Study on Influencing Factors of Insulators Flashover Characteristics on the 110kV True Tower under the Lightning Impulse

YONGXIA HAN¹ (Member, IEEE), YAQI ZHANG¹ (Member, IEEE), YAOXUAN RUAN¹, JIE YANG¹, GANG LIU², HANSHENG CAI², LICHENG LI¹,²

¹School of Electric Power, South China University of Technology, Guangzhou 510640, China
²Electric Power Research Institute, China Southern Power Grid, Guangzhou 510080, China

Corresponding author: YAQI ZHANG (e-mail: zhangyaqimail@126.com).

This work was supported in part by National Natural Science Foundation of China (51541704); National Engineering Laboratory Foundation for Ultra High Voltage Engineering Technology (Kunming, Guangzhou) (NEL201704); the Fundamental Research Funds for the Central Universities.

ABSTRACT

Lightning strike is the main reason for the transmission line tripping. Research on the insulator flashover characteristics under the lightning impulse and the accurate flashover criterions are the basis for correctly evaluating the lightning resistance performance of the transmission line. In this paper, an experimental study on the flashover characteristics of the insulators with different materials was carried out on the true transmission line tower. The insulators were hung on the umbrella-shape tower and the drum-shape tower in the test. Both the standard lightning impulse (1.2/50 μs) and the short-tail lightning impulse (1/10 μs) were selected. The flashover test of a single composite insulator was also carried out for comparatively analyzing the influence of the true tower on the insulator flashover performance. According to the test results on the true tower, the lightning flashover criterions of the insulators with different materials are given. The influencing factors of the insulator flashover characteristics, including the impulse waveform, the insulator material, and the tower type and the insulator suspension position, were further compared and analyzed. Meanwhile, the results of the single insulator test proved that the true tower has great influence on the insulator flashover characteristics and that the flashover test in the true tower can reflect actual situation better and obtain more accurate results. In addition, based on the simulation analysis results of the electric-field distribution around the insulators, the difference of 50% impulse flashover voltage ($U_{50\%}$) of the insulators in different conditions were partly explained.

INDEX TERMS

the standard lightning impulse and the short-tail lightning impulse; 110 kV double-circuit transmission line; true tower; influencing factors of flashover characteristics; $U_{50\%}$ and volt-second characteristics

I. INTRODUCTION

Lightning strike is the main cause of tripping in overhead transmission lines [1]. Relevant statistics show that the main form of lightning strikes on transmission lines below 220kV is the lightning back-flashover, while the shielding failure is the main form on 220kV-500kV transmission lines [2]. The lightning back-flashover of the double-circuit transmission line are more severe [3-6]. Moreover, a short-tail lightning impulse is formed across the insulator during back-flashover, while a standard lightning impulse is formed during shielding failure. Therefore, the research on the insulator flashover characteristics and flashover criterions under the standard lightning impulse and the short-tail lightning impulse is the foundation of the accurate evaluation on the lightning resistance performance of transmission lines.

At present, some researches on the flashover characteristics of the insulators with different materials and long air gaps under the standard and non-standard lightning impulses had been done. Through the flashover characteristic tests of the insulators with different materials at distinct
voltage levels, the mathematical relationship between the $U_{50\%}$ under the standard lightning impulse and the string length of the insulators were given [7]. However, the use scope and accuracy were limited by testing conditions, and related researches showed that the insulator material has a certain influence on the insulator flashover path [8-15, 28].

The insulator tests on AC/DC transmission lines under the short-tail lightning impulse were studied [16-19]. The waveforms with different wave front and tail were used in these tests and the voltage levels of the tests were 220kV and above. Whether the test data were suitable for the lightning resistance performance evaluation of transmission lines of 110kV and below remains to be verified. Wang et al. experimentally studied the flashover characteristics of 110kV-500kV insulators with different materials and the air gap under the standard lightning impulse and the short-tail lightning impulse. But the test object is a single insulator and the test was not carried out on a true tower. The influence of the tower body and crossarms on the insulator flashover characteristics were ignored [20-21]. Yang J et al. has experimentally studied the flashover characteristics of the glass insulators hung on the 220 kV wine-shape tower under short-tail lightning impulse. The test showed that the flashover characteristics of the insulator hung on the wine-shape tower were different from those of the single insulator and the air gap [22]. The above studies have facilitated the accurate analysis of the lightning resistance performance of transmission lines in diverse situations. However, various influencing factors will affect the results of the flashover characteristics test. It is necessary to carry out a more systematic experimental study on the flashover characteristics of the insulators hung on the true tower and to analyze the influencing factors and their influencing degree, from which the accurate lightning flashover criterions on 110kV true tower can be proposed.

