive power control method. In reference [10], a VSC small signal model with PLL is proposed to quantitatively study the influence of power system impedance and PLL parameters on dynamic and stability limits. However, the analysis only focuses on the stability of a single VSC connected AC system whereas the interactions among multi-terminal are not included. A four-terminal network connecting wind farm and grid side VSCs without considering DC network dynamics is modeled in state space in [14], and the stable operation ranges of VSC control parameters is studied by calculating the eigenvalue.

The main objective of MTDC control scheme is to maintain the DC voltage stability and power balance of the system on top of ensuring the safe and stable operation of individual converter stations [15]. DC voltage droop control tries to control DC voltage to its reference level while at the same time contributing some balancing power [16]. Since the two actions are somewhat contradicting that one action happens at the cost of steady state deviations for the other. To analyze the influence of voltage droop coefficient on power distribution, the Jacobian matrix of power to voltage is derived in [16], and the essential relationship between DC voltage change and power change in converter station is revealed, but no parameter sensitivity analysis is performed. Reference [17] compares the effects of different control strategies and control parameters on the stability of the system, and concludes that DC voltage droop control is superior to master-slave control in terms of the eigenvalue analysis of the performance of the two control schemes. Reference [18] studied the DC voltage and power dispatch under different operational conditions and proposed different DC grid management strategies. The research shows the robust performance of the proposed system by switching the control modes, but small perturbation stability regarding to the controller parameter optimization is not discussed. A MTDC droop control strategy considering transmission losses and renewable energy fluctuations is proposed in [19], where the droop coefficient is selected by assessing the relationship between DC voltage and its reference. Nevertheless, the simulation is carried out under the condition of large disturbance. An adaptive decentralized droop controller is proposed to schedule the transient droop coefficient by the SSSA on power sharing mechanism in [20]. However, the proposed control scheme is applicable to the micro-grid scenarios.

Although the DC voltage droop control schemes in MTDC has been explored in the aforementioned literature, the impact of DC voltage droop controller parameters on the DC grid voltage stability has not been well addressed. To study the effect of droop controller parameters on the small signal stability of DC voltage when power flow dynamics exist in MTDC system, it is necessary to derive a detailed accurate small signal model including individual VSC control modes and the DC network characteristics. In this paper, a complete small signal mathematical model of four-terminal MTDC system is established by linearizing all state equations at a certain point of operation, so as to carry out SSSA. The inductance parameter of DC cable is considered to make the results more convincing. The parameters of the droop controller are analyzed and selected through the observation on the distributions of zeros and poles in root locus chart, which is more obvious and intuitive than previous works in [14]. The accuracy of the developed model is verified by comparing with the simulation results in time-domain.

The organization of this paper is as follows: Section II presents the MTDC system structure and the small signal model of the overall system. In Section III, the accuracy of small signal model is verified. Simulations are carried out to analyze the influence of parameters on system stability in Section IV. Section V carries out time-domain simulations verification on the impact of control parameters. Conclusions are drawn in Section VI.

II. SYSTEM CONFIGURATION AND MODELING

A. SYSTEM STRUCTURE

A four-terminal candidate MTDC system is illustrated in Fig. 1, where converter stations are connected in parallel star mode and their power flow direction are indicated. Both wind farm-side voltage source converter (WFVSC) station 2 and 4 work in input state with respect to the DC grid, and adopt droop control mode and constant DC bus voltage control mode respectively. Whereas grid-side voltage source converter (GSVSC) station 1 and 3 work in output state, and adopt constant active power control mode.

Each AC source is represented by a Thevenin impedance model consisting of R_S and L_S. Each VSC is represented by its average model, with its AC side by three controlled voltage sources only considering the fundamental frequency, and its DC side is represented by a controlled current source.

