Robust Control of Grid-tied Parallel Inverters using Nonlinear Backstepping Approach

Ammar Ahmad, Nasim Ullah, Nisar Ahmed, Asier Ibeas, Ghuilam Mehdi, Jorge Herrera and Anwar Ali

Abstract—In modern electrical systems, solar energy extracted is integrated into electrical grid using power converters. In most cases, several inverters are connected across the same DC link so that the circulating currents between the inverter are made zero and the input power is shared among the available inverters. Because of the nonlinear nature of grid-tied photovoltaic (PV) system and the inherent modelling uncertainties, conventional control schemes cannot provide satisfactory performances under all operating conditions. Nonlinear control techniques for grid-tied inverter have been explored in the literature. However, the design of nonlinear controllers for the control of grid-tied parallel inverters has been rarely reported. Therefore, the purpose of this research work is to design a nonlinear controller for the control of grid-tied parallel inverter system (PIS). A novel control strategy is devised that utilizes backstepping inspired integral sliding mode control (ISMC) to maintain a constant DC link voltage and control power flow to the grid. An algorithm is developed, which determines the number of inverters connected across the DC link. The control strategy employs Lyapunov approach to ensure stability in an event of disturbance and guarantees robustness. With the proposed control scheme, better and superior performance is observed in transient response, total harmonic distortion (THD) minimization and integrating power into the grid at unity power factor. Furthermore, with the control strategy, the available power from the PV array is successfully distributed among multiple inverters operating in parallel.

Index Terms—Backstepping, DC link, ISMC, parallel inverters.

I. INTRODUCTION

In a grid-tied renewable energy system, power converters are used to transfer the DC power extracted from the PV array into AC power and integrate into the grid. Modern PV systems have the capability of generating power in several hundred megawatts. For such systems, it is desirable to divide the available input power among parallel inverters. Such an arrangement has a number of advantages over a system that employs a single inverter, e.g., it does not suffer from single point failure and has lower initial and maintenance costs [1]–[3]. For grid-tied inverters, the important control objectives are to keep the voltage and the frequency synchronized with the grid, control active and reactive flow to the grid and keep harmonic distortion below a standard limit [4]. For parallel operation of inverters, it is necessary to minimize the circulating currents among inverters [5]. For inverters connected across a common DC link capacitor, the circulating currents are no longer a problem as each inverter unit produces the same pulse width modulated (PWM) output [6].

The control of parallel inverter system has been carried out extensively in various studies [1], [7]–[18]. Control techniques employed in the literature are concentrated control [7], master-slave control [1], [8] and droop control [9]. Droop control is widely adopted because this control scheme does not require a communication line and truly forms a distributed system. In this control scheme, control is designed such that each inverter unit behaves as a synchronous machine, whose output voltage and frequency become a function of the active and reactive power drawn from it. The problems with this control scheme are slow tracking response, poor harmonic handling when feeding nonlinear loads and the inability of the controller to provide balanced power sharing when operating under impedance mismatches of the line. In [11], a virtual impedance based droop control is proposed for balanced power sharing among inverters. The idea is to use a virtual impedance loop that dominates the impedance of the line. Although, balanced power sharing among various inverters is achieved, the power sharing is still poor. The authors of [12] proposed a generalized droop control (GDC) that derives from both the conventional droop and the virtual synchronous generator (VSG) controls. Using GDC, satisfactory performance is achieved in both grid connected and islanded modes of operation of the inverters. In [13], the conventional droop is modified such that active and reactive power are controlled considering a more general and realistic case of a system with complex impedance. This control strategy is more generic and is shown to control active and reactive power among several inverter units in case of resistive, inductive and complex impedances with a good transient response. Recently, a universal droop controller (UDC) is proposed in [14]. With UDC, the complete system is shown to be stable for impedance angle variation in the range $\theta \in (-\pi/2, \pi/2)$. Similarly, other modified forms of the droop control such as adaptive droop control [15]–[17] and robust droop control [18] have also been presented. These techniques give better power sharing with increased system stability.

Control techniques employing droop based control changes the output voltage and frequency depending upon the active and reactive power demands. In an AC grid, the frequency and voltage are predetermined and must remain constant.
This paper is organized as follows. Section II introduces the grid-tied PIS and details its modelling in dq reference frame. Control objectives and complete derivation of control laws based on Lyapunov’s theory are given in section III. An algorithm that determines the number of inverters connected across the DC link is also developed in this section. Section IV shows validity of the control laws in achieving the control objectives in a simulation environment. Finally, conclusions are drawn in section V.