The aim of this paper is to study the influencing factors of the insulator flashover characteristics via the flashover tests and the electric-field simulation. The tests were conducted under the standard lightning impulse and the short-tail lightning impulse at an altitude of 2100m. The short-tail impulse waveform on 110kV tower is obtained by PSCAD simulation. The composite and glass insulators were hung on the umbrella-shape tower and the drum-shape tower. In order to prove the influence of the true tower in the insulator flashover characteristics and the necessity of using the true tower in the test, the flashover test of a single composite insulator was also carried out. Based on the test results, the influencing factors, including the impulse waveform, the insulator material, the tower type and the insulator suspension position, on the flashover characteristics are compared and analyzed. At the same time, based on the electric-field simulation around insulators, the difference of the insulator flashover characteristics is partly explained. This research provides a reference for improving the accuracy of the insulator flashover criterions.

II. TEST DEVICE AND RESEARCH METHOD

A. TEST DEVICE AND SAMPLE

The test was carried out at the Kunming UHV Engineering Technology National Engineering Laboratory with an altitude of 2100 m. The test circuit consists of a surge voltage generator, a capacitive voltage divider and a test sample.

The impulse waveform used in the test had a critical impact on the accuracy of the test results. The standard lightning impulse has a front time of 1.2 μs and a tail time of 50 μs. At the same time, the electromagnetic transient simulation analysis of the 110 kV typical double-circuit transmission line subjected to lightning back flashover showed that the tail time of the insulator overvoltage under a back flashover was about 5-10 μs, while the front time is about 0.2-2.0 μs. Therefore, a short-tail lightning impulse with a front time of 1μs and a tail time of 10 μs was selected for the following research [23]. In order to obtain the required waveform, the test circuit was designed which is shown in Figure 1. Based on the 7200 kV impulse voltage generator with the rated capacity of 720 kJ, an external resistor R_e (264 Ω) was utilized to reduce the tail time.

![FIGURE 1. The experiment circuit.](image1)

The theoretical and actual waveforms of the standard lightning impulse and short-tail lightning impulse are shown in Figure 2. There exists the phenomenon of overshoot and oscillation during the waveform tests. Reference to the overshoot calculation method in GBT 16927.1-2011 [26], it is known that the actual waveforms are within the allowable range of the 110 kV insulator lightning strike characteristics analysis.

![FIGURE 2. Comparison of the theoretical and the actual waveforms.](image2)
The samples are composite and glass insulators which are hung on the 110 kV true tower. The insulator patterns are FXBW4-110/100 and XP-70 respectively. And the dry arc distances of two types of insulators are 1.12 m and 1.14 m, respectively. As shown in Figure 3, the left side is an umbrella shape tower, and the lengths of its crossarms from the up phase to the down phase are 2854.5 mm, 3150 mm, and 3450 mm, respectively. The right side is a drum type tower, and the lengths of its crossarms from the up phase to the down phase are 2854.5 mm, 3450 mm, and 3150 mm, respectively.

B. TEST METHOD

The flashover tests include the $U_{50\%}$ test and the volt-second characteristic test. The tests were carried out in accordance with the standard of IEC 60060 [24-25]. And the up-and-down method was used to test the $U_{50\%}$. The rise-and-fall level of the voltage is 3% of the expected voltage.

The test voltage started from the $U_{50\%}$ and increased to 1.05, 1.10, 1.20, 1.30, 1.40, 1.6, 1.8, 2.0, 2.2, 2.4, 3.0, 3.3, 3.6 times of the $U_{50\%}$. Due to the rated voltage limit of the impulse voltage generator, the test voltage under the short-tail lightning impulse is up to 2.4 times of the $U_{50\%}$. The data of the volt-second characteristic test is fitted using the volt-second characteristic description function recommended in [24], as in (1):

$$ U = A \times L + \frac{B \times L}{t} + C $$

(1)

Where L is the gap length (m); t is the flashover time (μs); A, B, and C are the coefficients to be determined.

C. SIMULATION ANALYSIS METHOD

The instantaneous electric-field distribution around the insulator has an effect on the generation and development of the following discharge/flashover process.

