Blind Deconvolution for Image Deblurring Based on Edge Enhancement and Noise Suppression

Chengtao Cai¹, Haiyang Meng¹, Qidan Zhu¹
¹College of Automation, Harbin Engineering University, Harbin, China, 150001
Corresponding author: Haiyang Meng (e-mail: menghaiyang@hrbeu.edu.cn).

This work was supported by the National Natural Science Foundation of China (No. 61673129, 51674109), Fundamental Research Funds for the Central Universities (HEUCF180405), Harbin Application Research Funds (2016RQQXJ096).

ABSTRACT This paper denotes to obtain an accuracy blur kernel and a shape image. An efficient method that blind deconvolution for image deblurring based on edge enhancement and noise suppression is proposed. Firstly, we exploited edge detection method to extract the strong edge portion of blurred image. Then, the blurred image was divided into weak edge portion and strong edge portion. At this time, we apply trilateral filter method to suppress the noise in the weak edge portion. Through mathematical operations for weak edge portion and strong edge portion, we can obtain the new blurred image which as the input of blur kernel estimation. At the phase of kernel estimation, the problem can be solved via alternate between x and k updating. In addition, we utilize improved fast iterative shrinkage thresholding algorithm (IFISTA) method to solve the optimization problem. Finally, non-blind deconvolution was employed at the phase of image recovery. A comprehensive evaluation shows that our approach achieves state-of-the-art results for uniformly blurred images.

INDEX TERMS Edge enhancement and noise suppression, trilateral filter, blur kernel estimation, blind deconvolution, IFISTA.

I. INTRODUCTION
Image deblurring has attracted considerable attention recently due to its involvement of many challenges in problem formulation, regularization, and optimization. Image blur often results from relative motion between a camera and the scene (e.g., camera shake) during the exposure time. It causes significant image degradation, especially in the low light conditions where longer exposure time is required. Although the blur effect may be reduced by setting a faster shutter speed, it inevitably generates significant amount of noise.

To handle image blur, a conventional blur model assumes a spatially invariant blur kernel [9]. For image blur problem, the model can be described as follows:

\[B = l \otimes k + n \] \hspace{1cm} (1)

where \(B \) and \(l \) are, respectively blurred image and latent image, \(k \) is the blur kernel (a.k.a. point spread function, PSF), \(n \) refers to an additive i.i.d. noise term sampled from an zero-mean Gaussian distribution [12-14], and \(\otimes \) denotes a convolution operator. Our goal is to exploit an available method to get a better approximate solution to get the best latent image \(l \). According to (1), the most challenging problem of image deblurring is the blur kernel estimation, which is related to the quality of restored image for the image deblurring. Obtaining a high quality image from a blurred image is the ultimate goal of all researchers in this field. Nevertheless, a precise blur kernel is the key to obtaining high quality images. Therefore, blur kernel estimation is the most important part of this literature.

Image deblurring can be categorized into two main approaches based on variational Bayesian inference—and Maximum a Posteriori (MAP) estimation. Fergus et al. presented an algorithm using a mixture of Gaussians to learn an image gradient prior via variational Bayesian inference [25] and Levin et al. also analyzed the method based on variational Bayesian inference [26]. However, the optimization process of variational Bayesian inference is computationally expensive. In recent years, MAP method, having been developed with different likelihood functions and image priors [8], is widely applied to image deblurring [27-30].

Many algorithms have been proposed in recent decades [2-6] in order to obtain the highly quality image based on MAP. Restoring blur kernel from a single image is a
challenging task because a single image lacks a kernel that contains ambiguous information. If one assumes that the blur kernel or point spread function (PSF) - is shift-invariant, image deconvolution can solve this problem well. Image deconvolution can be further separated into the blind and non-blind. In non-blind deconvolution, the motion blur kernel is assumed to be known or computed, such as the Richardson-Lucy (RL) and ForWaRD methods [11]; the only task remaining is to estimate the sharp latent image. In the case of blind deconvolution, the problem is even more ill-posed, since both the blur kernel and latent image are assumed unknown.