![FIGURE 1. The candidate four-terminal DC system](image)

B. WFVSC SUBSYSTEM MODELING

Three-phase AC voltage and current at the points of common coupling (PCC) are measured as the inputs into individual VSC control systems. As seen from Fig. 1, after Park transformation the dynamic equations for each VSC in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.
we adopt droop control [21]. A phase-locked loop is required
for orienting the converter controllers with the grid angle.
Hierarchical control strategy with a fast inner current
controller and the slower outer DC link voltage-power droop
controller, hereafter simply referred as droop controller, is
shown in Fig. 2. The inner current control loop is realized in
dq reference frame aligned with PCC voltage based on the
equations across the reactor given as follows:
\[
\begin{align*}
V_{cdi} &= V_{odi} + \omega L_{qddi} - [k_p(i_{odi}^* - i_{odi}) + k_v z_{odi}] \\
V_{qdi} &= V_{odi} - \omega L_{ddi} - [k_p(i_{odi}^* - i_{odi}) + k_v z_{odi}]
\end{align*}
\]

where, \(k_p \) and \(k_v \) represent the proportional and integral (PI)
gains of the inner loop current controller, respectively; auxiliary variables \(z_{odi} \) and \(z_{odi}^* \) represent the integral parts of
inner loop controller, with
\[
\begin{align*}
z_{odi} &= \int (i_{odi} - i_{odi}^*) dt \\
z_{odi}^* &= \int (i_{odi}^* - i_{odi}) dt
\end{align*}
\]

All the current controllers have the same PI gains to make the
analysis more clearly.

From Fig. 2, the DC voltage droop controller and reactive
power controller are implemented by PI regulators. The reference
currents of the inner loop \(i_{odi}^* \) and \(i_{odi}^* \) can be obtained from the outer loop controllers as:
\[
\begin{align*}
i_{odi}^* &= k_{pV} \left[k_{vV}(V_{odi}^* - V_{odi}) + (P_{odi}^* - P_{odi}) \right] + k_{vV} z_{odi}^* \\
n_{odi}^* &= k_{qV} \left(Q_{odi}^* - Q_{odi} \right) + k_{qV} z_{odi}^*
\end{align*}
\]

where, \(k_{pV} \) and \(k_{qV} \) represent the proportional and integral gains of the DC voltage outer loop controller, respectively; \(k_{qV} \) and \(k_{qV} \) represent the proportional and integral gains of the reactive power outer loop controller, respectively; \(P_{odi} \) and \(Q_{odi} \) are the active and reactive power of the converters; \(V_{odi}^*, P_{odi}^*, \) and \(Q_{odi}^* \) are the reference values; \(z_{odi} \) and \(z_{odi}^* \) are auxiliary variables defined to represent the integral parts of outer loop
controllers with
\[
\begin{align*}
z_{odi} &= \int \left[k_{vV} \left(V_{odi}^* - V_{odi} \right) + (P_{odi}^* - P_{odi}) \right] dt \\
z_{odi}^* &= \int \left(Q_{odi}^* - Q_{odi} \right) dt
\end{align*}
\]

\(k_{ddrop} \) is the droop coefficient and \(-1/k_{ddrop}\) represents the
slope of the curve in Fig. 3(b).

Fig. 3 shows the DC voltage versus active power
characteristic curves for the four VSCs when power step
change and DC voltage step change occurs, respectively.
And according to Fig. 3, the droop slope can be represented as:

\[
\begin{align*}
V_{odi} &= V_{odi} + \omega L_{qdi} \left[k_p(i_{odi} - i_{odi}) + k_v z_{odi} \right] \\
V_{odi} &= V_{odi} - \omega L_{ddi} \left[k_p(i_{odi}^* - i_{odi}) + k_v z_{odi} \right]
\end{align*}
\]
where \(V_{dc,\text{max}} \) refers to the upper limit value of the DC voltage and \(V_{dc,2}^* \) and \(P_2^* \) refer to the rated voltage and rated active power of VSC 2.

