Secure and Membership-Based Data Sharing Scheme in V2G Networks

GANG SHEN1, YIXIN SU1, and MINGWU ZHANG2,3,4
1School of Automation, Wuhan University of Technology, Wuhan 430070, China (e-mail: shengang@whut.edu.cn, suyixin@whut.edu.cn)
2Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430074, China
3Hubei Key Laboratory of Transportation Internet of Things, Wuhan University of Technology, Wuhan 430070, China
4School of Computers, Hubei University of Technology, Wuhan 430068, China (e-mail: cssmwzhang@gmail.com)
Corresponding author: Yixin Su (e-mail: suyixin@whut.edu.cn).

This work is supported by the National Natural Science Foundation of China (61672010), the open research project of The Hubei Key Laboratory of Intelligent Geo-Information Processing (KLIGIP-2017A11), and the fund of Hubei Key Laboratory of Transportation Internet of Things (WHUTIOT-2017B001).

ABSTRACT Vehicle-to-grid (V2G) network is an emerging network environment that can improve grid efficiency and alleviate fluctuations caused by renewable energy access to the grid. However, security and efficiency of V2G network is a very challenging and important factor in the case of large-scale electric vehicles (EVs) access to the grid. In this paper, we propose a secure and membership-based data sharing scheme in V2G networks. This scheme employs the online/offline ciphertext policy attribute-based encryption (CP-ABE) mechanism combined with fog computing, thus preserving data privacy and saving system resources. Concretely, the heavy computational operations of encryption and decryption are performed by the fog devices in offline encryption phase and decryption phase, respectively. What’s more, the service information is divided into multiple parts in term of different membership levels and is encrypted by the control center (CC) through different access policy. The ciphertext can only be decrypted when the EV has a set of attributes that satisfy the corresponding membership level of access policy. Security and performance analyses demonstrate that the proposed scheme not only protects data privacy, but also saves the computational costs of CC and EV. Therefore, our scheme is more suitable for the deployment and adoption of V2G networks.

I. INTRODUCTION

With the popularity of electric vehicles (EVs), Vehicle-to-grid (V2G) network is extensively used. In fact, V2G is a technology that uses a large number of EVs’ batteries as buffers of grid and new energy to realize two-way communication and power exchange between the EVs and the grid [1]. In this way, EVs can supply electricity to grid during peak periods of electricity consumption to meet load demand and store electricity during consumption trough to improve energy utilization rate. Therefore, V2G network has brought us some benefits. However, due to the uncertainty of charging time, capacity, location and charging/discharging behavior, disorderly access of a large number of EVs not only poses a challenge to the security of the grid, but also reduces the utilization rate of power equipment [2]. Thus, it is imperative to consider an orderly mechanism for EVs to access the grid.

Typically, the control center (CC) uploads and shares the service information on the cloud of V2G network for EVs access. EVs should be authenticated before they interact with the grid to protect the privacy of V2G network. For example, an authorized EV may obtain a recharge card with EV user’s information from the electricity supplier. If an adversary obtains the service information, he/she can tamper with the data to gain personal benefits, and even infer the EV user’s lifestyle and routine action from the information [3]. In addition, heavy computational cost of the CC will affect the accuracy of the charging/discharging planning of the entire V2G network EV, and reduce the operational efficiency of the grid. Therefore, how to securely and efficiently manage service information in V2G network is a key element to smart grid supporting large-scale access of EVs, and also ensures the implementation of two-way, real-time and large-capacity data exchange between EVs and grid.
In general, access control, a key technology for improving information security, can not only prevent unauthorized users from illegally accessing resources in the system, but also obviate creating public key infrastructure (PKI) certificate. In order to achieve a fine-grained data sharing in V2G networks, attribute based encryption (ABE) usually be deployed \cite{4, 5, 6, 7, 8, 9, 10, 11, 12}. Especially, ciphertext-policy attribute-based encryption (CP-ABE) \cite{13} is a cryptographic technology of ensuring fine-grained data access control and data confidentiality. Compared with key-policy attribute-based encryption (KP-ABE) \cite{14}, CP-ABE is more suitable for the data sharing system because the access policy decision is subject to the data owners. In the V2G network scenario, an authorized EV can only extract service information when its possessed attributes satisfy the access structure of the service information.

Since the extraordinary huge volume traffic between EVs and cloud server of V2G network, the CC in the traditional system suffers from transmission delay and declining service quality. Fortunately, a new technique named fog computing can solve above issues. Fog computing is presented by Cisco in 2012 \cite{15}, which provides storage, computing and network services for data by using fog devices that exist between CC and terminal equipment. That is, it can process part of the work in advance rather than handing all the work to the CC. As an extension of cloud computing, fog computing possesses network edge computing capabilities that not only provide low latency and location awareness, but also improve network quality of service \cite{16, 17, 31}.

At present, many security schemes on V2G networks have been proposed \cite{18, 19, 20, 21, 22}. However, there are few schemes that consider encrypting the service information of V2G networks by using an access structure. Moreover, some existing ABE schemes \cite{4, 5, 11} do not consider the user’s hierarchical access, that is, users satisfying the conditions can extract all the shared information, resulting in a waste of system resources. In addition, the level-based access granted in the existing scheme \cite{23} can complicate the data sharing method in the cloud because the number of user attributes increases exponentially as the number of levels increases. In order to solve above-mentioned issues, protect the privacy of service information, reduce the computational cost of the CC and improve the efficiency of V2G networks, we first propose a secure and membership-based data sharing scheme in V2G networks. The main contributions of this paper are generalized as follows:

- At first, the proposed scheme uses the online/offline ciphertext policy attribute-based encryption (CP-ABE) mechanism \cite{24} combined with fog computing to preserve the data privacy. To our best knowledge, our work is the first efficient and secure fine-grained data access control framework for V2G networks on fog-aided. In order to improve the security of the system, the access structure of proposed scheme is created based on the linear secret sharing mechanism \cite{25}, which can effectively prevent the loss of the key and the attack of malicious EVs, and reduce the risks and responsibilities among the secret sharing users. Additional, since the heavy encryption operation is carried out by the fog devices, it is significantly reduced the online encryption cost of the CC and decryption cost of EV in the proposed scheme.