II. GRID-TIED PIS MODEL AND CONTROL OBJECTIVES

A. Modelling of Grid-tied PIS

Fig. 1 shows a typical two stage grid-tied PIS. It is worth mentioning that the dotted lines in Fig. 1 indicate that, besides the three shown inverter units, the system can have many more
inverter units. As mentioned in the previous section, such an arrangement decouples the power extracted from the PV array and DC link voltage. We assume that there are no switching losses in the power converters. Therefore, whatever power is extracted from the PV array, is readily available at the input of capacitor. This power is called input power or \(P_{in} \). Each inverter is then connected to the grid through an L-filter. The purpose of the filter is to attenuate the harmonics generated as a result of switching phenomenon inside the inverters. Fig. 2 shows a simplified circuit diagram of the kth grid-tied inverter. Application of KVL to Fig. 2 leads to

\[
\dot{i}_{a,k} = \frac{1}{L} (v_{ia,k} - v_{ga}) \tag{1a}
\]

\[
\dot{i}_{b,k} = \frac{1}{L} (v_{ib,k} - v_{gb}) \tag{1b}
\]

\[
\dot{i}_{c,k} = \frac{1}{L} (v_{ic,k} - v_{gc}) \tag{1c}
\]

Here, \(i_{abc,k} \), \(L \), \(v_{gabc} \) and \(v_{iabc,k} \) represent the currents fed into grid, filter’s inductance, grid’s voltage and inverter’s output voltage respectively. The three phase system represented by \(\omega \) phase DC quantities that rotates with angular velocity \(\omega \) are transformed into synchronously rotating two phase DC quantities. It should be noted here that when the grid’s angle \(\theta \) becomes zero. Referring to Fig. 1, the power equation can be written as

\[
P_{dc} = \sum\limits_{k=1}^{n} P_k \tag{5}
\]

and

\[
P_{dc} = C_{dc}v_{dc}\dot{v}_{dc} \tag{6}
\]

Using the assumption that no switching losses occur in the inverter, the power absorbed by each inverter, represented by \(P_k \), equals the power it feeds to the grid. Thus for \(dq \) frame, the relation for the output power of the inverter is given by

\[
P_k = \frac{3}{2} v_{gd}i_{d,k} \tag{7}
\]

The subscript \(k \) in (4a) and (4b) represents the parameters related to kth-inverter. Similarly the subscripts \(d \) and \(q \) represent the direct and quadrature components of the two phase quantities. It should be noted here that when the grid’s angle \(\theta = \omega t \) is used as a reference for \(dq \) transformation, the value of \(v_{qg} \) becomes zero. Referring to Fig. 1, the power equation can be written as

\[
P_{dc} = P_{in} - \sum\limits_{k=1}^{n} P_k \tag{5}
\]

Using (6) and (7), (5) is re-written as

\[
\dot{v}_{dc} = \frac{1}{C_{dc}} \left[P_{in} - \frac{3}{2} \left(\sum\limits_{k=1}^{n} v_{gd}i_{d,k} \right) \right] \tag{8}
\]

or

\[
\dot{v}_{dc} = \frac{1}{C_{dc}} \left[P_{in} - \frac{3}{2} v_{gd}i_{d,k} \right] \tag{8}
\]

(4a), (4b) and (8) give the state-space model of the three-phase grid-tied PIS.

B. Control Objectives

Following are the main control objectives of this paper.

1. Maintain a constant DC link voltage i.e. \(v_{dc} = v_{dc}^* \).
2. Transfer all the available DC power into AC and integrate into electrical grid.
3. Keep a unity power factor.
4. Minimize THD.
5. Share the available power among various inverter units.

III. BACKSTEPPING ISMC CONTROLLER DESIGN

A. Virtual Control Law

The two step cascade arrangement of the grid-tied PV system shown in Fig. 3 allows the exercise of backstepping control techniques to its control. The first subsystem has been named as the actual control subsystem since the actual control signal is the input to this block, whereas the succeeding subsystem is called the virtual control subsystem as the direct component of the current \(i_{d,k} \) is its input and DC link voltage is its output. \(i_{d,k} \) can be used as a virtual control signal to control the magnitude of the DC link voltage. Let \(v_{dc}^* \) be the reference DC link voltage and let \(\dot{\vartheta}_{dc} = v_{dc}^* - v_{dc} \) be the corresponding tracking error. Let \(\dot{\vartheta}_{dc} \) be the virtual control signal that drives \(v_{dc} \) upon \(v_{dc}^* \). With ISMC, the integral of the error becomes a variable of interest which raises the relative degree by 1 [32]. Therefore, the sliding manifold for the error in DC link voltage becomes