The active and reactive power of the four converter stations can be expressed as:

\[
P_i = V_{dc,i} \Delta v_{dc,i} + V_{iq,i} \Delta q_{dc,i}
\]

\[
Q_i = V_{dc,i} \Delta q_{dc,i} - V_{iq,i} \Delta v_{dc,i}
\]

Using Taylor series with the higher-order terms neglected [14][22], the linearized form of (9) is expressed as:

\[
\Delta P_i = i_p \Delta V_{ad_i} + i_i \Delta v_{ad_i} + V_{dc,i} \Delta i_{dc,i} + V_{iq,i} \Delta i_{dc,i} \tag{10}
\]

\[
\Delta Q_i = i_p \Delta V_{ad_i} - i_i \Delta v_{ad_i} + V_{dc,i} \Delta i_{dc,i} - V_{iq,i} \Delta i_{dc,i} \tag{10}
\]

After linearization of (1), (2), and (3), by substituting (4)-(7) and (10) the linearized models of VSC are expressed as:

\[
diag = \frac{-1}{k_{\text{droop}}} \frac{V_{dc,2,\text{max}} - V_{dc,2}^*}{P_2^*} \tag{8}
\]

\[
\frac{d\Delta V_{dc,i}}{dt} = \frac{CV_{dc,i}}{L_{dc,i}} \Delta i_{dc,i} + \frac{CV_{dc,i}}{L_{dc,i}} \Delta v_{dc,i} + \frac{CV_{dc,i}}{L_{dc,i}} \Delta q_{dc,i} + \frac{CV_{dc,i}}{L_{dc,i}} \Delta z_{dc,i} - \frac{CV_{dc,i}}{L_{dc,i}} \Delta z_{dc,i} \tag{12}
\]

\[
\frac{d\Delta i_{dc,i}}{dt} = \frac{-k_p + R_e + k_p k_{p,\text{droop}}}{L_{dc,i}} \Delta v_{dc,i} + \frac{-k_p + k_p k_{p,\text{droop}}}{L_{dc,i}} \Delta v_{dc,i} + \frac{-k_p}{L_{dc,i}} \Delta v_{dc,i} + \frac{k_p}{L_{dc,i}} \Delta P_i \tag{12}
\]

\[
\Delta P_i = \frac{-\alpha L_i}{L_{q,i}} \Delta v_{dc,i} - \frac{k_p}{L_{dc,i}} \Delta v_{dc,i} + \frac{k_p}{L_{dc,i}} \Delta v_{dc,i} \tag{12}
\]

\[
\Delta Q_i = \frac{-k_p}{L_{dc,i}} \Delta q_{dc,i} - \frac{k_p}{L_{dc,i}} \Delta q_{dc,i} + \frac{k_p}{L_{dc,i}} \Delta q_{dc,i} \tag{12}
\]

\[
C \frac{dV_{dc,i}}{dt} = \frac{-P_{dc,i} + V_{dc,i} \Delta i_{dc,i}}{I_{dc,i}} \tag{12}
\]

The inner loop control is the same as that of the WFVSCs, but the outer loop d-axis control mode adopts constant active power control which is different from DC voltage droop control. The reference values of inner loop in dq frame can be obtained by controlling active and reactive power as follows:

\[
i_{dq}^* = k_p (P^* - P_i) + k_{pq} \Delta z_{d,i} \tag{14}
\]

\[
i_{dq}^* = k_p (Q^* - Q_i) + k_{pq} \Delta z_{q,i} \tag{14}
\]
where \(k_p \) and \(k_i \) represent the proportional and integral gains of active power controller, respectively; \(z_{d1} \) and \(z_{d2} \) represent the integral parts of the outer loop regulator shown as follow:

\[
z_{d1} = \left[\left(P^* - P \right) \right] dt \\
z_{d2} = \left[\left(Q^* - Q \right) \right] dt
\]

(15)