- Secondly, considered by the issue that the resources of CC are very limited in ABE scheme, the proposed scheme divides the service information into multiple parts of different membership levels. Each level of information is associated with a different LSSS access structure. An EV can obtain the service information of some level when it has the correct membership. The scenarios mentioned in this study are high level EVs (e.g., platinum card member) that can obtain more advanced information (e.g., long charge time, large charge capacity or value-added service) from the grid than low level EVs (e.g., ordinary member). In this way, it is not only significantly reduced the computational costs of the CC, but also facilitated the optimization control of the EVs’ charge/discharge.

- Finally, we analyze the security and performance of the proposed scheme. The results demonstrate that our scheme is very secure and efficient, and is suitable for V2G networks.

The rest of this paper is organized as follows. In Section II, the related work is presented. In Section III, the preliminaries are described outlining some basic theories used for our scheme. Next, we introduce the system model, security model and design goals in problem formulation of Section IV. In Section V, the proposed scheme is presented in details, following by the security analysis and the performance evaluation in Section VI and Section VII, respectively. Finally, we conclude this paper in Section VIII.

II. RELATED WORK

In this section, we review some of the previous research works related to this paper.

The concept of V2G networks was first proposed by Kempton and Tomić \cite{26} in 2004. Subsequently, Guille and Gross \cite{27} studied the implementation framework of V2G and discussed the practical approaches for key implementation steps. Until 2011, studies on the security and privacy issues of V2G networks began to be focused. Stiegmann and Kesdogan pioneered the study of the privacy and security issues in V2G networks, presenting the issue of anonymous and location privacy of EVs in \cite{19}. After then, many novel schemes have been proposed to solve various security issues of V2G networks. Wang et al. \cite{20} presented a traceable privacy-preserving communication by using ID-based restrictive partially blind signatures. In order to reduce system resources, a lightweight security and privacy-preserving scheme for V2G connection was proposed by \cite{22}. Later, Shen et al. \cite{18} introduced a privacy-preserving and lightweight key agreement protocol for V2G that is more efficient compared with the protocols based on elliptic curve
encryption (ECC-based). In [21], Eiza et al. used restrictive partially blind signature technology and certificateless public key cryptography to maintain the session continuity between EV and the charging services while ensuring the EV’s location privacy. Au et al. [28] presented a scheme that supports both location privacy protection and traceability of EVs. In addition, in order to protect the data privacy in the smart grid, Liu et al. [29] proposed a practical privacy-preserving data aggregation scheme that does not rely on a trusted third party. Shen et al. [30] also presented a secure and fine-grained electricity consumption aggregation scheme with forward-backward security.

To improve the computational efficiency of the system, Guo et al. [32] presented the first identity-based online/offline encryption that can be used where the computational power of a device is limited. Although their scheme can be implemented without knowing the identity of the recipient, the identity-based encryption (IBE) can hardly satisfy many application scenarios. Attribute-based encryption (ABE) is a public key encryption scheme that uses user attributes as private keys, which was originally formed on the basis of fuzzy identity-based encryption (FIBE) introduced by Sahai and Waters [33]. In 2006, Goyal et al. [14] presented a key-policy attribute-based encryption (KP-ABE), which is a key that is associated with access control, and a ciphertext with a set of attributes. Subsequently, Bethencourt et al. [13] proposed another fine-grained access control technology, namely ciphertext-policy attribute-based encryption (CP-ABE). In 2013, a scheme of attribute-based secure data sharing of hidden policies in smart grid was proposed by Hur [4], which protects the data privacy and policy privacy by obfuscating. The first online/offline ABE scheme [24] was proposed by Hohenberger et al., which uses a method of “pooling” work done offline. The method means that an encryptor can continuously create offline ciphertext fragments and add them to the pool in the system. In their proposed online/offline CP-ABE scheme, the ciphertext is associated with a linear secret sharing scheme (LSSS) matrix. Specifically, the random exponent is divided into secret shares according to the LSSS structure at each encryption, and each share is assigned to an attribute.

Recently, the application of fog computing attracts increasing attention. A service-oriented architecture for fog computing in telehealth applications is presented by Dubey et al. [9], but the analysis of the raw data is performed by a low power embedded computer. In [10], Truong et al. introduced a new vehicular ad hoc network architecture that integrates fog computing and software-defined. The delay-sensitive and location-aware services that are provided by fog computing can optimize resource utility and reduce service latency. Lu et al. proposed a lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT, which solves the problem of failing to aggregate hybrid IoT device’s data into some real IoT applications. Zuo et al. [8] proposed a CCA-secure ABE with outsourced decryption for fog computing. They used fog computing to cloud computing infrastructure for low latency of data transmission. Zhang et al. [5] proposed a CP-ABE scheme supporting outsourcing capability and attribute update for fog computing. Concretely, the fog nodes are responsible for performing the computational operations of encryption and decryption to eliminate the computational overhead of encryption and decryption. In addition, Zhang et al. [36] presented two public key encryption schemes that can effectively limit key and/or random leakage. Next, we will consider using their proposed encryption schemes to realize privacy protection of data in V2G networks.