\[
\Phi_{dc} = \vartheta_{dc} + \xi_{dc} \int \vartheta_{dc} dt \tag{9}
\]

where \(\xi_{dc} > 0 \). The time derivative of (9) yields

\[
\dot{\Phi}_{dc} = \frac{1}{C_{dc}} \left[\frac{3}{2} v_{gd}i_{d,k} - P_{in} \right] + \xi_{dc} (v_{dc}^* - v_{dc}) \tag{10}
\]
By setting (10) equal to zero, it is observed that \(\dot{\vartheta}_{d,k} = -\xi_{d,k}\vartheta_{d,k} \) which represents the first order asymptotically stable dynamics. The virtual control signal \(i_{q,k}^* \) is then written as

\[
\dot{i}_{q,k}^* = \frac{2P_{in}}{3v_{gd}} - \frac{2C_{dc}v_{dc}\vartheta_{d,k}}{3v_{gd}} (v_{dc} - v_{dc})
\]

(11)

B. Actual Control Laws

The active power flow to the grid is regulated by enforcing \(i_{d,k} \) to follow the trajectory of \(i_{d,k}^* \). This reference current is dictated by (11) which in itself is dominated by the quadrature component of the current \(i_{q,k} \). The reference for this current \(i_{q,k}^* = \frac{2Q_{dc}}{3v_{gd}} \) is kept zero to ensure power feeding at unity power factor. The tracking errors in the direct and quadrature currents are given by (12a) and (12b) respectively

\[
\begin{align*}
\dot{i}_{d,k} &= i_{d,k}^* - i_{d,k} \\
\dot{i}_{q,k} &= i_{q,k}^* - i_{q,k}
\end{align*}
\]

(12a) (12b)

Consider the derivative of \(i_{q,k}^* \)

\[
\dot{i}_{q,k}^* = \frac{d}{dt} \left[\frac{2P_{in}}{3v_{gd}} - \frac{2C_{dc}v_{dc}\vartheta_{d,k}}{3v_{gd}} (v_{dc} - v_{dc}) \right]
\]

(13)

Because \(v_{gd} \) remains necessarily constant, therefore

\[
\dot{i}_{d,k} = \frac{2P_{in}}{3v_{gd}} - \frac{d}{dt} \left[\frac{2C_{dc}v_{dc}\vartheta_{d,k}}{3v_{gd}} (v_{dc} - v_{dc}) \right]
\]

or

\[
\dot{i}_{q,k} = \frac{2P_{in}}{3v_{gd}} - \frac{2C_{dc}v_{dc}\vartheta_{d,k}}{3v_{gd}} (v_{dc} - v_{dc})
\]

(14)

where \(P_{in} \) and \(v_{dc} \) represent the derivatives of \(P_{in} \) and \(v_{dc} \) respectively. The sliding trajectories for the direct and quadrature currents are defined as

\[
\begin{align*}
\Psi_{d,k} &= \dot{\vartheta}_{d,k} + \xi_{gd} \int \vartheta_{d,k} dt \\
\Psi_{q,k} &= \dot{\vartheta}_{q,k} + \xi_{gg} \int v_{q,k} dt
\end{align*}
\]

(15a) (15b)

where \(\xi_{gd} \) and \(\xi_{gg} \) are both greater than zero. Taking derivative of (15a) and (15b) gives

\[
\begin{align*}
\dot{\Psi}_{d,k} &= \dot{\vartheta}_{d,k} + \xi_{gd}\vartheta_{d,k} \\
\dot{\Psi}_{q,k} &= \dot{\vartheta}_{q,k} + \xi_{gg} v_{q,k}
\end{align*}
\]

(16a) (16b)

Also using (4a) and (11), the following are obtained

\[
\begin{align*}
\dot{\vartheta}_{d,k} &= \frac{2P_{in}}{3v_{gd}} - \frac{2C_{dc}v_{dc}\vartheta_{d,k}}{3v_{gd}} (v_{dc} - v_{dc}) - \omega_{q,k} \\
&\quad - \frac{1}{L} (v_{id,k} - v_{gd}) \\
\dot{\vartheta}_{q,k} &= \omega_{i_k} - \frac{v_{q,k}}{L}
\end{align*}
\]

(17) (18)

In order to obtain the actual control laws, the candidate Lyapunov energy-like functions are defined as

\[
\Phi_{d,k} = \frac{1}{2} \Psi_{d,k}^2 > 0
\]

(19a)

