Vacuum Nano-Triode in Nothing-On-Insulator Configuration Working in Terahertz Domain

CRISTIAN RAVARIU (Member, IEEE)
Faculty of Electronics, Electronic Device Circuit and Architectures Department, Polytechnic University of Bucharest, 060042 Bucharest, Romania
CORRESPONDING AUTHOR: C. RAVARIU (e-mail: cristian.ravariu@upb.ro)

This work was supported by the Romanian National Authority for Scientific Research and Innovation through CNCS/CCCDI UEFISCDI: PN-III-P4-ID-PCE-2016-0480 under Project 4/2017-TFTNANOEL and through PN-III-P2-2.1-PED-2016-0427 under Project 205PED/2017-DEMOTUN.

ABSTRACT This paper presents for the first time a new configuration of the nothing on insulator (NOI) structure: a vacuum NOI-triode. The main novelty of the new structure consists in the gate that is now part of the vacuum region as in conventional triodes. Each NOI-triode is introduced by a technological plan, followed by the concept validation and characteristics analysis. On the other hand, these NOI-triodes evolve from the NOI-transistor configuration. Consequently, some specific parameters to transistors are improved and permanently compared to some fabricated vacuum nano-transistors that are proposed in literature. For instance, the sub-threshold swing is suddenly decreased from 0.65...4 V/dec to 0.090 V/dec. A low swing is responsible to a high cutoff frequency. The paid price for the NOI-triode is a non-null gate current. To preserve the gained advantages and to keep as low as possible the $I_{\text{Gate}}/I_{\text{Anode}}$ ratio, a special work regime must be selected. This paper devotes a large static and dynamic analysis to find the convenient work regime and possible technological solutions. The drive voltages can be decreased to 1 V, I_{ON} current of micro-amperes and excellent I_{OFF} current of atto-amperes. The internal capacitances of 0.9 aF recommend the NOI-triodes to 0.35...4 THz working regime.

INDEX TERMS Nano-scale triode, THz device, vacuum tunneling, simulations.

I. INTRODUCTION
The electron transport in vacuum is used in vacuum tubes [1] or in newer integrated semiconductor devices [2], [3]. In vacuum, the carriers travel faster, without frictions in solid-state materials, offering high-power electronics [3], high-speed [4], and high-frequency operation regime [4]–[7]. In 1999 Park et al. [2] proposed a lateral field emitter triode with 500nm thick n$^+$ doped polysilicon as cathode material, using a SOI substrate. The electrical characteristics were: anodic turn-on voltage of 14V, an emission current of 92 μA, a gate leakage current ratio ($I_{\text{A}}/I_{\text{G}}$>400) and a transconductance of 57μS. In 2008 Subramanian et al. [3] developed a vacuum transistor with nanodiamond emitter, 500μm anode-cathode distance, with a gate turn-on voltage of 40V, anode current of 1.1μA, less than 0.001% gate current, transconductance of 22nS/finger and a saturation anodic voltage of 210V. In recent years, a triode based on a Si-film of 50nm thickness, using 1μm anode-cathode distance, reduced the gate operation voltage up to 0.5...1.7V, while the saturation occurred at 30...40V, [8].

Pushing the vacuum devices towards co-planar technology [9], some MOSFET parameters find their dual meaning in vacuum device, like sub-threshold swing SS - a key switching parameter, the threshold gate voltage, V_T that allows the OFF - ON states transition or the cutoff frequency, f_T. From 2005, a vacuum nano-transistor known as Nothing On Insulator (NOI), has been continuously optimized, [10]–[14]. The NOI-transistor with size sub-50nm presents less than 20V operation voltages [12] and poor gate swing $SS = 5...1V/\text{dec}$, [13].

The related devices are: (i) a field-effect transistor as MOS capacitor with an ITO intermediate gate metal, [5]; here the vacuum channel was fabricated by focused-ion-beam etching; however, the anodic current is given by the electrons transport within the lateral vacuum channel, plus the tunneling current thru the MOS oxide and suffers from high gate current; (ii) a gate-insulated vacuum transistor with...
10nm vacuum gap, fabricated by the standard silicon technology, [9]; here the threshold voltage was \(V_T = 8.8 \text{V} \) and the sub-threshold swing was \(SS = 4.2 \text{V/dec} \); recently the threshold voltage was \(V_T = 90 \text{mV} \) and the sub-threshold swing was \(SS = 4.2 \text{V/dec} \); and briefly discusses some comparisons; the VI-th section is devoted to conclusions. The technological simulations of all NOI-triodes are performed by ATHENA tool from Silvaco, while the functional simulations are performed by ATLAS from Silvaco, which are usual tools of the microelectronics industry.

