Design of a Hemispherical Reconfigurable Frequency Selective Surface Using Water Channels

Dong-Chan Şon¹, Hokeun Shin¹, Yoon Jae Kim², Ic Pyo Hong³, Heoung Jae Chun⁴, Kyung-Young Jung⁵, Hosung Choo⁶, and Yong Bae Park¹, Senior Member, IEEE

¹Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, Korea
²Agency for Defense Development, Daejeon 34186, Korea
³Department of Information & Communication Engineering, Kongju National University, Cheonan 31080, Korea
⁴School of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
⁵Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
⁶School of Electronic and Electrical Engineering, Hongik University, Seoul 04066, Korea

Corresponding author: Yong Bae Park (e-mail: yong@ajou.ac.kr).

This work was supported by the Low Observable Technology Research Center program of Defense Acquisition Program Administration and Agency for Defense Development and was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2017R1A2B4001903), and was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1A6A1A0303 1833).

ABSTRACT In this letter, we propose a hemispherical reconfigurable frequency selective surface (FSS) using water channels. The switching between band-pass and band-stop states is possible since the water with a high dielectric constant can control the effective permittivity of the structure. We simulate and fabricate the FSS and measure the radiation pattern of FSS enclosed horn antenna to check the reconfigurable characteristic of the hemispherical FSS. The simulated results show a good agreement with the measured results.

INDEX TERMS frequency selective surface, hemisphere radomes, water channels

I. INTRODUCTION

Frequency selective surface (FSS) is a periodic structure which can selectively transmit or reflect electromagnetic (EM) waves at specific frequencies. FSSs have been widely used as a filter in radomes, antennas, reflectors, absorbers, and so on. Conventional passive FSSs have the disadvantage of merely operating at a fixed single designed frequency, which limits their use in practical applications. To overcome this drawback, reconfigurable FSS has been extensively studied using various methods, including circuit tuning and material tuning methods. Circuit tuning methods often use active elements, such as PIN diodes, varactor diodes, and micro-electro-mechanical systems (MEMS) [1-11], while the material tuning methods employ liquid crystals, ferrite substrates, and graphenes [12-18]. The FSS structure using PIN diodes realizes the frequency reconfigurable function by controlling the bias voltage (on-off state) applied to the PIN diodes [1], [2]. Number and location of the PIN diodes in a unit cell have a significant effect on the performance of the FSS. It has the advantages of a wide variable range of the transmission frequency and low loss. However, there are disadvantages such as only two variable transmission frequencies, slow switching time, and difficulty in accurate fabrication due to nonlinearity [3], [4]. The FSS structure using varactor diodes realizes the frequency reconfigurable function by adjusting the diode capacitance according to the applied bias voltage [5-7]. This not only produces more transmission frequencies, but also has low loss and faster switching time [8]. However, it is difficult to operate in the high frequency band and the manufacturing cost is relatively high [9]. The FSS structure using MEMS realizes the frequency reconfigurable function by controlling capacitance of the system [10], [11]. It has the advantages of reduced manufacturing cost, low loss, high isolation, and fast switching [12]. However, since the size of the MEMS elements is too small, the transmission frequency bandwidth is narrow and the change range of capacitance is small [12], [13]. The FSS applying the bias voltage to the liquid crystal changes its orientation of the molecule that causes a change in the dielectric constant and the FSS frequency response...
[14]. It has the advantage of a tunable capability over a wide frequency range, but has the disadvantage of difficulty in realization due to the complicated structure [15]. The magnetically tunable FSS is implemented by using a ferrite substrate, where the permeability of the ferrite substrate can vary with the external bias magnetic field. This has advantages that the magnetically tunable FSSs do not need a bias circuit, but it often suffers from several disadvantages, such as low tuning speed and narrow tuning range [16]. Graphene has been considered as a good candidate for designing tunable FSSs, as it possesses extraordinary properties over a wideband frequency range, such as high mobility, large thermal conductivity, and strong intrinsic strength, come from the special atomic structures [17], [18]. But realizing such a material is challenging due to difficulty in controlling the surface conductivity [19], [20]. Recently, the method using the fluidic channel to obtain the reconfigurable properties has been studied extensively [21-23]. The FSS using fluidic channels has the ability, such as drastic change of electrical characteristics, a variety of designs using various parameters and wide tuning ranges. Therefore, fluidic channels can be suitable for use in a reconfigurable FSS realization. We also have proposed the reconfigurable FSS using the fluidic channels in planar dielectric slab [24]. However, since we have only confirmed the reconfigurability of the planar structure, it could not guarantee the feasibility of the practical structures such as radomes.