For asymptotic stability, the derivative of (19a) and (19b) must always be negative, thus

\[
\begin{align*}
\dot{\Phi}_{d,k} &= \Psi_{d,k} \dot{\Psi}_{d,k} < 0 \\
\dot{\Phi}_{q,k} &= \Psi_{q,k} \dot{\Psi}_{q,k} < 0
\end{align*}
\]

(20a) (20b)

Realizing that the two phase output voltages of each inverter are the product of \(v_{dc} \) and the corresponding switching signal (control signal) i.e. \(v_{dq,k} = u_{dq,k}v_{dc} \), \(v_{q,k} = u_{q,k}v_{dc} \), (16a) and (16b) are re-written as

\[
\begin{align*}
\dot{\Psi}_{d,k} &= \dot{i}_{d,k}^* - \left[\omega_{q,k} + \frac{1}{L} (u_{dq,k}v_{dc} - v_{gd}) \right] + \xi_{gd}(i_{d,k}^* - i_{d,k}) \\
\dot{\Psi}_{q,k} &= \omega_{q,k} - \frac{1}{L} u_{q,k}v_{dc} + \xi_{gg}(i_{q,k}^* - i_{q,k})
\end{align*}
\]

(21) (22)

Now the equivalent control laws, represented mathematically by \(u_{deq,k} \) and \(u_{geq,k} \) enforce the system to follow the desired trajectories \(\Psi_{d,k} = 0 \) and \(\Psi_{q,k} = 0 \) and are given by

\[
\begin{align*}
u_{deq,k} &= \frac{L}{v_{dc}} \left[v_{gd} - \omega_{i_k} + i_{d,k} + \xi_{gd}(i_{d,k}^* - i_{d,k}) \right] \\
u_{geq,k} &= \frac{L}{v_{dc}} \left[\omega_{i_k} + \xi_{gg}(i_{q,k}^* - i_{q,k}) \right]
\end{align*}
\]

or

\[
\begin{align*}
u_{deq,k} &= \frac{L}{v_{dc}} \left[v_{gd} - \omega_{i_k} - \frac{2C_{dc}v_{dc}\vartheta_{d,k}}{3v_{gd}} (v_{dc} - 2v_{dc}) \right] \\
&\quad + \frac{2P_{in}}{3v_{gd}} + \xi_{gd}(i_{d,k}^* - i_{d,k})
\end{align*}
\]

(23)

and

\[
\begin{align*}
u_{geq,k} &= \frac{L}{v_{dc}} \left[\omega_{i_k} + \xi_{gg}(i_{q,k}^* - i_{q,k}) \right]
\end{align*}
\]

(24)

C. Robustness of Control Laws

The equivalent control laws guarantee stable tracking of the system’s trajectories. However, the steady state tracking performance might get affected in an event of disturbance. To achieve tracking even in the presence of disturbance, the equivalent control laws (23) and (24) are modified by adding discontinuous signum terms \(\text{sign}(\Psi_{d,k}) \) and \(\text{sign}(\Psi_{q,k}) \) such that the net control laws take the form

\[
\begin{align*}
u_{d,k} &= \frac{L}{v_{dc}} \left[-\omega_{i_k} + \frac{2P_{in}}{3v_{gd}} - \frac{2C_{dc}v_{dc}\vartheta_{d,k}}{3v_{gd}} (v_{dc} - 2v_{dc}) \right] \\
&\quad + \frac{v_{gd} + \xi_{gd}(i_{d,k}^* - i_{d,k})}{L} - \dot{\zeta}_{d,k} \text{sign}(\Psi_{d,k})
\end{align*}
\]

(25)

\[
\begin{align*}
u_{q,k} &= \frac{L}{v_{dc}} \left[\omega_{i_k} + \xi_{gg}(i_{q,k}^* - i_{q,k}) \right] - \dot{\zeta}_{q,k} \text{sign}(\Psi_{q,k})
\end{align*}
\]

(26)

where \(\dot{\zeta}_{d,k} \) and \(\dot{\zeta}_{q,k} \) are some positive constants.
D. Proof of Robustness