III. PRELIMINARIES

A. BILINEAR PAIRING

Let G_1 and G_2 be two multiplicative cyclic groups of the same prime order p. Let $g_1, g_2 \in G_1$ be a generator in G_1. The function $e : G_1 \times G_1 \rightarrow G_2$ is a bilinear map that demonstrates properties as follows:

- Bilinearity: For any $a, b \in \mathbb{Z}_p$, $e(g_1^a, g_2^b) = e(g_1, g_2)^{ab}$.
- Non-degeneracy: $e(g_1, g_1) \neq 1$.
- Computability: There exists an efficient algorithm to compute $e(g_1, g_2)$.

B. ACCESS STRUCTURE

Access structure [13] is usually used in attribute-based encryption and its definition is as follows: Let $\{P_1, P_2, \ldots, P_n\}$ be a set of participants of secret sharing and define $P = 2\{P_1, P_2, \ldots, P_n\}$, then access structure Γ is a non-empty subsets of $\{P_1, P_2, \ldots, P_n\}$, i.e., $\Gamma \subseteq P \setminus \{\emptyset\}$. For A, B, if $A \in \Gamma$ and $A \subseteq B$, then $B \in \Gamma$, which means that access structure is monotonic.

In our scheme, the attributes are represented by participants.

C. LINEAR SECRET SHARING SCHEMES (LSSS)

LSSS [35] meets the following two aspects:

1) The shares of all participants make up a vector on \mathbb{Z}_p.
2) There exists a matrix M with $l \times n$. The i-th row of M corresponds to function $\rho(i)$, for $i = 1, 2, \ldots, l$, where ρ is a mapping function from $\{1, 2, \ldots, l\}$ to \mathbb{R}. Randomly select column vector $\vec{v} = (v_1, v_2, \ldots, v_n)$, where $s \in \mathbb{Z}_p$ is the secret to be shared, then $M\vec{v} = s$ is a vector of l shares of s, and $M_i \cdot \vec{v}^T$ belongs to party $\rho(i)$.

LSSS also has linear reconstruction property, which is defined as follows: Let $S \subseteq \Gamma$ be any authorized set, and define $I = \{i : \rho(i) \in S\}$ and $I \subseteq \{1, 2, \ldots, l\}$. Then, there exist constants collections $\{w_i \in \mathbb{Z}_p\}_{i \in I}$ such that $\sum_{i \in I} w_i M_i = (1, 0, \ldots, 0)$ holds, then $\sum_{i \in I} w_i M_i \vec{v}^T = s$.

D. ONLINE/OFFLINE CP-ABE SCHEME

The proposed scheme is based on online/offline CP-ABE scheme [24] that is a cryptographic technology of ensuring fine-grained data access control and reducing computational costs, which consists of the following five algorithms:
In this section, we present the system model, security model and design goals of this paper.

IV. PROBLEM FORMULATION

In this section, we present the system model, security model and design goals of this paper.

A. SYSTEM MODEL

The Fig. 1 shows the architecture of a secure and membership-based data sharing scheme in V2G networks. There are four tiers in the V2G networks architecture: smart grid tier, fog tier, cloud tier and user tier. In the smart grid tier, the CC encrypts the data and sends to the fog devices in fog tier. The fog devices will perform the fog computing on the received data and then send the results to the cloud server in cloud tier. The authorized EVs in user tier can decrypt the ciphertext on the cloud server through the partial key computed by fog devices. Specifically, the system model includes the following five entities.

- **Key generation center (KGC):** KGC is a full trusted entity that initializes the system, grants private keys to corresponding EVs, and updates attribute sets for the updated EVs.
- **Control center (CC):** CC is a trusted entity with huge service information. It can divide service information into different levels and share it with EV that has the corresponding membership level.
- **Cloud server (CS):** The CS is a trusted entity for storing encrypted data.
- **Fog device (FD):** The FD is a trusted entity, which is a critical part for fog computing. Specifically, the FD will help CC to complete the heavy encryption operation in offline phase and complete the EVs’

Algorithm 1 Setup

Input: A security parameter κ

Output:

1. Choose a bilinear group \mathbb{G}_1 of prime order p and random generators $g, h, u, v, w \in \mathbb{G}_1$
2. Pick $r \in Z_p$
3. Return the public key $PK = (G_1, p, g, h, u, v, w, e(g, g)^\kappa)$ and the master key $MSK = (PK, r)$

Algorithm 2 Extract

Input: The master key MSK and a set of attributes $S = \{A_1, \cdots, A_k\} \subseteq Z_p$

Output:

1. Choose $r, r_1, r_2, \cdots, r_k \in Z_p$
2. Compute $K_{1,2} = g^{r_2}w^r$, and compute $K_{1,3} = g^{r_3}v^r$
3. Return the key $SK = (S, K_{1,2}, K_{1,3})_{i \in [1, k]}$

Algorithm 3 Offline.Encrypt

Input: PK

Output:

1. Choose a random $s \in Z_p$
2. Compute $\text{key}(s, C_0) = e(g, g)^{\alpha s}$
3. Choose random $X_i, y_i, t_i \in Z_p$ and compute $C_{1,1} = w^{y_i}v^{t_i}$, $C_{1,2} = (u^s h)^{r_i}$ and $C_{1,3} = g^{r_i}$
4. Return the intermediate ciphertext $ICT = (\text{key}, s, C_0, \{X_i, y_i, t_i, C_{1,1}, C_{1,2}, C_{1,3}\}_{i \in [1, p]})$

