An Analytical Model for Performance Optimization of Thermoelectric Generator with Temperature Dependent Materials

SHAOWEI QING1,2, ALIREZA REZANIA3, LASSE A. ROSENAHL3, (Senior Member, IEEE), AND XIAOLONG GOU1,2
1Key Laboratory of Low-grade Energy Utilization Technology and System, Chongqing University, Ministry of Education, Chongqing 400044, China
2Department of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
3Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, DK-9220 Aalborg, Denmark

Corresponding author: Shaowei Qing (qshaowei@cqu.edu.cn).

This work was supported by the National Natural Science Foundation of China (Grant No. 11605018, 51776023), the Fundamental Research Funds for the Central Universities (Grant No. 023305202049).

ABSTRACT Accurate and efficient performance prediction of thermoelectric generators (TEG) is important for integrated and multi-parameter optimization especially in large-scale energy harvesting applications. In this paper, a comprehensive analytical model coupled with non-identical temperature-dependent material properties and effective heat transfer coefficient (EHTC) of both-sides heat exchangers is built to investigate the internal and external characteristics of the TEG. Parametric optimization of the TEG is carried out to maximize the output power and efficiency over a wide range of EHTCs, fill factor and geometry of thermoelectric (TE) elements. The developed model can be efficiently solved by function solver (i.e. “fsolve”) in Matlab software, and its accuracy is validated with previous multi-physics numerical TEG model. The results show that statistical parameters of the TE element present non-linear behaviour with variation of electrical load resistance. The optimal load ratio is larger than unit, and it reduces monotonically with increment of the cold-side EHTC, but changes inversely with the hot-side EHTC. For a fixed sum value of both-sides EHTCs, there are two different optimal ratios of the hot-side EHTC to the cold-side EHTC for maximum efficiency and power. In addition, the optimal length and cross-sectional area ratio of the TE elements are investigated with detailed analysis.

INDEX TERMS Thermoelectric generator, parametric optimization, thermal reservoirs, temperature-dependent materials.

I. INTRODUCTION

Due to the world-wide increasingly serious problems of energy shortage and environment pollution, there is a growing interest in applying novel technologies to maximize the total utilization efficiency of energy systems [1]. Thermoelectric generator (TEG) is a promising method which can directly convert thermal energy into electricity without any moving parts, and thus it has great application potential in industrial energy systems to harvest the large amount of waste heat [2]-[4].

In order to obtain maximum output power and efficiency, one tends to select high-performance heat exchangers with large heat transfer coefficient and thermoelectric (TE) materials with high dimensionless figure-of-merit (ZT). Another method is to improve the way where existing TEGs are currently used [2]. For the latter method, the output power of the TEG needs to be predictable. The performance of TE modules for different applications such as hybrid systems [5]-[7], automotive [8], [9], data centers [10], human body [11], geothermal [12], solar [13]-[15], spacing [16], and for different type of TEGs such as one TE panel and multi TE panels [17]-[19], in series and parallel [20], [21], helical and linear structures [22], [23], has been modelled.

In fact, there are many design parameters such as thermoelment lengths (L_p, L_n) and footprint areas (A_p, A_n) of p-type and n-type TE elements and heat exchangers that can significantly influence the performance of the TEG system. Rowe and Min [24] showed that the thermoelment length plays an important role in the power generation.
Yilbas and Sahin [25] found that there is an optimal slenderness ratio \(X_{opt} = \frac{A_p/L_p}{A_n/L_n} \) to maximize efficiency of the TEG. Moreover, Yazawa et al. [26] found that the optimal internal parameters of the TEG module such as thermal conductivity of TE element are strongly correlated with the external parameters, e.g. the load ratio and the sum of external thermal resistances. It has been gradually recognized that the co-design optimization including the geometry of TE elements and the heat exchangers is critical for achieving maximum output power and efficiency.