Let the maximum of disturbances in the system dynamics defined by (4a) and (4b) be represented by $T_{d,k}$ and $T_{q,k}$ respectively, then after incorporating the disturbance terms and substituting (25) and (26) into (20a) and (20b) respectively, we obtain

$$\dot{\Psi}_{d,k} = \Psi_{d,k} T_{d,k} - \zeta_{d,k} \Psi_{d,k} \text{sign} (\Psi_{d,k})$$

$$\dot{\Psi}_{q,k} = \Psi_{q,k} T_{q,k} - \zeta_{q,k} \Psi_{q,k} \text{sign} (\Psi_{q,k})$$

or

$$\dot{\Psi}_{d,k} = \Psi_{d,k} T_{d,k} - \zeta_{d,k} |\Psi_{d,k}|$$

$$\dot{\Psi}_{q,k} = \Psi_{q,k} T_{q,k} - \zeta_{q,k} |\Psi_{q,k}|$$

For $\Psi_{d,k} < 0$ and $\Psi_{q,k} < 0$, both (27) and (28) are less than zero and hence asymptotic stability is ensured. However, for $\Psi_{d,k} > 0$ and $\Psi_{q,k} > 0$, asymptotic stability is realized only when the constants $\zeta_{d,k}$ and $\zeta_{q,k}$ are chosen such that

$$\zeta_{d,k} > T_{d,k}$$

$$\zeta_{q,k} > T_{q,k}$$

The gains of the ISMC controller can be tuned using a technique detailed in [33]. Newton’s optimization technique is used to compute the optimal gains that minimize the tracking errors. The gains of the ISMC controller $\zeta_{d,k}$ and $\zeta_{q,k}$ are initialized to values defined by (29a) and (29b) respectively before running the iterations for gain tuning. Furthermore, since the tuning technique provides the gains that minimize the error, we can safely deduce that error will converge to zero asymptotically. It is also worth mentioning that because the gains are tuned according to the existing state of the error, robustness against disturbances is established once again. This is because the error on a particular state increases in the presence of disturbance. This increase in error can only be minimized if the gains are tuned to values defined by (29a) and (29b).

E. Mechanism for Determining Number of Connected Inverters

The reference current $i_{d,k}^*$ depends upon the number of inverters n, connected across the DC link. Therefore, determining this number while the system is up and running is of the utmost importance. A wrong reference value might lead to undesirable results. Let m be the maximum number of inverters connected across the DC link and let $I_1, I_2, I_3, ..., I_m$ be the currents of the corresponding inverter units. Disconnected inverters correspond to zero currents. This fact has been used to our advantage. Fig. 4a shows the algorithm developed to determine n. The algorithm reads in all the available currents from various inverter units (I_1 through I_m) and stores them in an array I (input current ports for disconnected inverters might be grounded to read zero). Two variables sum and z are defined and initialized to zero (z must be initialized to 1 if coding is to be carried out in Matlab). The algorithm searches the array and increments the variable sum each time it encounters a non zero entry. This process goes on until the variable z becomes greater than the size of the array. If no inverter unit is connected, the algorithm must output $n = 1$. This is done to avoid infinite values of the reference $i_{d,k}^*$. For the case, where $0 < n \leq m$, the algorithm outputs the number of connected inverters.

In order to verify the algorithm developed, four inverter units are used. Initially all the inverters are disconnected so that the algorithm outputs $n = 1$. At $t = 0.05$ s, two inverter units are connected. The algorithm now outputs $n = 2$. At $t = 0.1$ s, the remaining two inverters are also connected. The algorithm must now output $n = 4$. At $t = 0.15$ s and $t = 0.2$ s, the third and fourth inverter units are disconnected respectively. Finally, at $t = 0.23$ s, the first two inverters are also disconnected. The result of simulation shown in Fig. 4b verifies the algorithm.

F. System Implementation

Fig. 5 shows a two stage control in which the first stage deals with extracting maximum power from the PV array. The second stage is associated with the control of power flow to the grid along with other control objectives given in section II-B. In order to achieve maximum power point tracking (MPPT), a SMC based MPPT controller is designed.
However, for the sake of brevity its design is not included here. The backstepping control laws derived in (25) and (26) are used to pilot the SVPWM block that generates six switching signals. These switching signals or sequences are used to drive the six IGBTs of each inverter unit. Simulation of the complete system is carried out in Matlab Simulink (version R2017a) environment.

IV. SIMULATION RESULTS

The simulation for the control of grid-tied inverters is divided into two parts. In first part, a single inverter is connected across the DC link. In second part, multiple inverters are connected across the same DC link capacitor.

A. Single Inverter Unit

A PV array capable of generating 10 kW at 1 kW m⁻² and 25 °C is designed to supply the input power. Simulation results are given in Fig. 6. The initial voltage of the DC link capacitor as well as its voltage reference \(v_{dc}^* \) are both kept at 550 V. The reference for direct component of the current is governed by the amount of power available from the PV array. Initially \(P_{in} \) is zero, however, during time \(t = 0.0121 \text{ s} - 0.025 \text{ s} \) it rises linearly to 10 kW and thereafter remains constant. At \(t = 0.05 \text{ s} \), \(P_{in} \) suffers a ramp decay and becomes constant at 8 kW. At \(t = 0.125 \text{ s} \), it suffers another step decay to 6 kW and a step rise to 10 kW at \(t = 0.15 \text{ s} \). It then undergoes another ramp decay at \(t = 0.175 \text{ s} \) to reach 4 kW at \(t = 0.225 \text{ s} \) after which it remains constant till the end of simulation. The reference for reactive power is kept zero all the time to ensure power feeding at unity power factor.