In this letter, we propose a hemispherical reconfigurable FSS using water channels. The switching between band-pass and band-stop states is possible since water with a high dielectric constant (\(\varepsilon_r = (66-57)-j(26-33)\), when the frequency is from 8 GHz to 12.5 GHz at 25 degrees Celsius) [25] can control the effective permittivity of the structure. The relative permittivity (\(\varepsilon_r\)) of a material is its permittivity expressed as a ratio relative to the permittivity of a vacuum. The detailed dimensions of the FSS such as a diameter and number of tubes are optimized using a full-wave EM simulation software (CST MICROWAVE STUDIO (MWS) [26]). To check the reconfigurable characteristic of the hemispherical FSS, we then fabricate the optimized FSS and measure the radiation pattern when a horn antenna is placed inside the FSS. The simulated results show a good agreement with the measurement, which confirms that the proposed FSS can be suitable for use in a reconfigurable FSS.

II. DESIGN AND FABRICATION

Fig. 1 shows the design procedure for reconfigurable structures. First, we have figured out transmission characteristics of planar dielectric slab without fluidic channels by changing parameters such as permittivity and thickness. We have compared the simulation results with calculated results using equation (1) (see Fig. 2) to obtain the reliability of the simulation results for the simplest planar structure which the fluidic channels are not inserted. Fig. 3 illustrates that the thickness of the dielectric slab can change only the frequency interval between the maximum and minimum values of the transmission coefficient when the real part (\(\varepsilon'\)) of permittivity is 5 and imaginary part (\(\varepsilon''\)) of permittivity is zero. Also, to understand the effects of real part (\(\varepsilon'\)) and imaginary part (\(\varepsilon''\)) of permittivity of the dielectric slab (100 mm × 100 mm × 10 mm) on the transmission characteristic, the transmission coefficients are calculated in terms of the permittivity of the dielectric slab. Fig. 4 shows the transmission coefficients in terms of \(\varepsilon'\) when \(\varepsilon''\) is zero. This indicates that the difference between the minimum and the maximum transmission coefficients increases as a real part (\(\varepsilon'\)) of the permittivity increases. The real part of the permittivity can also change periods between the maximum and minimum values of the transmission coefficient. Fig. 5 illustrates the transmission coefficients in terms of \(\varepsilon''\) when \(\varepsilon'\) is 10. It is seen that the imaginary part of the permittivity only affects attenuation. Next, the spacing and thickness of tubes of the dielectric slab inserted fluidic channels are optimized using CST MWS [24]. Third, we have optimized parameters such as number and diameter of channels of hemispherical reconfigurable FSS for a target frequency. Finally, we have fabricated and measured the structure to check the validity of our design. Fig. 6 shows the procedure for verifying the feasibility of the hemispherical reconfigurable FSS with water channels. First, we should determine a specific configuration among practical structures. Since the hemispherical structure has a constant curvature for any directions from the vertex, we can easily insert the water channels in implementing the
1. Determination of FSS structure (Hemispherical structure)

2. Determination of insertion structure of fluidic channels (Frame of umbrella)

3. Optimization of diameter and number of tubes

4. Fabrication and measurement

5. Comparison between simulation and measurement results

Insufficient performance

FSS. Therefore, we have selected the hemispherical FSS. We also find its application in hemisphere radomes. Second, it is necessary to find an insertion structure of fluidic channels that can significantly change the effective permittivity of the structure while achieving structural stability and feasibility. So, we decided to insert fluidic channels similar to the frame structure of an umbrella. Third, to design the reconfigurable FSS operating at 9.7 GHz, we have optimized the dimensions of the FSS by changing the diameter and number of tubes using a full-wave solver. We have obtained simulation results by changing the diameter \(D_2\) and number \(N_1\) of tubes (see Fig. 6 and 7). When the number and diameter of the tubes...
are changed, the center frequency is also shifted. However, it can be seen that the diameter of the tube does not significantly change the transmission characteristics. The effective permittivity of the structure can be changed by varying diameter and number of tubes to obtain the reconfigurable characteristic in the X-band. Fourth, the design structure is fabricated and measured in an anechoic chamber. Finally, we compare simulation results with measurement results. If the performance of results has not served what we have established, we should go back to step 3 to solve the problem. The optimized the design parameters

![Graph showing transmission coefficient depending on the diameter of tubes](image1)

FIGURE 7. Transmission coefficient depending on the diameter of tubes

![Graph showing transmission coefficient depending on the number of tubes](image2)