Algorithm 4 Online.Encrypt

Input: PK, ICT, and access structure (\mathbb{M}, ρ), where \mathbb{M} is an $l \times n$ matrix and $l \leq P$ (P denotes the maximum bound of rows)

Output:

1. Compute $C_{j,4} = \lambda_j - X_j$, $C_{j,5} = t_j \cdot (\rho(j) - x_j)$ for $j = 1$ to l
2. Return the $CT = (\{\mathbb{M}, \rho\}, C_0, \{C_{1,1}, C_{1,2}, C_{1,3}, C_{1,4}, C_{j,5}\}_{j \in [1, k]})$

Algorithm 5 Decrypt

Input: SK, CT

Output:

1. Compute Set $I = i : \rho(i) \in S$ and compute $w_i \in Z_p$ such that $\sum_{i \in I} w_i \cdot M_i = (1, 0, \cdots, 0)$, where M_i is the i-th row of the matrix \mathbb{M}
2. Return the key $= e(g, g)^{\alpha s}$

![Fig. 1. System model.](image-url)
partial decryption in the decryption phase.

- Electric vehicle (EV): A data user is an authorized EV that has a membership level. EVs with different membership levels can only obtain service information of the corresponding level on the CS.

B. SECURITY MODEL

Since our work is based on the scheme [24], we can define the adaptive chosen-ciphertext attacks (CCA2) security of a secure and membership-based data sharing scheme (Π) via the security game as follows:

Setup. The challenger \(C \) runs the Setup algorithm, and sends the public key \(PK \) to the adversary \(A \).

Phase 1. In this phase, an empty table \(T \) and set \(D \), and an integer counter \(j = 0 \) are initialized by the challenger \(C \). The adversary \(A \) can make any of the following queries:

- Create \((S) \): First, the challenger \(C \) runs the key generation algorithm to obtain the private key \(SK \) and stores \((j, S, SK) \) in table \(T \), then sets \(j = j + 1 \).
- Corrupt \((i) \): If the \(i \)th entity \((i, S, SK) \) does not exist in \(T \), then it returns \(\bot \). Otherwise, challenger \(C \) obtains \((i, S, SK) \) and sets \(D = D \cup S \), then sends the private key \(SK \) to the adversary \(A \).
- Decrypt \((i, CT) \): If the \(i \)th entity \((i, S, SK) \) does not exist in \(T \), then it returns \(\bot \). Otherwise, challenger \(C \) obtains \((i, S, SK) \) and sends the output of the decryption algorithm to the adversary \(A \).

Challenge. In challenge phase, adversary \(A \) provides a challenge access structure \(A^* \) such that for all \(S \in D, S \notin A^* \). Next, challenger \(C \) runs the algorithm Online.Encrypt \((PK, Offline.Encrypt (PK), A^*) \) to obtain the ciphertext \((key^*, CT^*) \). It then randomly chooses a bit \(b \in \{0, 1\} \). If \(b = 0 \), challenger \(C \) sends \((key^*, CT^*) \) to \(A \), else if \(b = 1 \), it chooses a random number \(R \) and sends \((R, CT^*) \) to \(A \).

Phase 2. Adversary \(A \) can repeatedly make the queries of phase 1. However, it cannot obtain the \(S \) (such that \(S \in A^* \)) that can decrypt the challenge ciphertext \(CT^* \) by making a Corrupt query.

Guess. Adversary \(A \) outputs a guess \(b' \) of \(b \). If \(b = b' \), then Adversary \(A \) wins the game.

Definition 1. A membership-based ABE scheme is adaptive chosen-ciphertext attacks (CCA2) secure if all probabilistic polynomial time (PPT) adversaries \(A \) can win the above mentioned game with a negligible probability:

\[
Pr[Game_{A,Π}(\lambda, U) = 1] \leq \frac{1}{2} + \text{negl}(\lambda)
\]

where, \(\lambda \) is a security parameter, \(U \) denotes the set of attributes allowed in the system.

C. DESIGN GOALS

According to the aforementioned system model and security model, our design goal is to present a secure and membership-based data sharing scheme in V2G networks. Specifically, we are going to fulfill following four goals:

- Membership-Based Access. Service information is shared in a hierarchical method based on EV’s membership. EVs with more high memberships (e.g., platinum card member) are granted access to more advanced service information than those with lower memberships (e.g., ordinary member).
- Fine-grained access control. The proposed scheme should have the advantage of fine-grained access control. That is, the CC can use different defined access policies to encrypt each part of the service information, and only the EV member that meets the access policy can obtain the corresponding service information.
- Confidentiality of service information. In the proposed scheme, all service information in V2G networks is protected by the CC. That is, the EVs that do not have enough attributes to satisfy the access policy are denied access to the plaintext of the service information.
- Efficiency. In the proposed scheme, the computational costs on the CC and the EVs should be lower than those in the existing related schemes.