Some analytical and numerical models were developed to optimize geometry of the TE elements and heat exchangers, nevertheless approximations of the critical parameters and assumptions such as the identical materials and temperature-independent properties of TE elements were used in these studies [27]-[32]. With the assumption of identical materials, it is found that the predictions of TEG numerical model under constant material properties differ much with that of temperature-dependent varying material properties [33]. The thermoelectric properties such as Seebeck coefficient, electrical conductivity and thermal conductivity of p- and n-type TE elements are not identical and are temperature dependent, so that cause different temperature distribution and thermal-electrical behavior in the TE elements [34]. Zhang [35] proposed a one-dimensional model by giving the nonlinear analytical solution of heat conduction equation and using control volume method to predict the optimal parameters (e.g. fill factor) of TEG with temperature-dependent material properties. Barry et al. [36] developed a one-dimensional analytical model combined with complete thermal resistance network to optimize the geometry of TE elements, and found that performance of the TEG can be significantly improved by geometric optimization. Shen et al. [37] developed a comprehensive one-dimensional steady-state theoretical model to stress the side surface heat transfer (SSHT) with the assumption that the end temperature of p-type element equals to that of n-type. Manikandan et al. [38] built a thermodynamic model to study the influence of the Thomson effect on the performance optimization of two-stage TEG. Feng et al. [39], [40] studied the Thomson effect on the performance of a TEG-driven heat pump combined device and a TEG-TEC device. Wu et al. [41] built a device-level theoretical model to study the influence of contact thermal resistance, the Thompson effect, the Joule heat and heat leakage on the TEG performance. Chen et al. [42] proposed a one dimensional numerical model which can deal with the temperature-dependent material properties with an assumption that the end temperature of p-type element equals to that of n-type. They, furthermore, developed a three-dimensional model implemented in a computational fluid dynamics (CFD) simulation environment [43]. This model can be conveniently connected to various CFD models of heat sources as a continuum domain to conduct co-design optimization of the TEG system [44]. Rezania et al. [45] developed a three-dimensional uni-couple model with different heat transfer coefficient imposed on the cold junction. They used finite element method to solve this model, and found an optimal ration for \(A_p / A_n \) to achieve maximum output power. Using a three-dimensional multi-physics TEG model, Meng et al. [46] proposed a multi-parameters optimization method, including optimal uni-couple number, footprint length and fill factor, to obtain maximum output power, with an assumption that the p-type and n-type TE element have same properties and geometry. Niu et al. [47] developed three-dimensional numerical models including temperature-dependent material properties to predict the heat and electrical transfer in the TEG, and found that changing the shape of TE element from normal cuboid (constant cross-sectional area) to hexahedrons (variable cross-sectional area) could increase the power output significantly. Erturun [48] et al. found that both width and height of TE element have a significant effect on power generation and thermal stresses, by using statistical and finite-element methods. Högblom and Andersson [49] proposed a novel model allowing the heat flow coupled with the electric current in a large system of modules, in which the thermal model allows for a two-way coupling in CFD analysis.

As mentioned above, many analytical and numerical models were built to optimize the parameters of TEG system. In general, these parameters include the geometry of p-type \((A_p, L_p)\) and n-type \((A_n, L_n)\) elements, the fill factor, the load resistance (which is usually used as virtual load in maximum power point tracking algorithm [50]), but is treated as equivalent heating resistance in this study) and the geometry of typical heat exchangers at the hot and cold sides of the TEG, which means a great deal of time expense. In this case, the analytical model based on assumptions of identical material and temperature-independent material properties is very convenient to optimize a TEG system [27], [28], however these assumptions obviously degrade the accuracy [33]. Conversely, the three-dimensional numerical model including temperature-dependent material properties and almost all the multi-physics processes can obtain higher accuracy, but the time expense is significantly larger [33], [43]-[49].

Therefore, it is necessary to develop an accurate and efficient model for multi-parameter optimization of TEG. In this study, a fully coupled 1-D analytical TEG model is built. The temperature-dependent properties such as Seebeck coefficient, electrical resistivity and thermal conductivity of TE materials, the thermal resistances of ceramic substrate and heat exchanger corresponding to p-type and n-type TE elements, and the junction temperatures of p-type and n-type TE elements at hot side \((T_{1p}, T_{1n})\) and cold side \((T_{2p}, T_{2n})\) as well as the geometry of p-type \((A_p, L_p)\) and n-type \((A_n, L_n)\) TE elements are considered. A wide range of effective heat transfer coefficient is imposed on the hot side \((h_h)\) and cold side \((h_c)\) to study the internal and external characteristic variation in the TEG. The proposed...
model is validated to have comparable accuracy in comparison to three-dimensional numerical models.