The linearized models of the VSC1 and VSC3 in the \(dq \) coordinates are:

\[
d\Delta i_{di} = -\frac{k_p}{L_c} + \frac{k_p}{L_c} v_{di} \Delta i_{di} - \frac{k_p}{L_c} v_{dq} \Delta i_{dq} + \frac{k_i}{L_c} \Delta z_{d1} \\
+ \frac{k_p}{L_c} \Delta z_{d2} - \frac{k_p}{L_c} v_{di} \Delta V_{sd} - \frac{k_p}{L_c} v_{dq} \Delta V_{sq} + \frac{k_i}{L_c} \Delta P^*
\]

\[
d\Delta i_{dq} = -\frac{k_p}{L_c} + \frac{k_p}{L_c} v_{dq} \Delta i_{di} - \frac{k_p}{L_c} v_{di} \Delta i_{dq} + \frac{k_i}{L_c} \Delta z_{d2} \\
+ \frac{k_p}{L_c} \Delta z_{d1} - \frac{k_p}{L_c} v_{di} \Delta V_{sd} - \frac{k_p}{L_c} v_{dq} \Delta V_{sq} + \frac{k_i}{L_c} \Delta Q^*
\]

\[
d\Delta V_{dc1} = \frac{v_{sd} + k_p i_v + \omega L_i v + k_i v_i}{C V_{dc1}} \Delta i_{di} + \frac{v_{sd} + k_p i_v + \omega L_i v + k_i v_i}{C V_{dc1}} \Delta i_{dq} \\
- \frac{v_{sd} + k_p i_v + \omega L_i v + k_i v_i}{C V_{dc1}} \Delta V_{dc1} - \frac{k_i}{C V_{dc1}} \Delta z_{d1} - \frac{k_i}{C V_{dc1}} \Delta z_{d2} \\
- \frac{k_p}{C V_{dc1}} \Delta \Delta V_{sd} - \frac{k_p}{C V_{dc1}} \Delta \Delta V_{sq} + \frac{k_i}{C V_{dc1}} \Delta Q^*
\]

\[
\Delta z_{di} = \frac{C}{C V_{dc1}} \Delta \Delta P^* + \frac{k_p}{C V_{dc1}} \Delta P^* \\
\Delta z_{dq} = \frac{C}{C V_{dc1}} \Delta \Delta Q^* + \frac{k_p}{C V_{dc1}} \Delta Q^*
\]

(16)

where the linearized form of the auxiliary variables \(z_{d1} \) to \(z_{d4} \) are:

\[
d\Delta z_{d1} = \Delta i_{d1}^* - \Delta i_{d1} = -(k_p v_{di} + 1) \Delta i_{d1} \\
- k_p v_{dq} \Delta i_{d1} - k_p v_{di} \Delta z_{d1} - k_i v_{dq} \Delta v_{sd} \\
- k_p v_{dq} \Delta v_{sq} + k_i \Delta P^*
\]

\[
d\Delta z_{d2} = \Delta i_{d2}^* - \Delta i_{d2} = -(k_p v_{dq} + 1) \Delta i_{d2} \\
+ k_p v_{dq} \Delta i_{d2} - k_p v_{di} \Delta v_{sd} + k_i v_{dq} \Delta v_{sq} - k_i \Delta Q^*
\]

\[
d\Delta z_{d3} = \Delta P^* - \Delta P \\
= v_{sd} \Delta i_{d1} - v_{sd} \Delta i_{d2} - i_{d1} \Delta v_{sd} - i_{d2} \Delta v_{sq} + \Delta v^*
\]

\[
d\Delta z_{d4} = \Delta Q^* - \Delta Q \\
= \Delta i_{d1}^* + v_{dq} \Delta i_{d2} - v_{dq} \Delta i_{d1} - i_{d1} \Delta v_{sd} + i_{d2} \Delta v_{sq}
\]

D. DC NETWORK MODELING

![FIGURE 4](https://example.com/figure4.png)

State space equations of VSC subsystems and the integrating DC network are combined to form the mathematical model of the entire system. The small signal model can be obtained by linearization at a predefined operating state as:

\[
\Delta \dot{x} = \Delta A \Delta x + \Delta B \Delta u
\]

with \(\Delta x \) being the state vector shown as follows:

\[
\Delta x = [\Delta x_1 \ \Delta x_2 \ \Delta x_3 \ \Delta x_4]^T
\]

E. SYSTEM SMALL SIGNAL MODELING

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2931118, IEEE Access
Before assessing the dynamic stability for the MTDC system, a model verification by comparing with time-domain model is essential to prove the correctness of the mathematical model.