FIGURE 8. Transmission coefficient depending on the number of tubes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1: Diameter of radome (mm)</td>
<td>300</td>
</tr>
<tr>
<td>D2: Diameter of tubes (mm)</td>
<td>4</td>
</tr>
<tr>
<td>t1: Tube thickness (mm)</td>
<td>0.5</td>
</tr>
<tr>
<td>t2: Foam thickness (mm)</td>
<td>6.5</td>
</tr>
<tr>
<td>t3: Composite thickness (mm)</td>
<td>1.125</td>
</tr>
<tr>
<td>t4: Adhesive thickness (mm)</td>
<td>0.02</td>
</tr>
<tr>
<td>N1: Number of tubes</td>
<td>12</td>
</tr>
</tbody>
</table>

TABLE I

<table>
<thead>
<tr>
<th>DESIGN PARAMETERS OF HEMISPHERICAL RECONFIGURABLE FSS FOR OPERATING AT TARGET FREQUENCY</th>
</tr>
</thead>
</table>

are listed in Table I. Fig. 9 shows the reconfigurable FSS for a real hemisphere radome, which consists of foam (Rohacell HF-71), composites (E-glass/epoxy laminate), adhesives, and silicon tubes that can be filled or unfilled with water. The foam is carved with designed dimensions, and the holes are extracted from the foam. To make the curvature, thermal-forming process is performed. The channel made of silicon is then inserted in the holes, which can be filled or unfilled with water. Finally, the adhesive is applied to the curved-foam and the composites are attached on the outside and inside of the foam to achieve mechanical strength, harness, and stability. The fabricated hemispherical FSS with metric is shown in Fig. 10. Fig. 11(a) is the 3-D model in the simulation. Fig. 11(b)-(f) have shown that the transmission coefficients, reflection coefficients, phase responses and radiation patterns between the filled state and the unfilled state are varied. The difference in the transmission coefficient is about 0.4 (i.e., the difference in power is 64 %) and the difference in the radiation patterns with phi = 0° is about 5 dB at 9.7 and 8.7 GHz. Note that the structure filled with water at 9.7 GHz has a band-pass characteristic, whereas the structure without water at 8.7 GHz has a band-pass characteristic. There is little difference between water filled and water
unfilled at 10.8 GHz. As a result, we can obtain the reconfigurable characteristic using water channels. In addition, we should consider the effect of the water since the water has a high dielectric constant. In the designed structure, the loss of water is very small due to the small size of the tube with the diameter of about 0.1λ. In other words, EM waves hardly attenuate in our FSS structure when they pass through the water. By confirming the results of transmission coefficient and radiation patterns, we can conclude that the hemispherical reconfigurable FSS capable of transmitting EM waves at a specific frequency can be implemented by using the water channels.

FIGURE 11. 3-D model and the simulated results of the hemispherical reconfigurable FSS: (a) Simulation geometry; (b) Simulation result of CST MWS and ANSYS HFSS; (c) Phase responses; (d) radiation pattern at 8.7 GHz; (e) Radiation pattern at 9.7 GHz; (f) Radiation pattern at 10.8 GHz

III. MEASUREMENT

In order to verify the transmission characteristics of the fabricated structure, a measurement setup using an indoor anechoic chamber is utilized as illustrated in Fig. 12. This measurement system includes two horn antennas (ANT-SGH-90, gain: 22 dB, frequency: 8.2-12.4 GHz) serving as a transmitting and receiving antennas. Inner surfaces of the anechoic chamber are covered with pyramidal absorbers to minimize interference from reflection and external noise. While the hemispherical FSS is illuminated from the transmitting antenna, the FSS with the receiving antenna is rotated, and the received power is recorded for each rotation angle. Figs. 13(a) and 13(b) show the measured and...
simulated radiation patterns of the proposed FSS at 8.7 GHz and 9.7 GHz, respectively. Note that the structure filled with water at 9.7 GHz has a band-pass characteristic, whereas the structure without water at 8.7 GHz has a band-pass characteristic (See Fig. 11(b)). The comparison between the measurement and simulation results shows a good agreement. When the FSS is used in the band-pass state at 8.7 GHz and 9.7 GHz, only signals within the desired band can be completely received. On the other hand, in the band-stop state, signals are effectively reflected by the FSS. Therefore, it is confirmed that the desired reconfigurable characteristic at the target frequency can be achieved by configuring the hemispherical FSS with water channels. Fig. 13(c) shows that the comparison between water filled and water unfilled shows a good agreement since there is little difference between transmission coefficients of two cases at 10.8 GHz (See Fig. 11(b)).

Our system works by manually inserting or draining water into the channel. Fast-state-switching-speed requires automation of water pumping and draining systems. This study is limited to examine the feasibility of a hemispherical reconfigurable FSS using water channels, and further research is needed to implement a practical system in the future.