When the kernels are unknown, image deblurring is treated as a blind deconvolution problem. To solve the problem of blind deconvolution and obtain a high quality image, a majority of algorithms have been developed [15-18], Gong and Li proposed the promoting group sparsity to estimate blur kernel [1]; [10] estimated the blur kernel by external patch priors. There are also many algorithms that improve the quality of image deblurring by improving the regularization term. ℓ₁-norm (20-22) is often used on to encourage the sparsity. Tikhonov regularization [23, 24] is a classical regularization algorithm that many algorithms are extended on it. This regularization method can prevent overfitting and enhances the non-convexity of the function.

In this paper, we proposed an efficient method that blind deconvolution for image deblurring based on edge enhancement and noise suppression. Since image edge information and noise suppression are critical to the estimation of blur kernel, this paper is dedicated to solving the problem of reducing the image noise and salient image edges enhancement to estimate the accuracy blur kernel. The proposed method can be mainly divided into three steps: edge enhancement and noise suppression, blur kernel estimation and image recovery. FIGURE.1 shows our algorithm pipeline.

Given a blurred image, we firstly exploited Sobel operator to get the strong edge portion and weak edge portion. For the weak edge portion, the trilateral filter was used to suppress the noise and enhance. This filter is improved based on bilateral filter. Not only does it suppress impulse noise well, but it also can sharpen image edge information. What’s more, the method also can effectively restore images that are contaminated by Gaussian noise and impulse noise simultaneously. Then, the input image of kernel estimation can be obtained by mathematical operation that strong edge portion with large weight value and weak edge portion with small weight value. At the phase of kernel estimation, it contains two steps: and updating. For the steps updating, the IFISTA method is used to solve the problem. At the phase of image recovery, we employ non-blind deconvolution to shape the image. What’s more, we propose solving it using an efficient alternating minimization method based on a half-quadratic splitting because it contains non-linear penalties for both the data and regularization terms at the phase of image recovery. The experimental results show that we can recover a high-quality reconstructed image.

The road map of this paper is organized as follows: Section II introduces the related works. Section III presents our proposed deblurring algorithm in details. In section IV, the experimental results are detailed. Simultaneously, the proposed algorithm is compared with other algorithms. At finally, we conclude the paper in section V.

II Related Work

In order to solve the problems of (MAP) formulation. Let and be the latent image, the given observation and blur kernel, respectively. The deblurring model can be generally represented as:

$$\arg\min_{x,k} \{\|x \otimes k - B\|^2_2 + \lambda f(x) + \beta f(k)\}$$

where and are the prior of latent image and blur kernel , respectively. and are the weighting coefficients of and . To obtain the optimal solution, we can decompose (2) into two sub-problems: sub-problem and sub-problem. According to (2), the two sub-problem can be modeled as (3) and (4), respectively.

$$x = \arg\min_{x} \|x \otimes k - B\|^2_2 + \lambda f(x)$$ \hspace{1cm} (3)

$$k = \arg\min_{k} \|x \otimes k - B\|^2_2 + \beta f(k)$$ \hspace{1cm} (4)

The model obviously present that is the key to get a high quality deblurred image. However, the salient edge and noise suppression are critical for kernel estimation. In recent years, several motion deblurring approaches [21, 25, 26, 27, 31] have been proposed based on improve edge information. Cho et al. applied the shock filter, which finds the zero-crossing point and then enhances this point according to the magnification of the gradient [20]. Mathematically, the shock filter can be formulated as:

$$I' = I - \text{sign}(\Delta I) \| \nabla I \| dt$$ \hspace{1cm} (5)

Where and are the Laplacian and gradient of , respectively. is the original image. and are the derivative operators. is the time step for a single evolution. Because shock filter is sensitive to noise, it can not only enhance edge information but also enhance noise. Shan et al. [8] proposed the idea of using a piecewise function to fit the distribution of the natural image gradient. The algorithm suppressed the ringing phenomenon; however, the computation was still extensive and the running speed
was still slow. Zhao, MH and Zhang, X [32] proposed a method of deblurring an image based on rich edge region extraction using a gray-level co-occurrence matrix. Instead of the entire motion blurred image, the extracted rich edge region is used to estimate the blur kernel. Since not all the rich edges region of the image is beneficial to the estimation of the blur kernel, the blur kernel may be not correctly. Moreover, this method ignores the importance of other regional information. Enhance salient image information and noise suppression are always two major parts in image deblurring. In the next section of this literature, we will discuss the solution for the problem in details.