B. Disturbance Rejection

Disturbance rejection capability of the proposed controller was proved in section III-D. In this section, a disturbance injection scenario is simulated to verify the reference tracking capability of the proposed controller in the presence of disturbance. According to [34], one of the common disturbances in an electrical grid is a voltage dip or sag. Specifically a voltage drop (amplitude between 90% and 10%) or a rise (amplitude between 10% and 50%) is applied at the grid side. The controller has been designed to handle such disturbance by maintaining a unity power factor to minimize the effect of disturbance on the system performance.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC link capacitor, (C_{dc})</td>
<td>470 (\mu)F</td>
</tr>
<tr>
<td>Switching frequency, (f_{sw})</td>
<td>10 kHz</td>
</tr>
<tr>
<td>Filter’s Inductance, (L)</td>
<td>8 mH</td>
</tr>
<tr>
<td>Grid’s voltage (RMS)</td>
<td>220 V</td>
</tr>
<tr>
<td>Grid’s frequency, (f)</td>
<td>50 Hz</td>
</tr>
<tr>
<td>(\xi_{dc})</td>
<td>3 (\times 10^{4})</td>
</tr>
<tr>
<td>(\xi_{q})</td>
<td>5 (\times 10^{3})</td>
</tr>
<tr>
<td>(d_{k})</td>
<td>1 (\times 10^{3})</td>
</tr>
<tr>
<td>(\xi_{q,k})</td>
<td>2 (\times 10^{3})</td>
</tr>
<tr>
<td>(\xi_{j,k})</td>
<td>3.5 (\times 10^{3})</td>
</tr>
</tbody>
</table>
between 110% and 180%) of the nominal voltage is observed. Therefore, voltage variations in the nominal voltage of the grid is introduced at different times. Initially at $t = 0.03775$ s, a voltage dip ($v_{r.m.s.} = 10$ V) is commenced that lasts till $t = 0.0625$ s. Then at $t = 0.1375$ s, the voltage was increased to 10% above the nominal value and was restored at $t = 0.15$ s. Finally, another voltage dip is introduced at $t = 0.2$ s which is immediately followed by a rise at $t = 0.2125$ s. Simulation results of Fig. 7 depict that the proposed controller is able to track the current references despite the voltage dips and rises. As pointed out by one of the reviewer, one possible disturbance scenario would be to inject certain percentages of

Fig. 6. Simulation results for a single inverter unit. A comparison between the proposed controller and FBL controller. (a) Active and reactive power fed into the grid. (b). DC link voltage. (c). Three-phase currents of the proposed controller. (d). Power factor analysis of the proposed controller. For better viewing, three-phase currents are amplified six times. Corresponding voltage and current phases are in phase. (e). Three-phase currents of the FBL controller. (f). Power factor analysis of the FBL controller. Although reactive power is zero, because of the small tracking error and relatively slow tracking by the FBL controller, the power factor is not exactly 1. (g) THD in the output currents with the proposed controller and (h). THD in the output currents with FBL controller at 2.5 kW and 1 kvar.
Fig. 7. Simulation results showing the performance of the proposed controller in the presence of disturbances. (a). Disturbance in voltage of the grid in form of voltage dips and rises. (b). 15%, 20% and 10% of reference signal is injected as disturbance (c). Active and reactive power profile in response to voltage dips and rises. (d). Active and reactive power profile in response to disturbance shown in (b). (e). Three-phase currents in case of disturbance shown in (a). (f). Three-phase currents in case of disturbance shown in (b).

the reference signal at different times. Therefore, 15%, 20% and 10% of the reference signals are injected at $t = 0.03775\ s$, $t = 0.1375\ s$ and $t = 0.2\ s$ respectively. Simulation results once again establish the disturbance rejection capability of the proposed controller.