In order to explore the influences of insulator material, tower type and the relative position of the three-phase crossarms on the electric-field distribution around the insulator, and to explain the resulting difference in flashover characteristics, the three-dimensional (3-D) model of the tower and insulator were established and the electrostatic field simulation was carried out based on COMSOL Multiphysics. The simulation model is shown in Figure 4.

D. THE SINGLE INSULATOR TEST

In order to prove the influence of the true tower in the insulator flashover characteristics and the necessity of using the true tower in the test, the flashover test of a single insulator was also carried out. The upper end of the insulator was connected to the high voltage wire, and the lower end was connected by two grounding wires. Due to the limitation of the impulse voltage generator (in door) in this test, the actual output impulse is with a front time of 0.84 μs and a tail time of 50 μs. The parameter deviation is within the allowable range of the standard lightning impulse. The test layout are shown in Figure 5.
III. RESULTS OF TESTS AND SIMULATION

A. TEST RESULTS

Based on the test device and method above, impulse flashover tests of the insulators for 110 kV double-circuit transmission lines were conducted. The $U_{50\%}$ and volt-second characteristics of the three-phase composite and glass insulators hung on the umbrella-shape and drum-shape tower under the standard lightning impulse and the short-tail lightning impulse were respectively obtained. The data were corrected to standard atmospheric conditions according to the g-parameter method provided in the standard GB/T 16927.1-2011 [26]. The $U_{50\%}$ and their standard deviations are shown in Table I, Table II, Table III, and Table IV. Due to the great linearity relationship between the insulator flashover voltage and their length in the range of 1-3 m [7], the results are unified to the length of the composite insulator of 1.12 m for comparison.

The $U_{50\%}$ of single insulator under the standard lightning impulse are shown in Table V.

Since the volt-second characteristic data is large, it is given separately in the discussion of Part IV.

<table>
<thead>
<tr>
<th>Type of tower</th>
<th>Type of insulator</th>
<th>The phase</th>
<th>Positive (kV)</th>
<th>Negative (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The umbrella-shape tower</td>
<td>Composite</td>
<td>upper</td>
<td>763</td>
<td>815</td>
</tr>
<tr>
<td></td>
<td></td>
<td>middle</td>
<td>758</td>
<td>821</td>
</tr>
<tr>
<td></td>
<td></td>
<td>down</td>
<td>769</td>
<td>821</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>upper</td>
<td>754</td>
<td>777</td>
</tr>
<tr>
<td></td>
<td></td>
<td>middle</td>
<td>763</td>
<td>776</td>
</tr>
<tr>
<td></td>
<td></td>
<td>down</td>
<td>773</td>
<td>794</td>
</tr>
<tr>
<td>The drum-shape tower</td>
<td>Composite</td>
<td>upper</td>
<td>751</td>
<td>822</td>
</tr>
<tr>
<td></td>
<td></td>
<td>middle</td>
<td>751</td>
<td>821</td>
</tr>
<tr>
<td></td>
<td></td>
<td>down</td>
<td>761</td>
<td>827</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>upper</td>
<td>769</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>middle</td>
<td>780</td>
<td>806</td>
</tr>
<tr>
<td></td>
<td></td>
<td>down</td>
<td>766</td>
<td>820</td>
</tr>
</tbody>
</table>

B. SIMULATION RESULTS

Based on the 3-D electrostatic field simulation model above, the electric-field distributions and uneven coefficients around the three-phase insulator in the umbrella-shape and the drum-shape towers are obtained. The electric-field...
uneven coefficients of the three-phase composite and glass insulators hung on different towers are shown in Table VI.

<table>
<thead>
<tr>
<th>Type of tower</th>
<th>The phase</th>
<th>Uneven coefficients</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Composite</td>
<td>Glass</td>
</tr>
<tr>
<td>The umbrella-shape tower</td>
<td>upper</td>
<td>3.15</td>
<td>2.09</td>
</tr>
<tr>
<td></td>
<td>middle</td>
<td>3.24</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td>down</td>
<td>3.10</td>
<td>2.06</td>
</tr>
<tr>
<td>The drum-shape tower</td>
<td>upper</td>
<td>3.12</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>middle</td>
<td>3.11</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>down</td>
<td>3.14</td>
<td>2.13</td>
</tr>
</tbody>
</table>

IV. DISCUSSION AND ANALYSIS OF INFLUENCING FACTORS

According to the test results, the influencing factors on the flashover voltage of the insulator, including the impulse voltage waveform, the insulator material, the tower types, and the suspension positions of the insulator, are all analyzed in the following.