III Proposed Methodology

Through a large number of experimental studies, we found that Enhance salient image information and noise suppression are critical to obtaining a high quality image. In this paper, the blind deconvolution for image deblurring based on edge enhancement and noise suppression is proposed. The method process can be divided into edge enhancement and noise suppression, blur kernel estimation and blind deconvolution for image deblurring.

A. Edge Enhancement and Noise Suppression

In order to better suppress noise, the bilateral filter was often applied to reduce the noise and details from whole image before sharpening the salient edge. After sharpening, the gradient magnitude thresholding is applied to reduce the edges with small gradient. However, some ringing artifacts and noise were not removed because of their large gradient values. Therefore, we proposed trilateral filter method to solve this problem. This literature firstly extracts the strong edge portion.

The classical algorithm of edge detection Sobel is utilized to extract the strong edge information of blurred image. Then, the result image M_s of Sobel detection can be obtained. In M_s, the strong edge was defined as 1, and others were defined as 0. In order to get the strong edge portion x_{se}, we take the inverse operation of the M_s. Therefore, the strong edge portion can be formulated as:

$$x_{se} = M_s \ast B$$ \hspace{1cm} (6)

where B denotes the blurred image. The weak edge portion x_{we} is formulated as:

$$x_{we} = (o_e - M_s) \ast B$$ \hspace{1cm} (7)

where o_e is the matrix that all of elements is 1. FIGURE 2 shows the result of edge extraction.

In this section, the shock filter method was applied to the weak edge portion. According to the formulation (5), we can obtain x^s. Because shock filter is sensitive to noise, the noise of weak edge portion may be enhanced. Consequently, we proposed trilateral filter for x^s to remove noise and enhance edge information. This filter is improved based on bilateral filter. Not only does it suppress impulse noise well, but it also can sharpen image edge information. What’s more, the method also can effectively restore images that are contaminated by Gaussian noise and impulse noise simultaneously. The trilateral filter is formulated as (8).

$$f^i(x_0) = \frac{\sum_{i \in \Omega} w(x_0, y_i) f(y_i)}{\sum_{i \in \Omega} w(x_0, y_i)}$$ \hspace{1cm} (8)

Where Ω is a $h \times h$ window centered at the pixel x_0. $f(y)$ denotes the original image. y_i is the i-th point in Ω. $w(x_0, y)$ is the weight function.

$$w(x_0, y) = w_s(x_0, y)w_r(x_0, y)w_p(x_0, y) \quad y \in \Omega \quad \text{and} \quad y \neq x_0$$ \hspace{1cm} (9)

$$w_s(x_0, y) = e^{\frac{[x_0 - y]^2}{2\sigma_s^2}}$$ \hspace{1cm} (10)

$$w_r(x_0, y) = e^{\frac{|f(x_0) - f(y)|}{2\sigma_r^2}}$$ \hspace{1cm} (11)

FIGURE 1. The proposed algorithm pipeline
where \(w_s'(x_0, y) \), \(w_r'(x_0, y) \) and \(w_p'(x_0, y) \) are Spatial
proximity, grayscale similarity and plus weight function,
respectively. \(m \) is the number of elements in \(\Omega \) except \(x_0 \).
\(r_i(x_0) = \{ |f(x_0) - f(y)| y \in \Omega \text{ and } y \neq x_0 \} \) is the
\(i \)-th value. If a pixel is an edge point in the image, then at
least about half of the points in its neighborhood are similar
to their gray values, resulting in a smaller \(r(x_0, y) \) value.
Otherwise, if the point contaminated by impulse noise, the
difference between the other points and the gray value of this
point is large, and \(r(x_0, y) \) is a relatively large function
value. \(\sigma_s \), \(\sigma_r \) and \(\sigma_p \) are the filter parameters. Substituting
(10), (11) and (12) in (9):

\[
w(x_0, y) = e^{-\frac{\left(\sum_{i \in \Omega} r'(x_0)\right)^2}{2\sigma_p^2}}
\]

In order to reduce the point that is not affected by impulse
noise, \(w(x_0, y) \) can be re-formulated as:

\[
w(x_0, y) = (w_s'(x_0, y)w_r'(x_0, y))^{1-N(x_0,y)}w_p'(x_0, y)^{N(x_0,y)}
\]

\[
y \in \Omega \text{ and } y \neq x_0
\]