II. THE NOI-TRIODE-1 VARIANT

A. CONCEPT AND SIMULATION SET-UP

The selection of a NOI-triode architecture balances between a realistic Si-technology and prior NOI device features. Firstly, to be closer to the actual nowadays technological processes, a NOI-triode1 structure with global sizes of 100nm \(\times \) 80nm \(\times \) 50nm and \(x_C = 14 \text{nm} \) gap length, is presented. Secondly, in the next Section III, a smaller NOI-triode2 structure, with similar sizes to a NOI-transistor [13], [14], is analyzed.

From previous studies [11]–[14], a bottom oxide of \(y_{ox} = 10 \text{nm} \) is thick enough to isolate the top active device. Over oxide, the cathode/anode \(n^+ \)-type film can be configured as a Silicon On Insulator (SOI) layer of \(y_Si = 50 \text{nm} \) thickness and \(x_Si = 43 \text{nm} \) length, with \(7 \times 10^{20} \) dopant density, [12]–[14], [18]. The prior simulations have shown a minimal influence of the fixed interface charge, \(Q_F \) [11]. So, an average value \(Q_F = 7 \times 10^{19} \text{e/cm}^2 \) is considered, only to be connected to real conditions. Cathode, anode and gate contacts are Al to ensure ohmic contacts. A Tamm states density of \(10^{12} \text{cm}^{-2} \) is activated by the Heiman model in the INTTRAP statement, [19], to include as real as possible the Si-surface properties.

Beneath the Si-islands there is an etched gap in nitride of \(x_N = 20 \text{nm} \) and \(y_N = 10 \text{nm} \) to allow a better positioning of the gate electrode. As a main novelty of this paper, the gate position confers a triode set-up. The gate metal is deposited in the middle of the cavity, so that the gate fulfills the role of a grille from a vacuum tube, [1]–[3] and consequently allows a leakage current through itself. For the NOI-triode1 structure, the thickness of the gate electrode over the oxide is \(y_G = 3 \text{nm} \) and the lateral length is \(x_G = 10 \text{nm} \), Fig. 2.

B. TECHNOLOGICAL DISCUSSIONS

This paragraph proposes a technological flow that is based on the Si-technology from Athena/Silvaco. An actual process, able to produce few nm thin films is ADL technique, [20]. But the critical point in this device is not the thickness, but the lateral dimensions. A gap 3nm wide and a conducting gate metal 1nm wide that are considered for the conceptual NOI-triode2 variant are possible only by a future nanolithography resolution, [21]. Therefore, the selected sizes for the NOI-triode1 variant appeal to a gate metal 10nm wide and 3mm thickness. These metallic traces and etching resolutions are possible in the nowadays VLSI integrated circuits [22], [23].

The technological process of the NOI-triode1 variant starts in Athena from an oxide substrate of 10nm thickness. On this surface, Al of 3nm thickness is deposited through a mask of
10nm width. Three depositions follow over the entire structure: 10nm nitride, then 50nm Silicon, then 6nm Al, Fig. 3a. A 10nm mask for the anode/cathode electrodes configuration allows the lateral Al etching off. A barrier layer is deposited above. The mask for the vacuum cavity configuration is performed, Fig. 3b. Next step is the Silicon dry etching process, with over-etching under barrier and 85° angular etching, while the nitride acts as etch stop layer. During the last step, Athena simulates the nitride etching under 75° angle and 5nm undercut, to create the beneath cavity. Now, the bottom oxide acts as etch stop layer.

The final structure looks like Fig. 2. Alternatively in Athena, the anode/cathode walls can be complete vertically created, if the coordinates of the removed Si are specified, Fig. 2.