A. THE IMPULSE WAVEFORM

Comparing with Table I and Table II, it is demonstrated that the \(U_{50\%} \) under the short-tail lightning impulse are about 20%~40% higher than those under the standard lightning impulse. Because the front time and tail time of the short-tail lightning impulse are both short, it is not easy to reach the threshold of the discharge delay. Therefore, a higher voltage is required to allow the discharge to continue.

As shown in Table III and Table IV, the \(U_{50\%} \) under the short-tail lightning impulse is more dispersive than those under the standard lightning impulse. And the standard deviations of \(U_{50\%} \) under the short-tail lightning impulse are even more than 3 times higher than those under the standard lightning impulse in some working conditions.

Taking the composite insulator hung on the down phase of the umbrella-shape tower as an example, the volt-second characteristic curves of the insulator under different impulse voltage waveforms are illustrated in Figure 6.

![Figure 6. The volt-second characteristics curves of the insulators under different impulse voltage waveforms](image)

Figure 6 shows that the volt-second characteristic curves under the short-tail lightning impulse are above the curves under the standard lightning impulse. The breakdown voltages under the short-tail lightning impulse are about 100-300 kV higher than those under the standard lightning impulse when the time is after 6 \(\mu s \). This value is close to the \(U_{50\%} \) difference between the short-tail lightning impulse and the standard lightning impulse. From 3 \(\mu s \) to 0 \(\mu s \), the volt-second characteristic curves under different impulses get closer gradually. It means that the flashover characteristics under the two impulses are similar when the flashover occurs on the wave front. And when the flashover occurs on the wave tail, the differences under the two impulses are large. The two impulse waveforms have a half-peak time difference of about 40 \(\mu s \), and the difference in the wave front is only about 0.2 \(\mu s \). So the main difference in the volt-second characteristics caused by the impulse waveform become obvious when the breakdown time is after 3 \(\mu s \).

B. THE MATERIAL OF INSULATOR

The material of the insulator has a certain influence on the flashover characteristics, and the influences under the standard lightning impulse and the short-tail lightning impulse differ sharply.

From the test data in Table I, it can be seen that under the standard lightning impulse of 1.2/50 \(\mu s \), the positive \(U_{50\%} \) of the glass insulators are slightly larger than those of the composite insulators of the corresponding phase. The difference is within 2%. However, the negative \(U_{50\%} \) of the glass insulators are about 0.85%-5.48% smaller than those of the composite insulators. There exists a significant polarity effect. While under the short-tail lightning impulse, as shown in Table II, in most cases, the \(U_{50\%} \) of the composite insulators is slightly larger than the glass insulator, and the difference is less than 5%. The polarity effect is not clear.

According to simulation results of the electric-field uneven coefficients around the insulators of different materials shown in Table 3, it can be observed that the electric-field uneven coefficients around the glass insulator is smaller than those around the composite insulator (4%~33%). That is to say, the flashover of the composite insulator has a greater polarity effect than that of the glass insulator. Thus, under the standard lightning impulse, the positive \(U_{50\%} \) of the glass insulators are larger and the negative \(U_{50\%} \) are smaller than those of the composite insulators of the corresponding phase [28]. While under the short-tail lightning impulse, the tail time is much smaller than the standard lightning impulse, and the electrostatic-field analysis result is no longer applicable. It has to be explained by the simulation analysis of the dynamic discharge process.

Taking the down-phase insulators of the umbrella-shape tower as an example, the influence of the insulator material on the volt-second characteristics is analyzed, as shown in Figure 7.
The composite insulator under positive impulse
The composite insulator under negative impulse
The glass insulator under positive impulse
The glass insulator under negative impulse

The glass insulator under negative impulse

The composite insulator under positive impulse
The composite insulator under negative impulse
The glass insulator under positive impulse
The glass insulator under negative impulse

(a) Under the standard lightning impulse
(b) Under the short-tail lightning impulse

FIGURE 7. The volt-second characteristics curves of the insulators with different materials

Figure 7 shows that the volt-second characteristic curves of the composite insulator are higher than those of the glass insulator. When the breakdown time is before 10 μs, the voltage differences of the volt-second characteristic curves of two types of the insulators are large. Because the flashover of the glass insulator is along the surface and the coronas start at the edges of multiple insulator pieces, its discharge leaders develop and interconnect simultaneously with many short gaps between the closer insulator pieces and discharge development time is shorter than that of composite insulator under the same breakdown voltage [29]. When the time is after than 10 μs, there is a larger dispersion of breakdown time at the same voltage. And the differences on the breakdown voltage of different insulators are small. The range is within 150-100 kV.