\(N(x_0, y) \) in close to 0 when the image is not contaminated
by impulse noise. In contrast, it will be a large value.
Therefore, \(N(x_0, y) \) can suppress the impulse noise well.
\(N(x_0, y) \) is defined as:

\[
N(x_0, y) = 1 - e^{-\frac{\left(\sum_{i \in \Omega} r'(x_0)\right)^2}{2\sigma_p^2}}
\]

Finally, we can filter the weak edge portion image based
on (8). It can be formulated as:

\[
x_{we}'(x) = \frac{\sum_{i \in \Omega} w(x, y_i)B(y_i)}{\sum_{i \in \Omega} w(x, y_i)}
\]

\[
= \frac{(\alpha_e - M_s) \sum_{i \in \Omega} w(x, y_i)B(y_i)}{\sum_{i \in \Omega} w(x, y_i)}
\]

After filtering all pixels of the weak edge image based on
(16), the image \(x_{we}' \) can be obtained. Since a salient edge is
critical to blur kernel estimation, it is necessary to enhance
the image edge information. Therefore, the input image for
kernel estimation can be defined as:

\[
x' = \xi_{11} \ast x_{we} \ast M_e + \xi_{12} \ast x_{se}
\]

Where \(\xi_{11} \) and \(\xi_{12} \) are the weight values of strong edge
portion and weak edge portion. In (17), the first term
suppresses the effect of the trilateral filter on the salient edge.
\(x' \) can maintain its inherent edge information. According to
(6), (7) and (16), \(x \) can be re-formulated as:

\[
x' = \left(\frac{(\alpha_e - M_s) \sum_{i \in \Omega} w(x, y_i)B(y_i)}{\sum_{i \in \Omega} w(x, y_i)} + B\right) \ast M_s
\]

B. Kernel Estimation
With the image x', kernel estimation can be accomplished quickly. Most of the energy in images is contained in the low and mid frequency bands, which are barely affected by blur. Therefore, we use discrete filters $\nabla_x = [1, -1]$ and $\nabla_y = [1, -1]^T$ to generate a high-frequency version. We define the objective function with a Gaussian regularization. For kernel estimation, the standard approach to optimizing two sub-problems are to start with an initialization on x and k, and then alternate between x and k updates. For large kernels, an excessive number of x and k updates may be required to converge to a reasonable solution. To mitigate this problem, we perform multiscale estimation of the kernel using a coarse-to-fine pyramid of image resolutions, in a similar manner as in [25]. The x update and k update can be defined with Gaussian regularize. Consequently, the cost function for x update and k update can be modeled as:

$$x = \arg \min_x \left\| x \otimes k - y \right\|_2^2 + \lambda \left\| x \right\|_2^2$$

(19)

$$k = \arg \min_k \left\| x \otimes k - y \right\|_2^2 + \beta \left\| k \right\|_2^2$$

(20)

In many situations, it is worthwhile to debias the solution as a post-processing step, to eliminate the attenuation of signal magnitude due to the presence of the regularization term. Therefore, the iterative shrinkage thresholding algorithm (ISTA) was proposed to solve (19) in [21]. Recently, the improved fast iterative shrinkage thresholding algorithm (IFISTA) was also be proposed. Comparison the two algorithms, a convergence analysis of the IFISTA algorithm has shown that the IFISTA algorithm has an improved convergence rate as well as an improved restoration capability compared to the ISTA algorithm in [33]. Therefore, we adopt the IFISTA method to solve optimization problem in (19). Algorithm 2 shows the IFISTA algorithm.

Algorithm 1: Improved fast iterative shrinkage thresholding algorithm (IFISTA)

Input: blur kernel k, regularization parameter μ, initial image $x^1 = y$, initial $t_0 = 0$, blur image y, threshold τ, maximum iterations N.

for $i = 1$ to $N-1$ do

$v = y - \tau W_n^k T (kx^i - y)$

$x^{i+1} = S_{\alpha}(v)$

$t_i = \frac{1 + \sqrt{1 + 4t_{i-1}^2}}{2}$

end for

return output image x^N

where W_n is a positive definite matrix. In order to obtain a stable operation as well as a faster convergence, we propose to use the weighting matrix:

$$W_n = \sum_{j=1}^{n} \left(\begin{array}{c} n \end{array} \right) (-1)^{j-1} (\mu k^T k)^{j-1}$$

(21)

In Algorithm 1, S is the soft shrinkage operation on a vector. It shrinks each component of the input vector towards zero:

$$S_{\alpha}(x | -\alpha, 0) \text{sign}(x)$$

(22)

As similar as the process of [32], we use the IFISTA step as the inner iteration in our x-update algorithm. The outer loop then simply re-estimates the weighting on the likelihood term in (19) by updating the denominator $\left\| x \right\|_2^2$. The overall x update algorithm is as follows:

Algorithm 2: x update

Input: blur kernel k form k update and image x^j from x update in Algorithm 1.

