Imaging cellular structures of atherosclerotic coronary arteries using circumferentially scanning micro-optical coherence tomography fiber probe ex vivo

Yuemei Luo¹, En Bo¹, Haitao Liang¹, Xianghong Wang¹, Xiaojun Yu², Dongyao Cui¹, Xin Ge¹, Jianhua Mo³ and Linbo Liu¹,∗

¹School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
²School of Automation, Northwestern Polytechnical University, Xi’an, Shannxi, 710072, China
³School of Electronic and Information Engineering, SooChow University, Suzhou, Jiangsu, 215006, China

Corresponding author*: Linbo Liu (e-mail: liulinbo@ntu.edu.sg).

This study was supported in part by National Research Foundation Singapore (NRF-CRP13-2014-05), National Natural Science Foundation of China (Grant No. 61705184), National Natural Science Foundation of China (Grant No. 81401451), Ministry of Education Singapore (MOE2013-T2-2-107), National Medical Research Council Singapore (NMRC/CBRG/0036 /2013) and NTU-AIT-MUV program in advanced biomedical imaging (NAM/15005).

ABSTRACT Development and progression of coronary atherosclerotic lesions is mediated by a number of cellular components, which are not readily visualized using the current clinical investigation tools. Visualizing these cellular components in situ and in vivo may allow early detection of the vulnerable plaques, with implications for coronary artery disease (CAD) therapy and for the prevention of acute myocardial infarction (AMI). In this study, we have developed a fiber-optic micro-optical coherence tomography (µOCT) probe for intravascular use. We conducted ex vivo imaging experiments in normal swine aorta and human atherosclerotic coronary arteries, and demonstrate that the fiber-probe based µOCT could delineate not only the layered structures of arterial wall but also the cellular-level anatomical structures of atherosclerotic plaques including foam cells and smooth muscle cells. These results demonstrate the feasibility of intravascular µOCT imaging.

INDEX TERMS Optical fiber devices, Optical coherence tomography, Fiber optics imaging, Intravascular imaging.

I. INTRODUCTION Coronary artery disease (CAD) is one of the leading causes of global morbidity and mortality, and its clinical manifestation, acute myocardial infarction (AMI), often commonly caused by the rupture or erosion of atherosclerotic plaques [1-3]. If vulnerable sites can be detected before rupture or erosion, effective intervention and medical treatments could be adopted to prevent clinical events, and herein, identification of high-risk lesions before worst situations is of great importance. Thin-cap fibroatheroma (TCFA), a lesion served as a predecessor of vulnerable plaques, has been characterized as plaques with a thin fibrous cap (less than 65 μm in thickness) together with macrophages infiltration near or within the cap, and a large lipid pool [4, 5]. Specifically, development and progression of atherosclerotic lesions is mediated by a number of cellular compositions including smooth muscle cells and accumulation of fat-laden foam cells or macrophages [3, 6]. Therefore, quantification of these cellular compositions can assist to assess the plaque vulnerability at an early stage.

Computerized tomography (CT) and magnetic resonance imaging (MRI) are commercially utilized for non-invasive atherosclerotic plaque screening with a spatial resolution in the order of hundreds of micrometers [7]. Intravascular ultrasound (IVUS) with a resolution of 70-100 μm is clinically developed to characterize plaques [8, 9]. Optical coherence tomography (OCT), another non-invasive imaging modality, has recently been proposed to image microstructures of coronary artery [10]. Particularly,
intravascular OCT (IVOCT) with approximately ~7 µm axial resolution in tissue and ~20-30 µm transverse resolution, which is able to visualize the fibrous cap, macrophages infiltration and lipid pool, is emerged to investigate in vivo visualization of the microstructural features of coronary atherosclerotic plaques [11-13]. These technical advances have significantly improved the diagnostic outcome of TCFA. However, further improvement on the early detection of atherosclerotic lesions based on the visualization of cellular compositions is limited by the spatial resolution of the available imaging technologies.

To tackle this issue, OCT with sub-micrometer resolution has been reported for imaging [14, 15], while there is still not equipped with a flexible and miniature probe. Recently, a new generation of OCT technology, termed micro-optical coherence tomography (μOCT), is capable of delineate microstructure with 1-4 µm spatial resolution and become promising to capture cellular characteristics for atherosclerotic plaque detection [16-19]. In particular, both a rigid and a flexible μOCT endobronchial probe were reported for airway imaging in vivo by linear scanning [18, 20]. However, no progress has been made for intravascular imaging by circumferentially scanning μOCT probe. In this paper, we applied a flexible and circumferentially scanning μOCT probe for intravascular imaging to acquire the cellular compositions by conducting ex vivo imaging experiments in normal swine aorta and human atherosclerotic coronary arteries, and testified its feasibility toward clinical translation. It is the first time, to the best of our knowledge, to verify the capability of fiber-probe based μOCT for visualizing microstructures of coronary artery at the cellular level.