This paper is organized as follows: The governing analytical TEG model is described in Section 2. The developed analytical model is validated in Section 3. Section 4 presents discussions and results with detailed parametric analysis to reveal the internal and external characteristics of the TEG. Conclusions are given in Section 5.

II. MODELLING

The typical schematic of TEG is shown in Fig. 1. In this study, \(N_{uc} \) uni-couples are connected electrically in series and thermally in parallel between two dielectric ceramic plates to form the TEG module. Optimal junction temperatures at the hot side of the p-type and n-type TE plates to form the TEG module. Optimal junction

Temperatures at the hot and cold reservoirs are fixed as \(T_h \) and \(T_c \), respectively. The fill factor of the TE elements is temperature dependent. The fill factor of the TEG is given in Section 3.

The underload voltage is

\[
V_{ul} = \frac{U_{out}}{R_L} = \frac{N_{uc}}{R_{n} + R_{p} + \frac{R_{L}}{R_{n} R_{p} N_{uc}}} \tag{5}
\]

And the output power and efficiency of the TEG are [26]:

\[
\begin{align*}
W &= I^2 R_m + N_{uc} \frac{m}{R_{n} R_{p} N_{uc}} \left[\alpha_p (T_{in} - T_{p}) - \alpha_n (T_{in} - T_{n}) \right]^2 \\
\eta &= \frac{W}{Q_h} \tag{6a}
\end{align*}
\]

where, \(U \) is total electric voltage, \(m = R_{n}/R_{p} \) is resistance ratio. The underload voltage is \(U_{ul} = I R_L \). In (6b), \(Q_h \) is the total heat flux transferred from the hot reservoir to the TE module.

B. THERMAL RESISTANCES NETWORK OF THE TEG

The thermal resistance network for the TEG is shown in Fig. 1(b). For simplicity, electrical and thermal contact

\[
R_{p,n} = \int_{0}^{L} \left[\frac{\rho_p(x) T_{p,n}(x)}{A_{p,n}} \right] dx \tag{3a}
\]

\[
K_{p,n} = \int_{0}^{L} \frac{1}{dx} \left[k_{p,n} T(x) A_{p,n} \right] \tag{3b}
\]

The temperature dependent electrical resistance and thermal conductance of the p- and n-type TE elements are [42]:

Based on the three-dimensional numerical results, the temperature through the TE elements approximately obeys linear distribution [33]. Therefore, with the assumption of linear temperature distribution along TE elements, (3a) and (3b) become:

\[
R_{p,n} = A_{p,n} L_{p,n} \tag{4a}
\]

\[
K_{p,n} = A_{p,n} L_{p,n} \tag{4b}
\]

where, \(\bar{\rho}_{p,n} \) and \(\bar{\tau}_{p,n} \) are the average electrical resistivity (\(\Omega m \)) and average thermal resistivity (mK/W) of the p- and n-type TE elements respectively. Therefore, the total internal resistance of the TEG module is \(R = N_{uc} (R_{p} + R_{n}) \).

Consequently, circuit current of the TEG is as follows:

\[
I = \frac{U}{R + R_L} = N_{uc} \frac{m}{R_{n} R_{p} N_{uc}} \left[\alpha_p (T_{in} - T_{p}) - \alpha_n (T_{in} - T_{n}) \right] \tag{5}
\]

\[
\eta = \frac{W}{Q_h} \tag{6b}
\]
resistances between module layers are neglected. The copper interconnectors have high thermal conductivity in comparison to that of ceramic substrate and TE elements, therefore, the thermal resistance of the interconnectors can be neglected in this study.