Input: maximum outer iterations $M=2$, inner iterations $N=2$.

for $j = 1$ to $M-1$ do

$\mu = 1 / \lambda_{\max}(k^T k)$

$x^{j+1} = \text{IFISTA}(k, \mu, x^j, N)$ (Algorithm 1)

end for

return update image x^M

In Algorithm 2, k^T is the conjugate transposed matrix of k, $\lambda_{\max}(k^T k)$ denotes the maximum eigenvalue of $k^T k$.

Given the x^M, the blur kernel k can be estimated to solve the k sub-problem. Algorithm 3 outlines our approach for kernel estimation. As the estimation based on gradients has been shown to be more accurate [20]. The minimization problem of k can be rewritten as:

$$k = \arg \min_k \left\| \nabla x \otimes k - \nabla y \right\|_2^2 + \beta \left\| k \right\|_2^2$$

(23)

where $\nabla = [\nabla_x, \nabla_y]$. (23) is a least squares minimization problem in which a closed-form solution can be computed Fast Fourier transform (FFT). Therefore, the closed-form solution can be written as:
\[k = \mathcal{F}^{-1} \left(\frac{\mathcal{F}(\nabla_x)\mathcal{F}(\nabla_x y) + \mathcal{F}(\nabla_y)\mathcal{F}(\nabla_y y)}{\mathcal{F}(\nabla_x)^2 + \mathcal{F}(\nabla_x y)^2 + \beta} \right) \tag{24} \]

Where \(\mathcal{F}(\cdot) \) and \(\mathcal{F}^{-1}(\cdot) \) denote the FFT and inverse FFT respectively. \(\overline{\mathcal{F}(\cdot)} \) is the complex conjugate operator.

Algorithm 3: Kernel estimation

Input: The image \(x' \) which is obtained in section 3.1. Initial kernel \(k \). Build an image pyramid with level index \(\{1, 2, \ldots \} \).

for \(s=1 \) to \(n \) do

Resize the image \(x' \) with image pyramid

Compute the high-frequency image \(x \)

for \(i = 1 \) to \(m \) (\(m \) is the number of iterations) do

\(x' \leftarrow \) Solving \(x \) using Algorithm.2

\(k' \leftarrow \) Update \(k \) using (24)

end for

end for

Output: Kernel estimate \(k^m \)

C. Image Recovery

Since the blur kernel \(k \) has been estimated in precious step. We proposed the non-blind deconvolution to sharp image. Since it contains non-linear penalties for both the data and regularization terms in (3), we propose solving it using an efficient alternating minimization method based on a half-quadratic splitting. In our work, the method proposed by Krishnan et al [34] is preferred, where a hyper-Laplacian prior is used to approximate the distribution of gradients of natural images and avoid the sensitiveness of the estimated kernel. Consequently, the model of image recovery can be formulated as:

\[x = \arg \min_{x} \left\| x \otimes k - B \right\|_2^2 + \lambda \left\| \nabla x \right\|_p \tag{25} \]

where \(\left\| \cdot \right\|_p \) denotes an \(l_p \)-norm with \(0 < p < 1 \). Two auxiliary variables \(\omega_1 \) and \(\omega_2 \) are introduced in [35]. The formulation (25) can be written as:

\[x = \arg \min_{x} \left\| x \otimes k - B \right\|_2^2 + \lambda \left(\left\| \omega_1 \right\|_p + \left\| \omega_2 \right\|_p \right) \]

\[+ \eta \left(\left\| \nabla_x x - \omega_1 \right\|_p + \left\| \nabla_y x - \omega_2 \right\|_p \right) \tag{26} \]

If \(\omega_1 \) and \(\omega_2 \) are given, an iterative approach is developed to solve (26). Then, the formulation (26) can be modified as (27). In (26), where \(\eta \) is a control parameter that we will vary during the iteration process.

\[x = \arg \min_{x} \left\| x \otimes k - B \right\|_2^2 + \eta \left(\left\| \nabla_x x - \omega_1 \right\|_p + \left\| \nabla_y x - \omega_2 \right\|_p \right) \tag{27} \]

With the adjusted formulation, (27) can now be solved by an efficient Alternating Minimization (AM) method [35]. This means that we solve \(\omega = (\omega_1, \omega_2) \) and \(x \), respectively.