C. THE TOWER TYPE AND THE INSULATOR SUSPENSION POSITION

It can be seen from Table I that the $U_{50\%}$ of insulators hung on the two types of towers have no obvious influencing law. However the $U_{50\%}$ differences under the standard lightning impulse are less than 4%, and that under the short-tail lightning impulse is 5%-8%.

There is no recognizable law on the influence of the suspension positions of three-phase insulators on $U_{50\%}$. The $U_{50\%}$ difference of the three-phase insulators under the standard lightning impulse is 0.67%-2.58%, while that under the short-tail impulse is 3.58%-7.31%, as shown in Table I.

The results of the electric-field simulation show that the tower type and the insulator suspension position have little impact on the electric-field distribution and uneven coefficients. The difference on the electric-field uneven coefficients of the three-phase insulators hung on the umbrella-shape tower is less than 4.5%. And the difference on the electric-field uneven coefficients of the three-phase insulators hung on the umbrella-shape tower is less than 0.9%. Therefore, both the test and simulation results show that under the standard lightning impulse, the tower type and the insulator suspension position have little influence on the $U_{50\%}$. However, the test results reveal that the $U_{50\%}$ difference resulted from the tower type and the insulator suspension position under the short-tail impulse is large, and the electrostatic-field simulation cannot explain this phenomenon.

Considering the voltage across the insulator is the negative standard lightning impulse during the shielding failure and the positive short-tail lightning impulse during the back flashover, the volt-second characteristic curves of the three-phase composite insulators hung on the umbrella-shape tower are given in Figure 8 under the two kinds of the lightning impulse above.

FIGURE 8. The volt-second characteristics curves of the three-phase composite insulators

It is found that the influence on the volt-second characteristic resulted from the tower type and the insulator
suspension position under the standard lightning impulse is small, and the influence under the short-tail lightning impulse is slightly larger, but the influence degree is smaller than that resulted from the impulse waveform and insulator material.

D. THE TRUE TOWER

Comparing the corresponding $U_{50\%}$ of the single insulator and the insulators hung on the true tower in Table I, Table II, and Table V, it is found that there is a polarity effect. The positive $U_{50\%}$ of the single insulator is lower than those of the insulators hung on the true tower (within 2.8%). And the negative $U_{50\%}$ of the single insulator is higher than those of the insulators hung on the true tower (within 6.7%). By preliminary analysis, it may be caused by the two grounding wires at the lower end of the single insulator. Due to the layout of the grounding wires, the electric-field distribution around the insulator becomes an asymmetrical distribution from a symmetrical distribution at the beginning, and the uneven degree in the single insulator test is bigger than that in true tower test.

For the purpose of analyzing the influence of the true tower on the insulator flashover characteristics, the volt-second characteristic curves of the single insulator and the down-phase composite insulator hung on the umbrella-shape tower under the standard lightning impulse are all illustrated in Figure 9.

As shown in Figure 9, the differences of the volt-second characteristic curves under the positive and negative lightning impulses are big. Under the positive standard lightning impulse, when the breakdown time is after 2 μs, the breakdown time of the single insulator is obvious shorter than those of the insulators hung on the true tower under the same breakdown voltage; while under the negative standard lightning impulse, the same situation happen when the breakdown time is before 4 μs. The difference under the negative impulse is apparently greater.

Therefore, the flashover test of the insulators hung on the true tower can reflect actual situation better and obtain more accurate results than that of the single insulator.

Combined with the analysis of the influencing factors above, it can be concluded that the true tower is essential in the flashover test. Based on the true tower test, the impulse waveform has the greatest influence on the insulator flashover characteristics, followed by the insulator material; while the tower type and the insulator suspension position have the least influence. Thus, in the analysis of lightning protection performance of overhead transmission lines, when the shielding failure happens on the transmission line, the $U_{50\%}$ difference caused by the insulator suspension position is within 3%, which is negligible; while the influence of the insulator material on the flashover characteristics needs to be taken into consideration. Meanwhile, when the back flashover happen on the transmission line, the influences of both the impulse waveform and insulator material on the flashover characteristics should be mainly considered.