For thermal resistance of the ceramic substrate, since \(F < 1 \), the total heat dissipation area \(A_{\text{total}} \) of the ceramic substrate is geometrically divided into a “gap” heat dissipation area, \(A_{\text{gap}} = (1-F)A_{\text{total}} \), and correspondingly an “occupied” heat dissipation area, \(A_{\text{occupied}} = FA_{\text{total}} = N_{\text{uc}}(A_{p} + A_{s}) \). The spreading thermal resistance at the “gap” area reduces the heat flow cross-section area. According to [26] and [51], the total thermal resistances of the ceramic substrate corresponding to the p- and n-type TE elements are:

\[
\psi_{\text{crp},n} = \frac{\lambda_{\text{crp},n}}{N_{\text{nc}}k_{c} (1 + 2\lambda_{\text{crp},n} \tan \Phi_{\text{crp},n}) \sqrt{A_{\text{p},n}}} \tag{7}
\]

where,

\[
\Phi_{\text{crp},n} = 5.86 \ln \left(\lambda_{\text{crp},n} \right) + 40.4 \quad 0.0011 < \lambda_{\text{crp},n} < 1
\]

\[
\lambda_{\text{crp},n} = 46.45 - 6.048 \sigma_{\text{crp},n} \lambda_{\text{crp},n} \geq 1
\]

\[
\lambda_{\text{crp},n} = t_{\text{cr}} / \sqrt{A_{\text{p},n}}, \text{ and } k_{c} \text{ and } t_{\text{cr}} \text{ are the thermal conductivity and depth of the ceramic substrate, respectively.}
\]

For the hot side and cold side heat reservoirs, the total thermal resistances are:

\[
\psi_{h} = \frac{1}{(h_{h} A_{\text{total}})}, \psi_{t} = \frac{1}{(h_{t} A_{\text{total}})} \tag{8}
\]

where, the unit of \(h_{h} \) and \(h_{t} \) is W/K m² of ceramic substrate.

C. ENERGY BALANCE AT THE INTERFACE BETWEEN HEAT RESERVOIRS AND CERAMIC SUBSTRATES

At the interface between the hot-side heat reservoir and ceramic substrate, the thermal flux is:

\[
Q_{\text{cr}} = \frac{(T_{h} - T_{c})}{\psi_{h}} = Q_{\text{crp}} + Q_{\text{crn}} \tag{9}
\]

where, \(Q_{\text{cr}} = (T_{c} - T_{p}) / \psi_{\text{crp}} \) and \(Q_{\text{crn}} = (T_{c} - T_{n}) / \psi_{\text{crn}} \) are the total thermal flux from the hot-side ceramic substrate to the p and n-type TE elements, respectively.

At the interface between the cold-side ceramic substrate and heat reservoir, the thermal flux is:

\[
Q_{\text{c}} = \frac{(T_{c} - T_{t})}{\psi_{t}} = Q_{\text{cpr}} + Q_{\text{cnn}} \tag{10}
\]

where, \(Q_{\text{cpr}} = (T_{t} - T_{p}) / \psi_{\text{cpr}} \) and \(Q_{\text{cnn}} = (T_{t} - T_{n}) / \psi_{\text{cnn}} \) are the total thermal flux from p and n-type TE elements to cold-side ceramic substrate respectively.

D. ENERGY BALANCE FOR COLD AND HOT JUNCTIONS OF TE ELEMENTS

By taking thermal energy conversation at the cold and hot junctions of the TE elements [26, 28], the heat transfer at hot and cold junctions of the p-type TE elements are as follows:

\[
Q_{\text{h}} = N_{\text{uc}} \left[-\pi_{p} I_{T} T_{p} + K_{p} (T_{p} - T_{z}) - I^{2} R_{p} / 2 \right] / \psi_{\text{crp}} \tag{11a}
\]

\[
Q_{\text{c}} = N_{\text{uc}} \left[-\pi_{p} I_{T} T_{p} + K_{p} (T_{p} - T_{z}) + I^{2} R_{p} / 2 \right] / \psi_{\text{crp}} \tag{11b}
\]

And the heat transfer at hot and cold junctions of the n-type TE elements are:

\[
Q_{\text{hn}} = N_{\text{uc}} \left[-\pi_{n} I_{T} T_{n} + K_{n} (T_{n} - T_{z}) - I^{2} R_{n} / 2 \right] / \psi_{\text{crn}} \tag{12a}
\]

\[
Q_{\text{cn}} = N_{\text{uc}} \left[-\pi_{n} I_{T} T_{n} + K_{n} (T_{n} - T_{z}) + I^{2} R_{n} / 2 \right] / \psi_{\text{crn}} \tag{12b}
\]

By solving (9)-(12b) combined with auxiliary (2), (4a)-(8), the effect of critical design parameters on the performance of TEG can be analyzed over wide range of \(h_{h} \) and \(h_{t} \).