V. THE PROPOSED CONCRETE SCHEME

In this section, we propose a concrete construction for a secure and membership-based data sharing scheme in V2G networks. In the proposed scheme, the CC first divides the plaintext files of service information according to different membership levels. Assume that each level of service information contains different service items, such as charging time, value-added services, etc., and a certain level of EVs can only access the corresponding level of service information. For example, an authorized EV that recharges more than 10000 yuan at a time is upgraded to be a platinum card member, the authorized EV who recharges 5000–10000 yuan will become a gold member, and the authorized EV of recharging Less than 5000 yuan can only become an ordinary member. The platinum card member can obtain quality services (e.g., the charging time is not limited or more value-added services can be enjoyed), but the gold card members or ordinary members can only obtain some low-level services (e.g., obtaining limited charging time). Specifically, the CC splits data files \(DF \) into \(m \) data file sets, that is \(DF = \{DF_1, DF_2, \ldots, DF_m\} \). We suppose that the service information in \(DF_1 \) is the highest level and the service information in \(DF_m \) is the lowest level. Then, each data file \(DF_i \in DF \) is individually encrypted with a secret key \(sk_i \) of symmetric encryption algorithm (e.g., AES [34]) to generate an encrypted data file \(CDF_i = Enc_{sk_i}(DF_i) \).

In this paper, the symmetric key \(sk_i \) is encrypted under online/offline CP-ABE scheme [24] that can be accessed only by the authorized EVs with associated attribute set. For the sake of simplicity, the CC defines different levels of LSSS access structures \(\{(M_1, \rho_1), (M_2, \rho_2), \ldots, (M_m, \rho_m)\} \) for encrypting the symmetric keys \(\{sk_1, sk_2, \ldots, sk_m\} \) respectively. When the attribute set of the authorized EV satisfies one of the access structures, he/she can decrypt the corresponding symmetric key. In other word, an authorized EV.
obtains key sk_i, he/she can decrypt the data files CDF_i to obtain the corresponding level of service information.

The proposed scheme is composed of six phases: system initialization, key generation, data offline encryption, data online encryption, data decryption and attribute update. For convenience, we summarize the main notations of this paper in Table 1.

TABLE 1. Notations summary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>sk_i</td>
<td>The i-th symmetric key used to encrypt DF_i</td>
</tr>
<tr>
<td>DF_i</td>
<td>The i-th data file</td>
</tr>
<tr>
<td>CDF_i</td>
<td>The i-th encrypted DF_i under sk_i</td>
</tr>
<tr>
<td>P_i</td>
<td>The i-th participant in a set of participants of secret sharing</td>
</tr>
<tr>
<td>S_j</td>
<td>The j-th authorized EV’s attribute set</td>
</tr>
<tr>
<td>$A_{j,k}$</td>
<td>The k-th attribute within the attribute set S_j</td>
</tr>
<tr>
<td>M</td>
<td>An $l \times n$ matrix and $l \leq P_i$. P_i is the maximum number of rows of matrix M</td>
</tr>
<tr>
<td>(M_i, ρ)</td>
<td>LSSS access structure</td>
</tr>
<tr>
<td>(M_i, ρ_i)</td>
<td>LSSS access structure corresponding to the EV of level i</td>
</tr>
<tr>
<td>$M_{i,j}$</td>
<td>The j-th row of the matrix M_i</td>
</tr>
<tr>
<td>$M_{i,j}$</td>
<td>The j-th row of the matrix M_i</td>
</tr>
<tr>
<td>t</td>
<td>The time taken for an EV to extract each service information</td>
</tr>
</tbody>
</table>

A. SYSTEM INITIALIZATION

KGC is a full trusted entity which bootstraps the whole system by running setup algorithm. Given the security parameter κ, the KGC chooses a bilinear group G_1 of prime order p, and random generators $g, h, u, v, w \in G_1$. It also picks a random exponent $\alpha \in Z_p$, then calculates the public-secret key pair as $(PK = (G_1, p, g, h, u, v, w, e(g, g)\alpha), MSK = (PK, \alpha))$. Finally, PK is published as the public parameter, and master key MSK is stored by the KGC.

B. KEY GENERATION

Let’s define $S_j = \{A_{j,1}, A_{j,2}, \ldots, A_{j,k}\} \subseteq Z_p$, where S_j denotes the j-th authorized EV’s attribute set, and $A_{j,k}$ represents the k-th attribute within the set. Input the master key MSK and an authorized EV’s attribute set S_j, the KGC chooses random numbers $r, r_1, r_2, \ldots, r_k \in Z_p$, then computes $K_0 = g^{\alpha s}w^r, K_1 = g^r$. For $i = 1$ to k, it also calculates $K_{i,2} = g^{r_i}, K_{i,3} = (u^{A_{j,i}\cdot h})^{r_i}w^{-r}$. So the j-th authorized EV’s private key is defined as:

$$SK_j = \{(S_j, K_0, K_1, \{K_{i,2}, K_{i,3}\}_{i \in [1,k]}\}$$ (1)

C. OFFLINE ENCRYPTION

In our scheme, to reduce the computational costs of the CC, the fog devices first perform offline encryption that contains the heavy computations (e.g., pairing and group operations) and calculates as much as possible in the offline encryption phase. Specifically, fog device picks a random $s \in Z_p$ and calculates $key = e(g, g)^{\alpha s}, C_0 = g^s$. Next, it chooses random $\lambda_{j,1}, t_j \in Z_p$ and calculates $C_{j,1} = w^{\lambda_{j,1} \cdot t_j}, C_{j,2} = (u^{\lambda_{j,1}} h)^{-t_j}, C_{j,3} = g^{t_j}$, for $j = 1$ to P_i, where P_i is assumed to be the maximum number of rows of matrix M_i. Then the intermediate ciphertext ICT_j is constructed as:

$$ICT_j = (\{key, s, C_0, \{\lambda_{j,1}, x_j, t_j, C_{j,1}, C_{j,2}, C_{j,3}\}_{j \in [1,P_i]}\}$$ (2)