The time-domain model for the candidate MTDC network as presented in Fig. 1 is simulated in Matlab/Simulink. The DC transmission lines are simulated using π-equivalent models with parameters as shown in TABLE I. The length of the cables is 100 km each. The network and controller parameters in time-domain model are designed in per-unit form as shown in TABLE II.

<table>
<thead>
<tr>
<th>TABLE I SIMULATION PARAMETERS [23]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
</tr>
<tr>
<td>Base power</td>
</tr>
<tr>
<td>DC grid voltage</td>
</tr>
<tr>
<td>AC voltage</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>SCR</td>
</tr>
</tbody>
</table>

Small signal analysis is usually carried out around a given steady-state operating point. In this paper the steady operating point of VSCs for all the simulations is set at \(V_{dc} = 1 \) p.u., \(P_1 = -0.2 \) p.u., \(P_3 = -0.4 \) p.u.

The following events are simulated in the sequence as shown in TABLE III, where common control actions such as active power and DC voltage step changes are included.

As illustrated in Fig. 5, the simulation response of small signal model as represented by dotted line and the simulation response of the time-domain model as represented by solid line are perfectly matched in overall variation changes with minor differences. This proves that the small signal model would be highly accurate.

<table>
<thead>
<tr>
<th>TABLE II CONTROLLER PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>controller</td>
</tr>
<tr>
<td>Inner current controller gains (k_\text{ip},k_\text{ip})</td>
</tr>
<tr>
<td>Voltage controller gains (k_\text{vp},k_\text{vp})</td>
</tr>
<tr>
<td>Active power controller gains (k_\text{pp},k_\text{pp})</td>
</tr>
<tr>
<td>Reactive power controller gains (k_\text{pq},k_\text{pq})</td>
</tr>
<tr>
<td>Droop coefficient k_\text{vdc}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE III SIMULATION TIME SEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time(s)</td>
</tr>
<tr>
<td>t=1</td>
</tr>
<tr>
<td>t=2</td>
</tr>
<tr>
<td>t=3</td>
</tr>
<tr>
<td>t=4</td>
</tr>
</tbody>
</table>

IV. STABILITY EVALUATION ON THE MTDC’S DROOP CONTROLLER USING SSSA

A. EIGENVALUES ANALYSIS FUNDAMENTALS

The eigenvalues of the system can be calculated by [17]

\[
det(\lambda I - A) = 0
\]

where \(I \) is a diagonal unit matrix with the same dimension as \(A \); \(\lambda \) is the eigenvalue of the system matrix.

The system oscillation modes can be described by its eigenvalues. If all the eigenvalues are located in the left half of the complex plane, the system is stable. When at least one of the eigenvalues has a positive real part, the original system is unstable. The complex eigenvalues always appear in conjugate pairs, such as \(\lambda = \sigma + \jmath \omega \). Each pair of the conjugate eigenvalues corresponds to a certain oscillation mode. The real part \(\sigma \) informs the damping characteristic of the system, whereas the imaginary part \(\omega \) informs the oscillation
frequency, large ω_3 indicates LC resonance and small ω_δ indicates low-frequency oscillation.

This paper uses the concept of participation factors to identify the modes representing interactions in the MTDC system by applying the procedure presented in [24]. The impact degree of the eigenvalues on the system states can be estimated by participation factors. The element P_{ki} measures the activity of state variable x_i in the ith mode and Ψ_{ik} weighs the contribution of this activity to the mode, the product P_{ki} measures the net participation.

TABLE IV

<table>
<thead>
<tr>
<th>λ</th>
<th>Value</th>
<th>Damping ratio</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{17}</td>
<td>-1226.65±4.34i</td>
<td>1.00</td>
<td>0.69</td>
</tr>
<tr>
<td>λ_{18}</td>
<td>-1221.41±3.33i</td>
<td>0.99</td>
<td>1.33</td>
</tr>
<tr>
<td>λ_{19}</td>
<td>-1215.89±3.99i</td>
<td>1.00</td>
<td>0.65</td>
</tr>
<tr>
<td>λ_{20}</td>
<td>-50.84±251.84i</td>
<td>0.19</td>
<td>40.10</td>
</tr>
<tr>
<td>λ_{21}</td>
<td>-44.07±246.96i</td>
<td>0.18</td>
<td>39.45</td>
</tr>
<tr>
<td>λ_{22}</td>
<td>-46.49±174.95i</td>
<td>0.26</td>
<td>27.97</td>
</tr>
</tbody>
</table>