III. MODEL VALIDATION: THE ACCURACY AND COMPUTATIONAL EFFICIENCY

In order to check validation of the developed model, the results of this study are compared with previous literatures. All the geometrical dimensions and physical parameters are taken the same as multi-physics field numerical models by Meng et al. [33] and Chen et al. [43] with the TEG hot and cold conjunctions’ temperature at 423 K and 303 K, respectively. The thermal conductivity and the thickness of the ceramic substrate are taken \(k_{cr} = 130 \text{ W/K/m} \) and \(t_{cr} = 0.2 \text{ mm} \), respectively. The length of the temperature dependent TE elements is \(L_{p} = L_{n} = 1.6 \text{ mm} \) for a cross-sectional area of \(A_{p} = A_{n} = 1.4 \times 1.4 \text{ mm}^2 \).

Under conditions above, \(Q_{\text{h}}, w, I \) and \(\eta \) can be predicted by the three models and measurement, as shown in Table 1. As Table 1 shows, \(Q_{\text{h}} \) and \(I \) of present model are very close (i.e. almost all the deviations are lower than 5 %) to results from Meng et al. and Chen et al.; although \(w \) and \(\eta \) of present model are respectively 11.08 % and 7.55 % lower than results of Meng et al., they are respectively 4.7 % and 0.45 % lower than results of Chen et al. Therefore, the present model can approximately offer accurate results in comparison to the three-dimensional numerical models.
In the present analytical model, only 6 unknown parameters, i.e. \(T_{1p}, T_{1n}, T_{2p}, T_{2n}, T_{cst}\) and \(T_{csb} \) in (9)-(12b) need to be solved. As a steady-state, 1-D thermoelectric conversion problem, the 6 equations associated with the auxiliary equations (1)-(8) can be solved easily by function solver, namely “fsolve” in Matlab software. The solver is very efficient, and the calculated accuracy can be self-validated by checking errors of the 6 equations. Therefore, the present model is more efficient for performance prediction of the TEG, in comparison with three-dimensional multi-physics numerical models which need to solve the three-dimensional temperature distribution of each TE element.

<table>
<thead>
<tr>
<th>TABLE 1. Comparisons of analytical and numerical results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>(Q_h) (W)</td>
</tr>
<tr>
<td>(w) (W)</td>
</tr>
<tr>
<td>(I) (A)</td>
</tr>
<tr>
<td>(\eta) (%)</td>
</tr>
</tbody>
</table>

IV. RESULTS AND DISCUSSIONS

In this study, the TEG substrate area is \(W \times L = 4 \text{ cm} \times 4 \text{ cm} \). Fig. 2 shows the non-identical and temperature-dependent thermoelectric properties of the p- and n-type materials, \(\text{Zn}_4\text{Sb}_3 \) [52] and \(\text{Mg}_2\text{Si}_{1-x}\text{Sn}_x \) [53] respectively, used in this study. The total area of the p- and n-footprints \((A_p + A_n) \) is fixed at 8 mm\(^2\). The ceramic substrate is made of Alumina with thermal conductivity of 30 W/K/m and thickness of \(t_{cr} = 10 \mu \text{m} \). Below, for a specific calculation, normally following parameters are used: \(N_{uc} = 160 \), \(F = 0.8 \), \(A_p = A_n \), \(L_p = L_n = 2 \text{ mm} \), \(T_h = 650 \text{ K} \), \(T_c = 300 \text{ K} \), \(\lambda_h = \lambda_n = 1000 \text{ W/K/m}^2 \).

FIGURE 2. Thermoelectric properties of p-type \((\text{Zn}_4\text{Sb}_3) \) [52] and n-type \((\text{Mg}_2\text{Si}_{1-x}\text{Sn}_x) \) [53] TE materials. (a) electrical resistivity, \(\rho \); (b) Seebeck coefficient, \(\alpha \); (c) thermal conductivity, \(k \).