C. Multiple Inverter Units

In this section, the ability of the controller (along with the developed algorithm) to share power among various inverters is verified. A PV array capable of generating 90 kW of power at standard conditions is used. The simulation is carried out using four inverters. The size of L filter is changed to 3 mH. Initially, no inverter is connected so that power delivered to the grid is zero. At $t = 0.025\ s$, three inverters are connected. Of the total 90 kW, each inverter unit provides 33.3% or 30 kW. At the instant of 0.125 s, the fourth inverter is connected such that the power delivered by each inverter to the grid drops down to 25% or 22.5 kW. At $t = 0.175\ s$ the fourth inverter is disconnected and the power per inverter rises up again to 30 kW. The simulation results shown in Fig. 8 hence verify the effectiveness of controller in achieving objective 5.

V. CONCLUSION

In this paper, a nonlinear backstepping inspired ISMC controller is designed for the control of grid-tied PIS. The objectives of the research work are to 1) maintain a constant DC link voltage, 2) integrate the available power from the PV array into the grid at unity power factor and 3) minimize THD, 4) share available power among various inverters operating in parallel. Control scheme is designed such that the reference for active current component changes each time an inverter unit is connected to the system. An algorithm is also developed which determines the number of inverters connected across the DC link. Simulation results establish that the proposed
VI. ACKNOWLEDGMENT

Mr. Ammar Ahmad would like to acknowledge the contribution of Dr. Nasim Ullah for providing invaluable technical support in completing the research work. Dr. Nasim Ullah would like to acknowledge the Higher Education Commission (HEC) Pakistan, for providing the PCCR research grant to travel Dr. Asier Ibeas research group, at UAB Barcelona Spain. Dr. Nasim Ullah will further acknowledge the contribution of Dr. Asier Ibeas for providing technical support during the short visit. Dr. Asier Ibeas is partially supported by the Spanish Ministry of Economy and Competitiveness through grant DPI2016-77271-R and by the University of Basque Country (UPV/EHU) through grant PPG17/33.

REFERENCES

Fig. 8. Simulation results for the multiple inverter units. (a). Power sharing among four inverters. Power per inverter changes whenever a unit is connected or disconnected. (b)-(d). Inverter-1 through inverter-4’s currents.
et al.

[31] T. K. Roy, M. A. Mahmud, A. M. T. Oo, R. Bansal, and M. E. Haque,

[29] S. A. Khajehoddin, M. Karimi-Ghartemani, P. K. Jain, and A. Bakhshai,

[27] J. C. Vasquez, J. M. Guerrero, M. Savaghebi, J. Eloy-Garcia, and

[18] Q.-C. Zhong, “Robust droop controller for accurate proportional load

[17] J. Kim, J. M. Guerrero, P. Rodriguez, R. Teodorescu, and K. Nam,

[16] J. Kim, J. M. Guerrero, P. Rodriguez, R. Teodorescu, and K. Nam,

different types of output impedance,” IEEE Access, vol. 4, pp. 702–712,

and analysis of the droop control method for parallel inverters considering
the impact of the complex impedance on the power sharing,” IEEE

[12] M. B. Delghavi and A. Yazdani, “Modeling, analysis, and design of
stationary-reference-frame droop-controlled parallel three-phase voltage
source inverters,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4,

for grid-connected voltage-source inverters,” IEEE Transactions on

[9] S. A. Khajehoddin, M. Karimi-Ghartemani, P. K. Jain, and A. Bakhshai,
“A control design approach for three-phase grid-connected renewable
energy resources,” IEEE Transactions on Sustainable Energy, vol. 2,
no. 4, pp. 423–432, 2011.

scheme for a single-phase grid-connected photovoltaic system,” IEEE

function-based current controller to control active and reactive power
flow from a renewable energy source to a generalized three-phase
microgrid system,” IEEE Transactions on Industrial Electronics, vol. 60,

regulation of grid-connected dc/ac converters using sliding mode control
approach,” IEEE Transactions on Power Electronics, vol. 26, no. 1,

[5] M. Benchagra, M. Hila, Y. Errami, M. Maaroufi, and M. Ouassaid,
“Nonlinear control of de-bus voltage and power for voltage source inverter,”
in Proceeding of IEEE International Conference on Multimedia Computing

voltages for a three-phase lcl-type grid-connected inverter,” IEEE
Transactions on Industrial Electronics, vol. 60, no. 6, pp. 2237–2250,
2013.