First, the initial \(x \) is set to the input blurred image \(B \) to solve \(\omega \) problem. Given a fixed \(x \), finding the optimal \(\omega \) can be simplified into the following optimization problem:

\[\omega = \arg \min_{\omega} \eta \left(\left\| \nabla x - \omega_1 \right\|_2^2 + \lambda \left\| \omega \right\|_p \right) \tag{28} \]

To solve the optimization problem of (28), we adopt Krishnan’s approach, as detailed in [21]. They numerically solve (28) for all pixels using a lookup table to find \(\omega \). After getting \(\omega \), the closed form solution of (27) can be written as:

\[x = \mathcal{F}^{-1} \left(\frac{\mathcal{F}(\nabla_x)\mathcal{F}(\omega_1) + \mathcal{F}(\nabla_y)\mathcal{F}(\omega_2) + \frac{1}{\eta} \mathcal{F}(k)\mathcal{F}(B)}{\mathcal{F}(\nabla_x)\mathcal{F}(\omega_1) + \mathcal{F}(\nabla_y)\mathcal{F}(\omega_2) + \frac{1}{\eta} \mathcal{F}(k)} \right) \tag{29} \]

The nonconvex optimization problem arises from the use of a hyper-Laplace prior with \(p < 1 \), then we adopt a splitting approach that allows the non-convexity to become separable over pixels. **Algorithm 4** outline the summary of alternating minimization scheme for image recovery.

Algorithm 4: Image recovery

Input: Blurred image \(B \) and the estimated kernel \(k^m \)

Initialize \(x = B \), \(\eta = \eta_0 \)

while (1)

Solving for \(\omega \) using (28)

Solving for \(x \) in the frequency domain using (29)

\[\eta \leftarrow \sqrt{2} \eta \]

until \(\eta > \eta_{\text{max}} \)

Output: Deblurred image \(x \)

where \(\eta \) starting with small value we scale it by an integer power until it exceeds some fixed values \(\eta_{\text{max}} \). At the beginning of each iteration, we first compute \(\omega \) using (28). Then, given a fixed value of \(\omega \), it can minimize (27) to find the optimal \(x \). The iteration process stops when the parameter \(\eta \) is sufficiently large. After the iterative process is completed, we can get the deblurred result. **FIGURE 3** shows the deblurred result by our proposed method.

IV Experiments and Discussion

In this section, we performed several experiments to deblur several examples image. Before image deblurring, the relate
parameters should be set about the proposed algorithm. In the majority of deblurring algorithms, parameters setting is critical to get a high-quality image. Therefore, the correct selection of parameters is required. Based on experience, the filtering effect on impulse noise is better when the two parameters σ_p and σ_j are small in trilateral filter. For better filtering, we adopt a relatively large filtering window. In this literature $\sigma_p = [5 \ 4]^T$, $\sigma_r = [0.8 \ 0.6]^T$, $\sigma_j = [0.3 \ 0.3]^T$, and $\sigma_j = [0.5 \ 0.4]^T$. As similar as [34], our method uses a hyper-Laplacian prior with $p = 2/3$. The η value is varied from1 to 256 by integer powers of 2. As η is larger than $\eta_{\text{max}} = 256$, the iterations will stop. In (17), ζ_1 and ζ_2 are the weight values of strong edge portion and weak edge portion. Generally, $\zeta_1 > 0$, $\zeta_2 > 0$, $\zeta_1 < \zeta_2$, and $1 < \zeta_1 + \zeta_2 < 2$. In this experiment, we set $\zeta_1 = 0.83$, $\zeta_2 = 1.15$.