II. MATERIALS AND METHODS

A. FIBER-PROBE BASED μOCT

The construction of the fiber-probe based μOCT system used in this study is shown in Fig. 1(A), including an imaging console and a common-path fiber-optic probe for beam delivery toward the sample, and the details have been previously reported in [21]. Briefly, the system applied a broadband light source centered at ~800 nm with ~250 nm spectral range full width at half maximum (FWHM) by a supercontinuum light source (Superk Extreme OCT; NKT Photonics, Birkerød, Denmark) together with a following short pass dichroic filter (DMSP1000; Thorlabs Inc., Newton, New Jersey, USA). A fiber coupler (Gould Fiber Optics, Millersville, Maryland, USA) with a splitting ratio of 50:50 was utilized to direct the light source toward the probe via a rotary joint. The rotary joint consists of a rotation stage (URB1000; Newport, Irvine, California, USA) with a speed of 360°/second and a fiber rotary joint (Princetel Inc., Hamilton Township, New Jersey, USA) for the rotation transmission from the motor to the probe. Indicated as the Fig. 1(B), the fiber rotary joint consists of two parts: one is the stator which is connected to the output port of fiber coupler to deliver the beam, while the other is the rotor which can be rotated by connecting to a rotation motor (not shown in this figure). During the imaging, the rotor is connected to a fiber connector (30126A3; Thorlabs Inc.), which is glued to the probe via a flexible torque-coil driveshaft (Asahi Intecc Co., Japan.), and therefore, the fiber connector can transmit the rotation motion to the probe via the driveshaft to conduct the circumferential scanning. In this study, we developed a new fiber-optic probe by upgrading a previously reported design with a torque-coil driveshaft, which enabled intravascular imaging in intact coronary arteries.

![FIGURE 1.](image)
angle prisms (Changchun Boxin Photoelectric Co., Changchun, China) with an apodizing coating in between, was used to divide the beam into a center circular beam and an annular beam. The center circular beam as the reference beam was guided to a glass rod (Prime Bioscience, Singapore) with a length of 0.80 ± 0.02 mm and a gold coating on its end surface to reflect the beam, while the annular beam as the sample beam was redirected by 90° outside to the imaging sample and then backscattered, similar to the previous studies in [16, 18]. The beam with annular configuration acts as a phase pupil filter to generate a moderately extended depth-of-focus (DOF) with a maintained transverse resolution [16, 18, 22]. The incident power for the sample was measured as 12.8 mW. In the detection path, the reflected beam and backscattered beam interfered and returned along the same path into the SMF.

During the imaging, a transparent outer sheath tube (51-2800-1800; Thorlabs Inc.) was served as a barrier to protect imaging tissues from rotating probe. Besides, the inner diameter (ID) of 1.818 mm of the sheath and the diameter of 1.8 mm of the optical probe forms a clearance fit so that the probe can rotate freely and co-axially with the sheath. For the outer diameter (OD) of the sheath, it is designed as 2.8 mm to fully fill the luminal area so that imaging tissues are positioned within the optimal imaging range to ensure area of interests properly maintained around the focal region.

The interferometric signal returning from the probe was then guided into a spectrometer including an achromatic lens (AC127-030-B-ML; Thorlabs Inc.), a diffractive grating with 960 lines/mm at 840 nm (Wasatch Photonics Inc., Logan, Utah, USA), a camera lens (Nikon AF Nikkor 85 mm f/1.8D; Tokyo, Japan) and a line-scan CCD camera (E2V, AViiVA EM4-EV71YEM4CL2014-BA9) to detect the signal. The detected spectrum was then digitalized at a 12-bit resolution and transferred to computer through an imaging acquisition (IMAQ) card (KBN-PCECL4-F; Bitflow Inc., Woburn, Massachusetts, USA) and a camera link cable. At the meanwhile, the computer generates a triggering signal of 20 kHz to synchronize the camera, and consequently, the system scanning rate was 20 k lines/second. During image post-processing, 2-frame averaging (time-lapse averaging) and software based speckle reduction [23, 24] were conducted to reduce the image speckle and thus improve the cellular-level imaging contrast.