IV. CONCLUSION

We have designed, fabricated, and measured a hemispherical reconfigurable FSS using water channels in the X-band. It has been demonstrated that the effective permittivity of the hemispherical structure can be changed by varying the radius and number of tubes. Our results demonstrated the reconfigurability of FSS using fluidic channels, which can be used in practical applications of reconfigurable FSS radomes.

REFERENCES

Dong-Chan Son received his B.S degree in the department of Electrical and Computer Engineering from the Ajou University, Suwon, Rep. of Korea, in 2015. He is currently working on M.S and Ph.D course in the department of Electrical and Computer Engineering, Ajou University, Suwon, Rep. of Korea. His research interests include electromagnetic field analysis and frequency selective surfaces.

Hokeun Shin received his B.S degree in Electrical and Computer Engineering from the Ajou University, Suwon, Rep. of Korea, in 2015. He is currently working on M.S and Ph.D course in the Department of Electrical and Computer Engineering, Ajou University, Suwon, Rep. of Korea. His research interests include radomes and radar cross section.

Yoon Jae Kim received his PhD degree in mechanical engineering from Seoul National University, Seoul, Rep. of Korea, in 2011. From 2011 to 2012. He was senior researcher at Institute of Advance Machines and Design, Seoul National University, Seoul, Rep. of Korea. In 2012, He joined Agency of Defense Development, Deajeon, Rep. of Korea. His research includes optimal design of composite structures and frequency selective radomes.

Je Pyo Hong received the B.S., M.S., and Ph.D. degrees in electronics engineering from Yonsei University, Seoul, South Korea, in 1994, 1996, and 2000, respectively. From 2000 to 2003, he was with the Information and Communication Division, Samsung Electronics Company, Suwon, South Korea, where he was a Senior Engineer with CDMA Mobile Research. Since March 2003, he has been with the Department of Information and Communication Engineering, Kongju National University, Cheonan, South Korea, where he is currently a Professor. In 2006 and 2012, he was a Visiting Scholar at Texas A&M University, College Station, TX, USA, and Syracuse University, Syracuse, NY, USA, respectively. His research interests include numerical techniques in electromagnetics and periodic electromagnetic structures.

Heoung Jae Chun received his BS, MS degrees in mechanical engineering from Yonsei University, Seoul, Rep. of Korea, in 1986 and 1988, respectively and PhD degrees in mechanical engineering from Northwestern University, Evanston, USA, in 1994 From 1990 to 1994, he was a Research Assistant at Center for Quality Engineering and Failure Prevention, Northwestern Univ. From 1994 to 1997, he was a Post-Doctoral Research Associate at Quality Engineering and Failure Prevention, Northwestern Univ.. In 1997, he joined the School of Mechanical Engineering, Yonsei University, Seoul, Rep. of Korea, where he is now a Professor. His research interests include analysis and design of composite structures.
Kyung-Young Jung received B.S. and M.S. degrees in Electrical Engineering from Hanyang University, Seoul, Korea in 1996 and 1998, respectively and a Ph.D. degree in Electrical and Computer Engineering from The Ohio State University, Columbus, Ohio in 2008. From 2008 to 2009, he was a postdoctoral researcher at The Ohio State University, and from 2009 to 2010, he was an Assistant Professor with the Department of Electrical and Computer Engineering, Ajou University, Korea. Since 2011, he has worked at Hanyang University, where he is now an Associate Professor in the Department of Electronic Engineering. His current research interests include computational electromagnetics, bio electromagnetics, and nano electromagnetics.

Hosung Choo received his B.S. degree in Radio Science and Engineering from Hanyang University, Seoul in 1998 and his M.S. and Ph.D. degrees in Electrical and Computer Engineering from the University of Texas at Austin in 2000 and 2003, respectively. In September 2003, he joined the School of Electronic and Electrical Engineering in Hongik University, Seoul, Korea, where he is currently a professor. His principal area of research includes electrically small antennas for wireless communications, reader and tag antennas for RFID, on-glass and conformal antennas for vehicles and aircraft, and array antennas for GPS applications.

Yong Bae Park received B.S., M.S., and Ph.D. degrees in electrical engineering from the Korea Advanced Institute of Science and Technology, South Korea, in 1998, 2000, and 2003, respectively. From 2003 to 2006, he was with the Korea Telecom Laboratory, Seoul, South Korea. In 2006, he joined the School of Electrical and Computer Engineering, Ajou University, South Korea, where he is now a Professor. His research interests include electromagnetic field analysis, metamaterial antennas, radomes, and stealth technology.