B. EIGENVALUES ANALYSIS

Two types of the prominent eigenvalues should be analyzed: 1) the eigenvalues with real value closest to the imaginary axis, which dominate the system overall response speed; 2) the eigenvalues with obvious imaginary values with respect to their real values, which are linked to poor damping of certain oscillation modes. As observed from TABLE IV, the pair of eigenvalues λ_{17} and λ_{18} are the closest roots to the imaginary axis, which indicate the prominent impact on system stability (with time constant of 1.87 Hz, and 0.46 damping ratio). Also the eigenvalue pairs with large imaginary parts (λ_{7} and λ_{8}, λ_{9} and λ_{10}, and λ_{11} and λ_{12}) are observed, indicating significant poor damping.

TABLE V

<table>
<thead>
<tr>
<th>Participation Factors</th>
<th>ΔV_{ak1}</th>
<th>ΔV_{ak2}</th>
<th>ΔV_{ak3}</th>
<th>ΔV_{ak4}</th>
<th>Δz_{18}</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{17} and λ_{18}</td>
<td>0.139</td>
<td>0.135</td>
<td>0.1375</td>
<td>0.1263</td>
<td>0.528</td>
</tr>
</tbody>
</table>

The participation factors for the prominent modes as mentioned above are calculated and those with higher impact (higher value) on MTDC system voltage and current are listed in TABLE V. The participation factor matrix indicates that λ_{17} and λ_{18} are related to the DC voltage of the MTDC system and DC voltage integral dynamics Δz_{18}. Please note that Δz_{18} represents the integral part of the DC voltage controller of VSC4. It can be clearly observed for the prominent oscillation mode of eigenvalue pair λ_{17} and λ_{18} that the state variable Δz_{18} of the DC voltage controller integral gains with highest participation factor 0.528 plays a dictating role in determining the oscillation characteristics. Nevertheless, the other oscillation modes with higher frequencies may be useful in analyzing and optimizing the power control of the local converters.

C. STABILITY EVALUATION ON THE MTDC’s CONTROLLER PARAMETERS

The next step is to analyze the droop coefficient on system stability. As illustrated in pole-zero map of Fig. 6, as k_{droop} varies from 2 to 20, the system can be maintained stable. The dominate eigenvalue pair λ_{17} and λ_{18} move towards the stable region with the decreasing imaginary values and gradually evolve into two decaying imaginary values at $k_{\text{droop}}=18$ where one moves towards the stable region and the other moves towards the unstable region with the damping ratio=1.

Since the DC voltage controller has great impact on system dynamics, the effect of the proportional and integral gains of the WFVSC DC voltage controllers is investigated.

FIGURE 6. Pole-zero map of the multi-terminal dc grid system: (a) The eigenvalue locus when k_{droop} varies from 2 to 20. (b) Magnified view of the eigenvalue locus

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
As shown in Fig. 7, the trajectories of poles and zeroes are generated by varying the proportional gain k_{pv} from 1 p.u to 10 p.u under different droop coefficients ($k_{droop}=2, 10, 20$) while keeping the other parameters constant. The poles move towards the stable region with damping ratio getting large, but gradually evolve into two decaying modes with the damping ratio=1, while one moves towards the stable region the other moves in the opposite direction. Increasing k_{droop} results in more stability which can be seen from the real parts of the eigenvalue pairs.

Similarly, Fig. 8 shows the pole-zero map of the system dynamics when the integral gain k_{iv} varies from 10 p.u to 80 p.u under different droop coefficients ($k_{droop}=2, 10, 20$). When $k_{droop}=2$, increasing k_{iv} results in higher frequency but less stability which indicates smaller settling time and overshoot. However, when k_{droop} is getting large, the eigenvalues of two decaying modes are combined into one eigenvalue pair with the poles moving to the stable region. Increasing k_{droop} results in more stability and faster speed when the eigenvalues are combined into pairs.