B. SYSTEM PERFORMANCE

To testify the system axial resolution, we placed a glass surface with a reflectivity of 4% at the focus. The axial point spread function (PSF) in Fig. 2(A) demonstrated the axial resolution of 2.1 μm in air, and correspondingly of 1.53 μm in tissue assuming the refractive index of 1.37. To verify the transverse resolution, a laser beam profiler (LBP2-HR-VIS2; Newport) and an objective (50× DRY Plan Fluorite Objective; Nikon) were applied to capture the sample beam, and the results in Fig. 2(B) shown that the transverse resolution was measured to be 4.8 μm at the focus (assuming the depth of 0 μm). DOF represents the axial distance over which the beam size at the 1/e² beam is not larger than 1.414 times of that at the beam waist. As illustrated in Fig. 2(B), compared to the focused spot (depth = 0 μm), the spot size almost becomes 1.414 time larger at ± 75 μm away for the focal plane, and herein the DOF was measured as ~150 μm. The irregularity of intensity distribution in Fig. 2(B) were caused by the fabrication defects in annular gold coating on the BS.
To estimate the high resolution of this fiber-probe based μOCT, we compared the obtained μOCT images with the corresponding images simulated by a ~7 µm axial resolution in tissue and a ~20 µm transverse resolution which is the highest resolution of current OCT for intracoronary imaging to date [11-13]. This simulation was achieved by two steps: the first step is to apply two Gaussian-shape coherence functions with an axial FWHM of ~7 µm in tissue and a transverse FWHM of ~20 µm to convolute with our detected imaging data, respectively; then the second step is to combine the above convoluted results.

III. RESULTS AND DISCUSSION

In a representative cross-sectional μOCT image (Fig. 3(A)), layers of media and adventitia can be clearly distinguished. Additionally, shown as Figs. 3(B, C), within the media, both the circumferentially oriented elastic laminas with high reflectivity and alternative low-scattered smooth muscle can be frequently and evidently observed in regular arrangement.

The internal elastic lamina (IEL), a layer of elastic tissue as the outermost part of the thin intima, is a flexible barrier between the arterial intimal and medial layers, and it may have an effect on atherosclerosis via its modulation of diffusion across the artery wall [25]. By imaging the normal swine aorta, regular IEL is acquired as a bright and very thin structure (Fig. 3(C)).

Previous histopathological studies have revealed that atherosclerotic plaque progression is commonly featured by grossly thickened intima and irregular layered structures [25]. The μOCT image of human atherosclerotic plaque (Fig. 4) illustrates the cross-section of arterial wall with intimal thickening, in accordance with the histopathological characteristics.

Foam cells, usually appeared as fat-laden engorged macrophages, serve as a hallmark of plaque build-up and atherosclerosis formation [16, 26-28]. In a μOCT image (Fig. 4(D)), the foam cells derived from macrophages can be evidently resolved and the accumulation of these foam cells is manifested as clusters of punctate highly-scattering spots. The corresponding histological findings (Fig. 4(D), bottom inset) present a consensus on the μOCT images. Besides, we also visualized another foam cells with similar scattering intensity of aforementioned foam cells but with spindle shape, which may be derived from smooth muscle cells (Fig. 4(C)).

Within the progression of atherosclerotic plaque, smooth muscle cells migrate and proliferate from the media into the intima [3, 6, 25, 29]. In μOCT images, smooth muscle cells can be visualized as spindle-shaped cells, which have the signal-rich interior and signal-poor surrounding (Figs. 4(C, E)). These findings are supported by the corresponding histological image (Fig. 4(E), bottom inset).
With the improved axial and transverse resolutions, the fiber-probe based µOCT provide a possibility to capture cellular-level microstructures. Compared Figs. 3(B, C) with Figs. 3(B', C'), the microstructures of elastic laminas and smooth muscles can be clearly detected thanks to the enhancement of spatial resolution. Similarly, the cellular and extracellular components such as foam cells and smooth muscle cells can be clearly distinguished, demonstrated by the comparisons between Figs. 4(C-E) to Figs. 4(C'-E').