D. ONLINE ENCRYPTION

In the proposed scheme, the symmetric keys $sk = \{sk_1, sk_2, \ldots, sk_m\}$ are the objects that need to be encrypted. Each sk_i is encrypted with the corresponding access structure (M_i, ρ_i), where M_i is an $l \times n$ matrix and $l \leq P_i$. So the online encryption algorithm will run m times. In the stage of encrypting sk_i, the CC chooses random $y_1, y_2, \ldots, y_n \in Z_p$, sets the vector $\vec{y} = (y_1, y_2, \ldots, y_n)^T$ and calculates a vector of shares of s as $(\lambda_1, \lambda_2, \ldots, \lambda_n)^T = M_i \vec{y}$ (i.e., $\lambda_j = M_i y_j$, where T denotes the transpose). For $j = 1$ to i, the CC also calculates $C_0' = sk_1 \cdot e(g, g)^{\alpha s}, C_{j,4} = \lambda_j - \lambda_j', C_{j,5} = t_j \cdot (\rho(i) - x_j)$. So the ciphertext is calculated as:

$$CT_j = \{(M_i, \rho_i), C_0', \{C_{j,1}, C_{j,2}, C_{j,3}, C_{j,4}, C_{j,5}\}_{j \in [1,k]}\}$$ (3)

E. DATA DECRYPTION

If the j-th authorized EV’s attribute set S_j satisfy the LSSS access structure (M_i, ρ_i), he/she can decrypt the ciphertext CT_j by running the decryption algorithm and obtain the symmetric key sk_i. Then he/she can obtain the service information DF_i by using sk_i to decrypt the encrypted data files CDF_i.

The specific decryption is accomplished by the fog devices and the authorized EV, respectively.

- **Step-1**: Fog devices obtain the ciphertext CT_j for LSSS access structure (M_i, ρ_i) and the part of private key $SK_j' = \{(K_0, K_1, \{K_{i,2}, K_{i,3}\}_{i \in [1,k]}\}$ from the authorized EV.
- **Step-2**: If the j-th authorized EV’s attribute set S_j cannot satisfy the LSSS access structure (M_i, ρ_i), the algorithm stops. Otherwise, fog devices set $I = \{i \in S_j\}$ and chooses constants $w_i \in Z_p$ such that $\sum_{i \in I} w_i \cdot M_i = (1, 0, \ldots, 0)$, then $\sum_{i \in I} w_i \cdot K_{i,1} = s$, where M_i denotes the i-th row of the matrix M_i, and calculate

$$key = \frac{e(C_0, K_0)}{e(w \sum_{i \in I} C_{i,4}, K_1) \cdot \prod_{i \in I} e(C_{i,1}, K_1)^{w_i}} = e(g, g)^{\alpha s}$$ (4)

Then, fog devices send key and C_0' to the EV.
- **Step-3**: After receiving key and C_0' from fog devices, the EV recovers the symmetric key sk_i by computing

$$sk_i = key \cdot C_{i,5} = e(g, g)^{\alpha s} \cdot C_{i,5}$$
Thus, the authorized EV can obtain the data file \(DF_i\) by using \(sk_i\) to decrypt the encrypted data file \(CDF_i\) as follows:

\[
DF_i = Dec_{sk_i}(CDF_i)
\]

The correctness of symmetric key \(sk_i\) recovery is shown in Table 2.

F. ATTRIBUTE UPDATE

Here, the \(j\)-th EV can change its membership through updating his attributes. For instance, the authorized EV’s membership level will increase when its recharge amount increases from 5000 to 10000 yuan. Then KGC will update EV’s attribute set \(S_j = \{A_{j,1}, A_{j,2}, \ldots, A_{j,k}\}\) to \(SU_j = \{A_{j,1}, A_{j,2}, \ldots, A_{j,k}\}\). Thus, the updated key is denoted as

\[
SK_{U_j} = (SU_j, K_0 = g^{\alpha_0 r_t}, K_1 = g^{r_t}, \{K_{2,1} = g^{\alpha_{s1}}, K_{2,3} = (u^{\alpha_{s1}}h)^{r_t}\})
\]

(7)

where, \(SU_j\) is the updated attribute set, and \(A_{j,i}\) represents the \(i\)-th updated attribute within \(SU_j\).

Note that only the secret key need to be updated while the ciphertext remains unchanged in the proposed scheme.

VI. SECURITY ANALYSIS

In this section, we analyze the security of the proposed scheme, in which a formal proof of security is based on the work presented in [24]. Since all levels of ciphertexts \(CT_j\) follow the same rules, as long as a single \(CT_j\) is secure, then the whole scheme is proved to be secure.

Theorem 1. The proposed scheme is selectively CPA-secure with respect to Definition 1 under the assumption that the scheme [25] is a selectively CPA-secure CP-ABE system.

Proof. Assume there is a PPT adversary \(A\) can win the game in Section IV-B with a non-negligible advantage, then a PPT simulator \(B\) will break the selective CPA-security of the scheme [25] (named RW).

Initialization. First, adversary \(A\) sends an LSSS access structure \((M^*_i, \rho^*_i)\) to simulator \(B\). Then \(B\) gives this access structure to the challenger of RW, where \(M^*_i\) is an \(l \times n\) matrix.

Setup. Then, simulator \(B\) receives the public parameters \(PK = (G_1, p, g, h, u, v, w, e(g, g)^{\alpha})\) from the challenger of RW and sends them to adversary \(A\) intact.