From Fig. 7 and Fig. 8 it can be seen that with large droop coefficient the stability margin is increased and damping ratio can be maintained at 1 in most control parameter combinations, which can be instructive for control parameter selection.
V. SIMULATION

A. VOLTAGE PERFORMANCE UNDER POWER STEP CHANGE

The proposed method for determining the droop coefficient and DC voltage controller gains for stable operation is validated by performing a nonlinear simulation of the network shown in Fig. 1. The wind farm is modeled as equivalent three-phase current sources synchronized with the network frequency. The time-domain simulation in Fig. 9 and Fig. 10 validates the results obtained from the small signal stability analysis. The dynamic responses are analyzed by applying an active power step change in VSC₁ from -0.2 p.u to -0.3 p.u at 2.0 s. To observe the impact of DC voltage gains on voltage stability, three proportional gains (k_{pv}=2,5,10) and three integral gains (k_{iv}=20,40,60) were tested for the same step change in power of VSC₂.

It can be seen from Fig. 9 that the variations of k_{pv} influence the states associated with the DC voltage control loops and larger proportional gain of DC voltage controller is beneficial to the stability of DC voltage under different droop coefficients with little overshoot but the settling time is not affected.

From Fig. 10, it can be seen that larger integral gain can effectively shorten the settling time, but at the same time reduce the system damping. According to the requirement of system damping, the appropriate integral gains can be selected by the proposed scheme.

With the increase of droop coefficient, the effect of proportional gain and integral gain is no longer obvious, the overshoot decreases gradually, and the DC voltage tends to be stable. Therefore, the DC voltage controller gains will have little impact on DC voltage with the k_{droop} getting large as a large value of k_{droop} could sufficiently represent steady-state behavior in constant DC voltage control mode.

B. VOLTAGE AND POWER PERFORMANCE UNDER SINGLE-PHASE GRID FAULT

For further verification on the optimum DC voltage controller gains obtained based on the proposed SSSA method, a single phase-to-ground fault is applied at t=2s with a fault duration of 0.2 s. As illustrated in the DC voltage chart of Fig. 11 and active power chart of Fig. 12, with k_{pv}=10 the amplitude during the fault can be smaller, and as k_{iv}=20, it leads to more damping but slower regulation speed, which validates the results obtained via SSSA. It can be seen that the system remains stable and returns to the pre-fault operating condition soon after the fault is clear. This proves the validity of the approach proposed in this paper. Compared to [10] and [14], the overall SSM of the MTDC system considering DC network electrical dynamics can be obtained and the accuracy can be guaranteed.

VI. CONCLUSION

In this paper, a small-signal model of VSC-HVDC system is established for transient stability analysis, in which subsystems of converter stations are interconnected by DC network model of differential equations. Based on this model, the small-signal stability of the system is analyzed and a selection criterion for the droop controller is provided. A comparison of the system performance with different droop coefficients and DC voltage controller gains has been shown. The validity of derived small signal model was demonstrated by the good agreement between results from using the proposed method and the corresponding time-domain simulation results applied to a four-terminal MTDC network.

Based on this model, the small signal stability analysis is carried out to evaluate the impact of DC voltage controller parameters on DC network voltage stability, and the comparisons of the system performance with various droop coefficients and DC voltage controller gains have been undertaken. An important generic stability evaluation method using the derived small signal model is then raised to ensure the MTDC system stability without considering time-domain models. However, to facilitate analysis the wind farm is
simplified in the process of modeling, but there will be slight deviation from the actual results in the parameters of model controller. Future work will continue to improve this field.