In order to validate our algorithm, we would perform comparison with other well-developed methods. In our experiments, the comparison can be divided into two parts: synthetic image test and real image test. What’s more, for testing the visual objective quality, the mean of the peak signal to noise ratio (PSNR) is also used to evaluate quantitatively the deblurred result. Given the blurred image I and unblurred image I', the PSNR can be defined as:

$$PSNR = 10 \cdot \log_{10} \left(\frac{255^2}{\frac{1}{m \times n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i, j) - I'(i, j)]^2} \right)$$

where $m \times n$ is the size of the input image, $I(i, j)$ is the intensity value of unblurred image and $I'(i, j)$ is the intensity value of deblurred image.

FIGURE 4. Visual deconvolution results by various deconvolution algorithms, (a) Blurred image, (b) Results of Cho&Lee, (c) Results of Shan et al, (d) Results of Xu et al, (e) Results of ours.
FIGURE 5. Performance comparison using the error ratio measure

According to the results of the dataset, we compute the mean of structural similarity (SSIM) which was introduced in detail in [26] and PSNR to compare with other methods. TABLE 1 presents the comparison using the image sets which were used by Levin et al and report the mean PSNR, mean SSIM and geometric mean error ratio for each method. The comparison of all algorithms with the ground-truth shows that our method works better than other algorithms. More comparisons of synthetic image show in FIGURE 6.

<table>
<thead>
<tr>
<th>Methods</th>
<th>PSNR</th>
<th>SSIM</th>
<th>Error Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known k</td>
<td>33.82</td>
<td>0.93</td>
<td>1.0</td>
</tr>
<tr>
<td>Cho&Lee [20]</td>
<td>30.80</td>
<td>0.88</td>
<td>2.01</td>
</tr>
<tr>
<td>Krishnan et al. [21]</td>
<td>24.21</td>
<td>0.76</td>
<td>4.31</td>
</tr>
<tr>
<td>Levin et al. [26]</td>
<td>31.14</td>
<td>0.90</td>
<td>1.85</td>
</tr>
<tr>
<td>Fergus et al. [25]</td>
<td>29.46</td>
<td>0.85</td>
<td>2.73</td>
</tr>
<tr>
<td>Sun et al. [22]</td>
<td>32.38</td>
<td>0.91</td>
<td>1.40</td>
</tr>
<tr>
<td>Xu&Jia [31]</td>
<td>28.31</td>
<td>0.87</td>
<td>1.87</td>
</tr>
<tr>
<td>Ours</td>
<td>32.65</td>
<td>0.91</td>
<td>1.28</td>
</tr>
</tbody>
</table>

TABLE 1. Quantitative comparison for each method by the dataset in Levin et al.

FIGURE 6. More comparisons of synthetic image, (a) blurred image, (b) Results of Hirsch et al [14], (c) Results of Xu at al [27], (d) Results of ours.

Real image test: Next we compare the performance of our algorithm on some real-world examples presented in this paper. Since the ground truth images of the real-world images are unavailable, we thus only perform the visual comparison among several sparsity priors based methods. Several real images were used for the comparison. FIGURE 7~FIGURE 9 show the comparison on different real images.

FIGURE 7. Results for restoration of the blurred summerhouse image, (a) is the blurred image, (b)~(g) are the results of Krishnan et al, Levin et al, Cho&Lee, Xu et al, Pan et al and ours, respectively.

FIGURE 8. Results for restoration of the blurred Pantheon image, (a) is the blurred image, (b)~(g) are the results of Krishnan et al, Cho&Lee, Sun et al, Xu et al, Xu & Jia, and ours, respectively.

FIGURE 9. Results for restoration of the blurred fishes image, (a) is the blurred image, (b)~(g) are the results of Cho&Lee, Krishnan et al, Levin et al, Pan et al, Sun et al, and ours, respectively.

In this literature, the proposed method also adopt non-blind deconvolution for the recovery of real images. As can be seen from the results of FIGURE 6~FIGURE 7, this method can handle image recovery of real images well. Overall our method is robust and generates results that are comparable to, if not better, than the state-of-the-art methods.

V Conclusion

After a majority of experimental researches, we propose a new image deblurring method by edge enhancement and noise suppression. In order to enhance the edge information, the edge detection method is used for separating strong edge portion from images. An improved trilateral filtering is used to suppress the noise and enhance the edge information. The IFISTA method also utilized to estimate blur kernel. Finally, non-blind deconvolution is exploited for image recovery. As future work, we would like to extent our method to handle the blurry image which is blurred or distorted by water waves.
In addition, we will also continue to improve the robustness of the algorithm and the quality of deblurred image.

Reference

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.