A. KEY PARAMETERS VARIATION VERSUS LOAD RESISTANCE

In order to show impact of thermoelectric properties of the TE elements on the system performance, the cross sectional area and TE elements length are taken equal, i.e. \(A_p = A_n \), \(L_p = L_n \), which gives \(\psi_{cp} = \psi_{cn} \) based on (7). Moreover, due to \(k_n \approx 3k_p \) in Fig. 2(c), the thermal conductance of n-type would be much bigger than that of n-type based on (4b), i.e. \(K_n \approx 3K_p \), which indicates that \(Q_{hn} \) should be much bigger than \(Q_{hp} \). However, the junction temperatures of n-type TE element \((T_{1p} \text{ and } T_{2p}) \) are very close to that of p-type TE element \((T_{1n} \text{ and } T_{2n}) \), due to the thermal resistances of ceramic substrate corresponding to n- and p-type TE elements \((\psi_{cn} \text{ and } \psi_{cp}) \) are very small.

Indeed, as shown in Fig. 3(a), the junction temperatures of p- and n-type TE elements are very close. Moreover, one can see that variation of the load resistance \(R_L \) influences the junction temperatures of TE element dramatically. It needs to point out that, \(K_p, K_n, R_p, R_n, \overline{\sigma} \) and so on vary slightly with increment of \(R_L \), while the circuit current, \(I \), reduces significantly with increment of \(R_L \) (see Fig. 3(b)). For this reason, the Joule heat term \(F_R I^2/2 \) in (11a) decreases which tends to increase \(Q_{hp} \), but the decrement of Peltier heat term \(\overline{\sigma}_p J_{cp} \) in (11a) tends to decrease \(Q_{hp} \). We found that the latter tendency is dominant, i.e. \(Q_{hp} \) decreases...
with the increments of R_c, leading to T_{1p} increases with the increment of R_c based on (11a), as shown in Fig. 3(a); for the same reason, T_{1s} also increases with the increasing of R_c. Similarly, due to the electric current I decreases remarkably with the increasing of R_c (see Fig. 3(d)), both T_{2p} and T_{2s} would decrease according to (11b) and (12b).

Due to variation of the junctions’ temperatures in Fig. 3(a), the total open circuit voltage V_{oc} increases with the increments of T_{j1} and T_{j2}, as shown in Fig. 3(b). Therefore, due to the inverse variety of U_{oc} and I, the output power w and efficiency η present non-monotonic variety. It is worthy to note that there are two optimal load resistances corresponding to maximum output power w_{max} ($R_{Lopt}=3.5$ Ω) and maximum conversion efficiency η_{max} ($R_{Lopt}=3.5$ Ω).

As shown in Fig. 4(a), the temperature differences across the TE elements enhance as the h_a and h_c increase, which causes that the internal electrical resistance R varies with the heat transfer coefficients, and, therefore, the optimal resistance R_{Lopt} changes, Fig. 4(b). According to (6a), (6b) and variation of U, R and m_{Lopt}, the results show that the maximum output power and the corresponding efficiency enhance with increment of h_a and h_c.

Hendricks et al. [4] predict that the optimal resistance R_{Lopt} should be slightly higher than unit. In this paper, the results of this study reveal optimal values of R_{Lopt} for maximizing the output power. When $m=m_{Lopt}=R_{Lopt}/R_c$, $\partial U/\partial R = 0$ (see Fig. 3(b)); $\partial(U_{oc}-U)/\partial u \neq 0$, $\partial(T_{j1}-T_{j2})/\partial u \neq 0$ (see Fig. 3(a)); and $\partial U/\partial R = 0$ (see Fig. 3(b)); and $\partial T_{1}/\partial u = 0$ according to (4a) and Fig. 2(a) and 3(a). Therefore, by taking the above characteristics into the equation of output power, i.e. (6a), the optimal load ratio can be modified as follows:

$$m_{Lopt} = 1 + 2m_{Lopt}(1 + m_{Lopt}) \left(\frac{1}{U} \frac{\partial U}{\partial m} \right)_{m_{Lopt}}$$

(13)

Since $\partial U/\partial m > 0$ (see Fig. 3(b)), m_{Lopt} would be larger than unit. As a function, m_{Lopt} can be re-written as:

$$f(m_{Lopt}) = \frac{m_{Lopt} - 1}{2m_{Lopt}(1 + m_{Lopt})} = \left(\frac{1}{U} \frac{\partial U}{\partial m} \right)_{m_{Lopt}} = C$$

(14)

where, $f(m_{Lopt})$ is an increasing function related to m_{Lopt}. Therefore, m_{Lopt} varies proportionally with $C = (\partial U/\partial m)_{m_{Lopt}}$.