APPENDIX

Small signal model of constant active power converter station:

\[
\begin{bmatrix}
\Delta i_d \\
\Delta i_q \\
\Delta V_{dc} \\
\Delta i_{di} \\
\Delta i_{dq}
\end{bmatrix} = \frac{d}{dt} \begin{bmatrix}
\Delta i_d \\
\Delta i_q \\
\Delta V_{dc} \\
\Delta i_{di} \\
\Delta i_{dq}
\end{bmatrix} = \begin{bmatrix}
\frac{k \cdot k_{i_d}}{L} + \frac{k}{R} & \frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 \\
\frac{k \cdot k_{i_d}}{L} & \frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 \\
\frac{k \cdot k_{i_d}}{L} & \frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 \\
\end{bmatrix} \begin{bmatrix}
\Delta i_d \\
\Delta i_q \\
\Delta V_{dc} \\
\Delta i_{di} \\
\Delta i_{dq}
\end{bmatrix} + \begin{bmatrix}
\frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 \\
\frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 \\
\frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 \\
\end{bmatrix} \begin{bmatrix}
\Delta i_d \\
\Delta i_q \\
\Delta V_{dc} \\
\Delta i_{di} \\
\Delta i_{dq}
\end{bmatrix} \times \begin{bmatrix}
P' \\
Q'
\end{bmatrix}
\]

Small signal model of DC voltage droop converter station:

\[
\begin{bmatrix}
\Delta i_d \\
\Delta i_q \\
\Delta V_{dc} \\
\Delta i_{di} \\
\Delta i_{dq}
\end{bmatrix} = \frac{d}{dt} \begin{bmatrix}
\Delta i_d \\
\Delta i_q \\
\Delta V_{dc} \\
\Delta i_{di} \\
\Delta i_{dq}
\end{bmatrix} = \begin{bmatrix}
\frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 \\
\frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 \\
\frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 \\
\end{bmatrix} \begin{bmatrix}
\Delta i_d \\
\Delta i_q \\
\Delta V_{dc} \\
\Delta i_{di} \\
\Delta i_{dq}
\end{bmatrix} + \begin{bmatrix}
\frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 \\
\frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 \\
\frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 & \frac{k \cdot k_{i_d}}{L} & 0 \\
\end{bmatrix} \begin{bmatrix}
\Delta i_d \\
\Delta i_q \\
\Delta V_{dc} \\
\Delta i_{di} \\
\Delta i_{dq}
\end{bmatrix} \times \begin{bmatrix}
P' \\
Q'
\end{bmatrix}
\]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
REFERENCES

Yanbo Che was born in Shandong, China. He received his B.S. degree form Zhejiang University, Hangzhou, China, in 1993. He received his M.S. and Ph.D. degree from Tianjin University, Tianjin, China, in 1996 and 2002, respectively. Since 1996, he has been engaged in teaching and scientific research of power electronic technology and power systems. He is presently an Associate Professor in the School of Electrical and Information Engineering at Tianjin University. His current research interests include power electronics, renewable energy resources and micro-grids.

Jingjing Jia was born in Hebei, China.. She received her B.S. degree from the Northwestern Polytechnical University, Xi’an, China, in 2017. Since September 2017, she has been working toward her M.S. degree at Tianjin University, Tianjin, China. Her current research interests include power electronics and stability analysis of HVDC transmission system.

Jiebei Zhu received the B.S. degree in microelectronics from Nankai University, Tianjin, China, in 2008, and the M.Sc. and Ph.D. degrees in electronic and electrical engineering from the University of Strathclyde, Glasgow, U.K., in 2009 and 2013, respectively. From 2013, he acts as a Senior Power System Engineer and Innovation Project Manager with National Grid Plc. of the GB transmission system operator. He successively chairs the modelling project of “GB Electricity Ten Year Statement,” guides HVDC network developments in North Sea for the EU project of “European Ten Year Network Development Plan,” and advises system operations and security for Scotland in real time for GB Electricity.
Network Control Center. He is currently supported by “1000 Young Talents” program by China Central Organization Committee, as a Full Professor with the School of Electrical Automation and Information Engineering in Tianjin University. His research interests involve with HVDC transmission system control, renewable energy systems, and energy storage technologies. Dr. Zhu was awarded with the license of “Chartered Engineer” by UK Engineering Council and IET.