Phase 1. The RW challenger can obtain the key in the way that adversary \(A\) requests any key generation.

Challenge. Simulator \(B\) chooses two random, distinct messages \(m_0, m_1\), and sends them to the challenger of RW. Next, the challenger of RW returns \(B\) a challenge ciphertext

\[
CT'_j = (M^*_i, \rho^*_i, C_0, C_{0}', \{C_{j,1}, C_{j,2}, C_{j,3}\})_{i \in \{1,2\}}
\]

(8)

where \(C'_0 = sk_i \cdot e(g, g)^{\alpha s}\) is the encrypted message and \(C_0 = g^s\). For each row in \(M^*_i\), there are \(C_{j,1} = w^{\alpha_{s1}}\rho^{j}_1, C_{j,2} = (u^{\rho^{j}_1}h)^{r_t}\) and \(C_{j,3} = g^{\alpha_{s1}}\).

Then, Simulator \(B\) chooses random blinding values \(z_1, \ldots, z_t, z'_1, \ldots, z'_t \in \mathbb{Z}_p\) and calculates the ciphertext \(CT'_j\) of the proposed scheme as \(((M^*_i, \rho^*_i), C_0)\) followed by

\[
\begin{align*}
C_{j,1}' &= C_{j,1} \cdot w^{-z_j} = w^{\alpha_{s1} - z_j}v^{j}_1, \\
C_{j,2}' &= C_{j,2} \cdot w^{-z'_j} = (u^{\rho^{j}_1}h)^{r_t} \cdot u^{-z_j}, \\
C_{j,3}' &= C_{j,3} = g^{z_j}, \\
C_{j,4}' &= z_j, \\
C_{j,5}' &= z'_j.
\end{align*}
\]

Next, Simulator \(B\) guesses which of the messages \(m_{Bu'} (b' \in \{0,1\})\) is encrypted, and calculates \(key_g = C_{0}'^b\). Finally, Simulator \(B\) sends \((key_g, CT'_j)\) to adversary \(A\).

Phase 2. Same as Phase 1.

Guess. Finally, adversary \(A\) outputs messages \(m_{A_{Bu'}} (b' \in \{0,1\})\). Assume that \(m_{A_{Bu'}}\) indicates that adversary \(A\) guessed the \(key_g\), is the key encapsulated by \(CT'_j\) and \(m_{A_{Bu'}}\) indicates that adversary \(A\) guessed the \(key_g\) is a random number. If the output is \(m_{A_{Bu'}}\), then simulator \(B\) outputs 0 to means that the ciphertext is the correct form. Otherwise, simulator \(B\) outputs 1 to means that the ciphertext is the random number. Therefore, if adversary \(A\) can win the game in Section IV-B with a non-negligible advantage, then simulator \(B\) can break the RW system with the same advantage.

Since scheme [25] has been proved to be a selectively CPA-secure CP-ABE system, the proposed scheme is selectively CPA-secure. Therefore, our scheme can ensure the security of service information.

VII. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed scheme in terms of performance characteristics and computational costs, and compare it with related schemes, that is, Hur’s scheme [4], Zhang et al.’s scheme [5] and Wang et al.’s scheme [6].

A. CHARACTERISTICS COMPARISON

The results in Table 3 show the comparison of the performance characteristics between our scheme and other schemes. Although these schemes use the CP-ABE access control, only our scheme’s access structure is LSSS, others are access trees. Compared with the access tree, LSSS mechanism can effectively prevent the loss of keys and attacks of malicious users. Additionally, schemes [4, 5, 6] are based on independent access strategies for handling data sharing, that is, their design does not support hierarchical access structures. However, the encrypt algorithm runs once for each level of information to achieve a membership-based access structure in our scheme. Moreover, Wang et al.’s scheme [6] has offline/online encryption function but does not support fog computing and attribute update. Zhang et al.’s scheme [5] has fog computing function but cannot perform offline/online encryption. However, the proposed scheme has both offline/online encryption and fog computing. Because...
of both offline/online encryption and fog computing, our scheme is more powerful than other schemes [4], [5], [6].

B. EFFICIENCY

Here, we will compare the efficiency of the proposed scheme and other schemes [4], [5], [6] in term of the computational cost of each phase (including key generation, encryption and decryption). The efficiency comparison results are shown in Table 4. In order to make the analysis more understandable, we describe the meaning of the notations used in Table 4 as follows:

- E_1: An exponentiation in G_2.
- E_2: An exponentiation in G_2.
- M_1: A multiplication in G_2.
- C_e: Bilinear pairing operation.
- k: Number of attributes associated with an EV’s secret key.

In the Key Generation phase, the authorized EV’s private key in our scheme is described as $(K_0 = g^{r_0}w^r, K_{1i} = g^{r_i}, \{K_{1i2} = g^{r_i}, K_{1i3} = (uA_i^{-h})^{e^{r_i}w^r}\})_{i \in [1,k]}$. Therefore, the computational cost of key generation is $(4 + 3k)E_1 + (2k + 1)M_1$. The Encryption phase of our scheme consists of two parts: offline encryption and online encryption. To reduce the computational cost of CC, we delegate the heavy computational operations of the encryption to the fog devices during the offline encryption phase. From Table 4, our scheme’s computational cost of CC is greatly reduced compared with scheme [4], [5]. In the Data Decrypt phase, both scheme [5] and our scheme employ a fog device to help the user to decrypt, that is, partial decryption is performed by the fog device, thus reducing the computational cost of user. In our scheme, the computational cost of fog device is $(2 + 3k)C_e + M_1$, while the computational cost of authorized EV is only M_1. Of course, the fog device in fog tier shares most of the decryption computational overhead for the EV.