As h_a increases, U enhances significantly, but $\partial U/\partial m$ is a small value ($\approx(6.36-5.81)/1=0.55$ according to Fig. 3(b)), consequently, C decreases. Thus, m_{Lopt} decreases monotonically with increment of h_a, as shown in Fig. 4(b).

As h_c increases, U increases too. When h_a \approx 500 W/K/m², m_{Lopt} increases monotonically with h_c because increment of $\partial U/\partial m$ is greater than that of $U/\partial m$ with increment of h_a. On the contrary, when $h_a >$ 500 W/K/m² and $h_c >$ 150 W/K/m² (in this study) m_{Lopt} decreases with increment of h_c because the increasing rate of $\partial U/\partial m$ is smaller than that of $U/\partial m$. For high h_a, m_{Lopt} has a peak value at h_a \approx 150 W/K/m².

B. EFFECT OF HEAT TRANSFER COEFFICIENT ON SYSTEM PERFORMANCE

As shown in Fig. 4(a), the temperature differences across the TE elements enhance as the h_a and h_c increase, which causes that the internal electrical resistance R varies with
C. OPTIMAL HEAT TRANSFER COEFFICIENT RATIO FOR MAXIMUM PERFORMANCE

The maximum output power in thermoelectric system can be enhanced by using more powerful heat exchangers with higher heat transfer coefficient. However, former literatures indicate that the cost of heat exchanger is proportional to heat transfer coefficient \([54]-[56]\), and thus there is an optimal value of \(h_h + h_c\) to achieve maximum cost performance ($/W). This section considers optimal ratio of effective heat transfer coefficient for a given value of \(h_h + h_c\), in order to obtain maximum output power or efficiency.

As shown in Fig. 5, the optimal ratio of \(h_h / h_c\) for maximum conversion efficiency and power generation increases as the \(h_h + h_c\) increases. For a given value of \(h_h + h_c\), as \(h_h / h_c\) increases, the heat transferred to the TEG’s hot junction, i.e. \(Q_h = Q_{hp} + Q_{hn}\) increases at first due to \(h_h\) increases, but then decreases due to \(T_{1p}\) and \(T_{1n}\) rise and \(h_c\) decreases. After the optimal ratio of the \(h_h / h_c\) that gives the maximum \(w_{max}\) for a constant \(h_h + h_c\), \(Q_h\) decreases with higher rate than the \(w_{max}\), leading to increment of \(\eta\) based on \((6b)\). Therefore, the optimal ratio of \(h_h / h_c\) for \(\eta_{max}\) is higher than that for \(w_{max}\).

D. OPTIMAL FILL FACTOR FOR MAXIMUM POWER GENERATION

Since the cross sectional area of the TE elements is constant in this study, number of uni-couple, \(N_{uc}\), varies proportionally with the fill factor, \(F\), and the junction temperatures at hot junction \((T_{1p}, T_{1n})\) of p- and n-type TE elements decrease for given thermal boundary conditions discussed in \((11a)\) and \((12a)\). Furthermore, the junction temperatures at cold junction \((T_{2p}, T_{2n})\) of p- and n-type TE elements increase, leading to reduction of \(\eta_{max}\) according to \((6b)\) and the classic TE theory \([57]\).