[3] N. Mahdian-Dekordi, M. Namvar, H. Karimi, P. Piya, and M. Karimi-
Gharteman, “Nonlinear adaptive control of grid-connected three-phase
inverters for renewable energy applications,” International Journal of

“Nonlinear adaptive backstepping controller design for three-phase grid-
connected solar photovoltaic systems,” Electric Power Components and

[34] M. J. Santofimia, X. del Toro Garcia, P. Roncoro-Sánchez, F. Moya,
M. A. A. Martinez, and J. C. Lopez, “A qualitative agent-based approach
to power quality monitoring and diagnosis,” Integrated Computer-Aided

JOURNAL OF IEEE CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Ammar Ahmad Ammar Ahmad received his B.Sc. degree in electrical engineering from University of Engineering and Technology Peshawar, Pakistan, in 2015. He joined Huawei Technologies, Pakistan as project supervisor. He received his M.S. degree in electronic engineering from GIK Institute of Engineering Sciences and Technology, Pakistan in 2018. He is currently working as graduate assistant at GIK Institute of Engineering Sciences and Technology, Pakistan. His research interests include renewable energy systems, power electronics, robust control of nonlinear systems and flight control systems.

Nasim Ullah Nasim Ullah received the Ph.D. degree in mechatronics engineering from Beihang University, Beijing, China, in 2013. From 2006 to 2010, he was a Senior Design Engineer with IICS, Pakistan. He is currently an Associate Professor of Department of Electronics Engineering at University of Technology, Nowshera, Pakistan. His research interests include renewable energy systems, energy conversion and conservation, microgrids, FACTS controllers, flight control systems, integer and fractional order modeling of dynamic systems, integer/fractional order adaptive robust control methods, fuzzy/NN, hydraulic and electrical servos, epidemic and vaccination control strategies.

Nisar Ahmed Nisar Ahmed received his B.S. degree in electrical and electronics engineering from University College of Engineering and Technology Mirpur (A.K.), Pakistan, in 1989. He joined the Water and Power Development Authority (WAPDA), Pakistan, as an assistant engineer in 1990. In 1994, while working with WAPDA, he participated in foreign training on 500MW combined cycle power plant with Siemens in Germany. He obtained his Ph.D. in control systems engineering and DIC in electrical and electronic engineering from Imperial College of Science, Technology and Medicine, London, U.K., in 1999. Presently, he is serving as Professor and Dean at the Faculty of Electronic Engineering, GIK Institute of Engineering Sciences and Technology, Pakistan. His current research interests include Krylov subspace methods for model reduction of large-scale systems, renewable energy systems and robust control system design for multivariable systems.
Asier Ibeas
Asier Ibeas was born in Bilbao, Spain, in 1977. He received the M.Sc. degree in applied physics and the Ph.D. degree in automatic control from University of the Basque Country, Spain, in 2000 and 2006, respectively. He is currently an Associate Professor of control systems with Autonomous University of Barcelona, Spain. He is also a Full Professor with Catalan Agency for Quality in Higher Education. He has authored over 130 contributions in international journals and conferences. He has supervised and is currently advising several doctoral thesis and has participated in numerous research projects funded by regional and national agencies. His research interests include time-delayed systems, robust adaptive control, applications of artificial intelligence to control systems design, and unconventional applications of control, such as to epidemic systems, supply chain management, and financial systems.

Ghulam Mehdi
Ghulam Mehdi received the MS degree in electronic engineering from Linkoping University, in 2007, and the Ph.D. degree in Electronics Engineering from Beihang University Beijing China, in 2014. He is currently a researcher with the Center of Excellence in Science and Applied Technology Pakistan. His active research lines are RF electronics, radars and signal processing.

Jorge Herrera
Jorge Herrera received the degree in electronic engineering from University of Quindio, Colombia, in 2004, and the Ph.D. degree in industrial computing and advanced techniques of production from Universidad Autonoma de Barcelona, Spain, in 2011. He is currently a Full Professor with the Engineering Department, University Jorge Tadeo Lozano, Bogota, Colombia. He is also the Director of the Industrial Engineering Program and the Director of the Master in Engineering Management. His active research lines are parametric identification and adaptive control.

Anwar ali
was born in Mardan, Pakistan, in 1981. He received his B.E. degree in Electronics Engineering from NED UET Karachi, Pakistan, in 2004. He completed his M.S. degree in Electronics Engineering and Ph.D. degree in Electronics and Communication Engineering from Politecnico di Torino, Italy in 2010 and 2014, respectively. From 2014 to 2017, he was an assistant professor with the Electrical Engineering Department, Foundation for Advancement of Science and Technology (FAST) NUCES, Peshawar, Pakistan. Since August 2017, he has been an assistant professor with the Electrical Engineering Technology Department, University of Technology (UoT), Nowshera, Pakistan. His research interests include design and development of power management, attitude determination control subsystems of small satellites. He is also working in the area of thermal analysis thermal modeling of aerospace systems, power electronics applications and renewable energy systems.