V. CONCLUSION

The flashover characteristics tests of the composite and glass insulators hung on the 110kV true tower were carried out in this paper. The different influencing factors of the flashover characteristics and the influence degree were studied. Combined with the electrostatic-field simulation, reasons for the difference were partly explained. The following are the conclusions.

(1) Through the insulator flashover test in the true tower, the data of the $U_{50\%}$ and the volt-second characteristics with different impulse waveforms, different insulator materials, different tower shapes, and different insulator suspension position are given. The test results can be used in the lightning protection calculation and analysis of the 110kV double-circuit transmission lines.

(2) The impulse waveform is one of the main influencing factors of the insulator flashover characteristics. The $U_{50\%}$ under the short-tail lightning impulse are about 20%–40% higher than those under the standard lightning impulse; while the $U_{50\%}$ under the short-tail lightning impulse is more dispersive than those under the standard lightning impulse. The principle difference in the volt-second characteristics due to the impulse waveform is obvious when the breakdown time is longer than 3 μs.
(3) The $U_{50\%}$ differences caused by the insulator material under the standard lightning impulse and the short-tail lightning impulse differ sharply. The $U_{50\%}$ of the glass and composite insulators have significant polarity effects under the standard lightning impulse; while under the short-tail lightning impulse, the $U_{50\%}$ of the composite insulator are substantially larger than those of the glass insulator (within 5%). The volt-second characteristic curves of the composite insulator are higher than those of the glass insulator. It is caused by the faster development of the glass insulator discharge channel at the same breakdown voltage.

(4) Under the different lightning impulses, the factors of the tower type and the insulator suspension position have different effects on the $U_{50\%}$ and the volt-second characteristics. The influence of the tower type and the insulator suspension position is small under the standard lightning impulse, but the influence is obvious under the short-tail lightning impulse.

(5) Whether the insulator is hung on the true tower directly affects the authenticity of flashover test and the accuracy of experimental results. And its effect on the volt-second characteristic curve is greater than that on the $U_{50\%}$.

(6) By the analysis on the influencing factors of the insulator flashover characteristics, it is indicated that the influences of the impulse waveform and the insulator material need to be considered in the calculation of lightning protection performance when shielding failure or back flashover happens on the transmission lines.

ACKNOWLEDGMENT
The authors gratefully acknowledge all the members involved in the project and the support of the National Engineering Laboratory in Kunming, China.

REFERENCES
[29] Zhang Y, Han Y, et al., “Lightning Flashover Performance Test and Flashover Criterion Study of Insulators in a 110 kV True Type
Tower at High Altitude Areas,” Power Grid Technology, to be published.
YONGXIA HAN Ph.D., associate professor. She received the B.Sc., M.Sc., and Ph.D. degrees in electrical and electronic engineering of Huazhong University of Science and Technology (HUST), Wuhan, China, in 2004, 2006, and 2009, respectively. She is an associate professor at the School of electric power, South China University of Technology, now. Her research interests includes gas discharge, electromagnetic transient analysis in LCC/VSC HVDC/MVDC, and overvoltage and insulation coordination in power system.

YAQI ZHANG, as a corresponding author, was born in Hunan province, China, in 1992. She received a B.Sc. degree in Changsha University of Science and Technology, China, in 2015. She is presently pursuing a Ph.D. degree at the School of electric power, South China University of Technology. And she is a student member of IEEE. Her research interests are gas discharge and insulation coordination.

YAOXUAN RUAN received a master’s degree at South China University of Technology. Her research interests are gas discharge and insulation coordination.

JIE YANG presently studies for a master’s degree at South China University of Technology. His research interests are gas discharge and insulation coordination.

GANG LIU was born in 1985. He received the Ph.D. degree in High voltage and Insulation Technology from Huazhong University of Science and Technology, Wuhan, China, in 2011. He is currently working in the Electric Power Research Institute, China Southern Power Grid. He has been working on overvoltage calculations and high voltage experiment.

HANSHENG CAI (Born in 1963), senior engineer, senior technical experts of CSG (China Southern Power Grid), expert with State Council special allowance. He has been engaged in the research of overvoltage and insulation coordination, and lightning protection technology. He is expert in the calculating overvoltage, testing arrester, and field testing.

LICHENG LI was born in Jiangsu province, China in 1941. He received the B.S. degree from the Department of Electrical Engineering, Tsinghua University, Beijing, China in 1967. He is now an academician of Chinese Academy of Engineering (CAE), a professor and doctoral supervisor in South China University of Technology. He is the secretary of the expert committee of China Southern Power Grid.