The optimal fill factor \(F_{opt}\) for maximum output power is shown in Fig. 6. At low heat transfer coefficients, temperature differences between the cold and hot junctions of the TE elements, \((T_{1p} - T_{2p})\) and \((T_{1n} - T_{2n})\), decrease significantly with the increment of \(F\). Therefore, a smaller value of \(F\) is required to provide the optimal temperature difference for the maximum output power. While at high heat transfer coefficients, \(h_h = h_c \geq 2000\) W/K/m\(^2\) in this study, \((T_{1p} - T_{2p})\) and \((T_{1n} - T_{2n})\) is less sensitive to variation of the \(F\) and a higher value of the \(F\) is required to maximize output power by enhancing the heat transferred across the TE elements. Therefore, \(F_{opt}\) increases monotonically with the increasing of \(h_h\) and \(h_c\).

For the special case (i.e. \(h_h = h_c\), the black line in Fig. 6), \(F_{opt}\) increases linearly with the increasing of \(h_h\) and \(h_c\) before reaching unit.
E. OPTIMAL LENGTH OF TE ELEMENTS COUPLED WITH HEAT RESERVOIRS

When the length of TE elements \((L_p = L_n)\) increases, the temperature differences across p- \((T_1p–T_2p)\) and n-type \((T_1n–T_2n)\) TE elements enhance, leading to increment of \(\eta_{\text{max}}\) according to (6) and the classic TE theory [57].

As the \(L_p = L_n\) increases, \(\left[\sigma_p(T_{1p} - T_{2p}) - \sigma_n(T_{1n} - T_{2n})\right]\) in (6a) enhances. On the other hand the internal resistance \(R\) in (6a) approximately proportionally increases with length of the TE elements. Therefore, the maximum output power presents a parabolic behaviour with increment of TE element length.

The optimal TE element length \((L_p = L_n)_{\text{opt}}\) for maximum output power is shown in Fig. 7. For fixed \(h_0\), the optimum length decreases monotonically with increment of \(h_0\). Furthermore, for a fixed \(h_0\), the optimal length decreases monotonically with increment of \(h_0\). For the special case (i.e. \(h_0 = h_0\), the black line in Fig. 7, \((L_p = L_n)_{\text{opt}}\) has approximately a hyperbolic trend with variation of \(h_0\) and \(h_0\).

F. OPTIMAL CROSS-SECTION AREA RATIO COUPLED WITH HEAT TRANSFER COEFFICIENTS

According to classic TE theory [25, 57], there is an optimal slenderness ratio of p-type TE element to n-type, i.e. \(X_{\text{opt}} = (A_p / A_n)_{\text{opt}} = (A_p / A_n)_{\text{opt}}\) to obtain maximum system efficiency.

In general, when \(A_p/A_n\) increases from a very small value (e.g. \(10^{-2}\)), \(T_m\) tends to reduce because of the corresponding total heat conduction area of n-type TE elements increases. Moreover, the junction temperature at cold junction of the n-type TE element increases. Therefore, the temperature difference through n-type TE element \((T_{1n}–T_{2n})\) reduces. Conversely, the temperature difference across the p-type TE element enhances as \(A_p/A_n\) increases.

Due to the inverse variation of \((T_{1p}–T_{2p})\) and \((T_{1n}–T_{2n})\) with the increment of \(A_p/A_n\), the maximum output power and efficiency have non-monotonic trends according to (6a), (6b) and the classic TE theory [57]. The optimal cross sectional area ratio of the TE elements, \((A_p/A_n)_{\text{opt}}\) for maximum output power is shown in Fig. 8(a). With increment of \(h_0\) or \(h_0\), the \((A_p/A_n)_{\text{opt}}\) increases monotonically. When \(h_0\leq200\ W/K/m^2\), the \((A_p/A_n)_{\text{opt}}\) is nearly changeless as \(h_0\) increases. However, the \((A_p/A_n)_{\text{opt}}\) increases significantly with increasing of \(h_0\), when \(h_0\geq500\ W/K/m^2\).

The optimal \((A_p/A_n)_{\text{opt}}\) for maximum efficiency is shown in Fig. 8(b). With the increasing of \(h_c\), \((A_p/A_n)_{\text{opt}}\) stays almost constant when \(h_0\) is very low (i.e. the case \(h_0\leq200\ W/K/m^2\)), while it has monotonically increment for the cases of \(h_0\geq500\ W/K/m^2\). For arbitrary \(h_c\), the \((A_p/A_n)_{\text{opt}}\) increases with increasing of \(h_0\).
REFERENCES