From Table 4, we can observe that the computational cost of Key Generation in our scheme is higher than other schemes in [4], [5], [6]. However, the computational costs of CC’s encryption and EV’s decryption are all less than that in [4], [5], [6].

C. EXPERIMENTAL ANALYSIS

We use Java as programming language to run the experiments on the Win7 system of a computer with an Intel(R) Pentium(R) G3240 CPU at 3.10GHz and 4.00GB memory. By applying Java Pairing-Based Cryptography Library [37], the running time of each operation is $E_1 = 13.179 \text{ ms}$, $E_2 = 1.042 \text{ ms}$, $M_1 = 11.161 \text{ ms}$, $C_e = 15.127 \text{ ms}$, respectively.

The comparison results of computational cost between our scheme and other schemes [4], [5], [6] in term of key generation, encryption and decryption are shown in Fig. 2. Fig. 2 (a) and (b) show the comparison of computational cost of entire system operation and the key generation time of system, respectively. We can find that the computational cost of entire system operation in our scheme is much bigger than that in [4], [5], [6], and the key generation time is much longer than that in [5] too. The reason is that the access structure used in our scheme is LSSS matrix which is more complex than the tree structure. Since scheme [6] and our scheme all adopt offline/online encryption mechanism, we compare the computational cost of the scheme [6] and ours in term of offline encryption, as shown in Fig. 2 (c). Fig. 2 (c) shows that the burden of offline encryption of our scheme is much greater than that of scheme [6]. Fig. 2 (d) shows the comparison of the computational cost on data owner for encryption. It is easy to see that the encryption time of data owner of our scheme is the smallest in all schemes. In decryption aspect, scheme [5] is similar to ours, which uses the fog devices to help users decrypt. Fig. 2 (e) shows that the computational cost of fog devices for decryption in our scheme is higher than that in scheme [5]. However, from Fig. 2 (f), we find that the computational cost of users for decryption in our scheme is much smaller than the schemes.
TABLE 3. Comparison of Features

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Access control</td>
<td>CP-ABE</td>
<td>CP-ABE</td>
<td>CP-ABE</td>
<td>CP-ABE</td>
</tr>
<tr>
<td>Access structure</td>
<td>Access Tree</td>
<td>Access Tree</td>
<td>Access Tree</td>
<td>LSSS</td>
</tr>
<tr>
<td>Level-based access</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Offline/online</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fog computing</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Attribute update</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Selective security</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

TABLE 4. Comparison of Computational costs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Key generation</td>
<td>(1 + 5k)E1 + M1</td>
<td>(1 + k)E1 + M1</td>
<td>(1 + 5k)E1 + M1</td>
<td>(4 + 3k)E1 + (2k + 1)M1</td>
</tr>
<tr>
<td>Offline encryption</td>
<td>–</td>
<td>–</td>
<td>Cc + (2 + 2k)E1 + M1</td>
<td>Cc + E2 + (1 + 5k)E1 + 2kM1</td>
</tr>
<tr>
<td>Online encryption</td>
<td>Ce + E2 + (1 + 2k)E1 + 2M1</td>
<td>Ce + E2 + (5 + 2k)E1 + 3M1</td>
<td>Ce + E2 + (2k)M1</td>
<td>Ce + E2 + (1 + k)M1</td>
</tr>
<tr>
<td>Decryption (fog device)</td>
<td>–</td>
<td>–</td>
<td>(2k + Ce + kE2 + 2M1)</td>
<td>(2 + 3k)Ce + M1</td>
</tr>
<tr>
<td>Decryption (User)</td>
<td>(3k + 1)Ce + kE2 + 2E1 + kM1</td>
<td>Ce + 2M1</td>
<td>(2k + 1)Ce + 3E1 + (k + 1)M1</td>
<td>M1</td>
</tr>
</tbody>
</table>

![FIGURE 2](image). Comparison of computational costs of key generation, encryption and decryption.

Experimental results show that although our scheme has the highest computational cost for the entire system, we use offline/online encryption mechanisms and fog computing technology to minimize the time required for data owner encryption and user decryption. Therefore, our scheme is more efficient in reducing computational cost than schemes [4], [5], [6].

D. ACCESS EFFICIENCY ANALYSIS

In terms of access efficiency, we mainly consider the time for authorized EV to extract service information. As mentioned earlier, CC first divides the service information into m parts $DF = \{DF_1, DF_2, \ldots, DF_m\}$, respectively, and then encrypts each part with a symmetric key $sk = \{sk_1, \ldots, sk_m\}$. Here, we suppose that the ciphertext structure is depicted in Fig. 3, which the time taken for an EV to extract each service information is t. For the traditional scheme, the size of service information extracted by an EV is $DF = \ldots$
We model a data sharing scheme in V2G networks, which can share service information according to the membership level of the EVs. With the help of the offline/online encryption mechanisms and fog computing technology, the proposed scheme can significantly reduce the time required for data owner encryption and user decryption. Security and performance analyses demonstrate the proposed scheme is selectively CPA-secure and more efficient in reducing computational cost than related schemes. Therefore, the proposed scheme is more suitable for V2G networks. In the future, we will study the privacy protection of V2G networks under the conditions of semi-trusted cloud and fog servers.

REFERENCES

FIGURE 4. Comparison of extraction time of traditional ABE scheme and our scheme.