The current study has a few limitations with respect to a clinically viable technology. First of all, the proposed fiber probe does not have enough axial imaging depth for intravascular imaging in vivo. This issue may be resolved by use of DOF extension techniques [30-32]. Secondly, we did not include a polymer sheath in our study so that the influence of the polymer sheath on the spatial resolution and sensitivity need to be tested in future. Thirdly, a probe with a smaller size is more available to conduct intravascular imaging, and in the next step, we will adopt a probe with such high resolution and a diameter of less than or equal to 1 mm. Fourthly, we used a relative low imaging speed for image acquisition which is not enough to suppress motion artifacts in vivo. The simple solution is to improve the image acquisition.

IV. CONCLUSION

In conclusion, we investigated the feasibility of intravascular imaging by use of a circumferentially scanning µOCT fiber probe. The results from human atherosclerotic coronary arteries demonstrate the capability of the µOCT fiber probe to identify key cellular structures in the plaques. Further development of a µOCT intravascular catheter will provide more accurate assessment of plaque vulnerability and hold promises for the early diagnosis of atherosclerotic lesions.

REFERENCES


Yuemei Luo received B. Eng in Mechanical Design, Manufacturing and Automation in 2011 from University of Electronic Science and Technology of China (UESTC), and Ph.D degree in 2018 from School of Electrical and Electronic Engineering, Nanyang Technological University in Singapore. Her main research focuses on the Micro-Optical Coherence Tomography (μOCT) and the endoscopic probes for its clinical applications.

En Bo received B. Eng in Precision Instrument in 2012 from Sichuan University, and M. Eng. in Instrument Science and Technology in 2015 from Tianjin University, China. He is working toward his doctor degree at Nanyang Technological University, Singapore. His research interests are mainly focused on development of non-invasive and cellular resolution imaging methods for disease diagnosis using optical coherence tomography.

Haitao Liang received B. Eng in Animal Medicine in 2012 from Sichuan Agricultural University, and M. Eng. in Basic Veterinary in 2015 from Huazhong Agricultural University, China. He is working as a research assistant at Nanyang Technological University, Singapore. His research interests include the development and application of Micro-Optical Coherence Tomography (μOCT) in identification of anatomical structures for diagnostic purpose.

Xianghong Wang is Research Associate of Electrical and Electronic Engineer at Nanyang Technological University in Singapore. He received his master degree in Precision Instrument from Tianjin University in 2012. His research interests include the development of optical coherence tomography instrumentation and biomedical image processing and their applications.

Xiaojun Yu received his Ph.D degree from Nanyang Technological University, Singapore, in 2015. From Jan. 2015 to Aug. 2017, he worked as a postdoc, research fellow with the same University. He is currently an associate professor with Northwestern Polytechnical University, China. His main research interests include high-resolution optical coherence tomography and its imaging applications.

Dongyao Cui received both B.Eng and Ph.D degree in Electrical and Electronics Engineering from Nanyang Technological University in 2013 and 2018, respectively. Her research interests include the design, development and validation of advanced Micro-Optical Coherence Tomography (μOCT) systems for high-resolution applications and the development of novel μOCT endoscopic probes for in-vivo clinical applications.

Xin Ge is a research fellow at Nanyang Technological University. He received his BS in Optics and Ph.D degrees in Sychrontron Radiation and its Applications from University of Science and Technology of China in 2008 and 2013, respectively. His current research interests include high resolution optical coherence tomography, spectroscopic optical coherence tomography and related medical applications.

Jianhua Mo received B.Eng, and M. Eng. Degree from Zhejiang University, Hangzhou, China, and Ph.D. degree from National University of Singapore in 2011. He worked as a postdoctoral fellow in VU University, Amsterdam, Netherlands, from 2011 to 2013. Currently, he is an associate professor in SooChow University, Suzhou, China. His research interests include optical coherence tomography imaging technique development and its applications in biology and medical diagnostics, and non-destructive inspection in industry.

Linbo Liu received B.Eng in Precision Instrument in 2001, and M. Eng. in Optical Engineering in 2004, from Tianjin University, China. He received Ph.D degree in Graduate Programme in Bioengineering (GPBE) in 2008 from School of Medicine, National University of Singapore. From 2008-2011, he received his postdoctoral training in Wellman Center in Photomedicine, Harvard Medical School (HMS) and Massachusetts General Hospital (MGH) where he developed and established a new generation of OCT technology termed micro-Optical Coherence Tomography (μOCT). Dr Liu was promoted as an Instructor in Dermatology at HMS before he joined the School of Electrical and Electronic Engineering and School of Chemical and Biomedical Engineering as a Nanyang Assistant Professor in 2012.