C. FUNCTIONAL ESTIMATIONS

The electron emission from a semiconductor edge into vacuum was experimentally demonstrated by Srisonphan and collab. [5]. In NOI-triode, as in etched MOS capacitor [5], the charge neutrality is maintained by relatively remote charges of opposite polarity, induced across the insulator layer (thin oxide in MOS or vacuum cavity in NOI), so that a Columbic repulsion occurs among accumulated electrons in the Si-island edge. This repulsion is suspected to significantly foster the electrons emission from Si into vacuum, [5].

All vacuum devices with field emission, including vacuum transistors or NOI triodes are dominated by the FN (Fowler–Nordheim) conduction mechanism, [2]–[10]. Hence, in the present simulations, the Atlas models include FN tunneling, CVT Lombardi mobility model for non-planar devices, Shockley-Read-Hall recombination rate, Fermi carrier distributions, Band Gap Narrowing (BGN) in heavily doped cathode-anode regions and Selberherr’s ionization model.

A maximum current density of 1.6×10^6 A/cm2 is admitted for all NOI-triodes, to conventionally adopt a stop criterion for the anodic voltage increasing. This limit value is considered from power dissipation reasons, by comparison with other devices: MOSFETs with similar sizes has the maximum drain current of 100nA/nm or 100μA/μm [24], while special FETs support 850μA/μm, [25]. Consequently, in next simulations, the applied voltages are limited up, to command a maximum current of 800μA/μm that means a limit current density of 1.6×10^6 A/cm2 considering $y_{Si} = z_{Si} = 50$nm for NOI-triode1 and $y_{Si} = z_{Si} = 12$nm for NOI-triode2.

D. OUTPUT CHARACTERISTICS

For the output characteristics analysis, I_A-V_A, the anode voltage is varied from 0V to 35V, while the gate voltage takes different values: $V_G = -20$V; -15V; -7V; 0V; +7V. Figure 5 comparatively presents the simulated I_A-V_A curves of the NOI-triode1, besides to some experimental picked points from literature of some vacuum devices, [2], [6], [8], [9]. Because the anodic currents are dominated by the Fowler-Nordheim component, as in any vacuum triodes [2], [3], [5], [9], the exponential dependence, I_A-V_A, is fulfilled in Fig. 4, too.

The characteristics reveal a drive current I_{A-ON} for $V_A \geq V_{A-ON}$ voltage, accordingly to the anode turn-on voltage of any vacuum device [2], admitting the convention:

$$V_{A-ON} = V_A | I_A = 0.1 \cdot I_{A,max}$$ \hspace{1cm} (1)

For the NOI-triode1 from Fig. 4, the extracted pairs (I_{A-ON}, V_{A-ON}) are: (0.6μA, 20V) at $V_G = +7$V; (0.9μA, 17V) at $V_G = 0$V; (1.4μA, 14V) at $V_G = -7$V; (1.8μA, 11V) at $V_G = -15$V; (2.1μA, 6V) at $V_G = -20$V. The fabricated...
vacuum devices present similar I_A-V_A experimental shapes, with V_{A-ON} chronologically decreasing, but losing also in the I_{A-ON} value. The experimental pairs (I_{A-ON}, V_{A-ON}) are: (200μA, 20V) for triodes with larger gaps [2], [8], (0.4μA, 5V) for a vacuum nanotransistor with 10nm gap [9], up to (0.03μA, 0.5V) for vacuum transistor with cylindrical gate [6].

In Atlas, the simulated anodic currents are expressed in Amperes on a default depth of 1μm. Admitting a depth of the Si-island of 50nm, the anodic current is 160μA/1μm or 8μA for $z_{Si} = 50$nm. These values are reached both for the NOI-triode1 at $V_{G} = -20V\ldots -7V$ and vacuum nanotransistor, [9]. A further observation concerns the gate bias. Simulations reveal that positive gate voltages produce lower currents, Fig. 4. So, in next paragraph, only negative gate voltages are applied.

E. TRANSFER CHARACTERISTICS

The I_A-V_G analysis starts from the strong and weak tunneling regimes that are encountered in NOI-transistors, too [14]. In this scope, the anode voltage is kept by turn to +0.7V, 1V or 2V, to allow a weak Fowler-Nordheim tunneling; for a strong tunneling, the anode voltage is maintained to 15V or 30V, while the gate voltage is ramped from 0V to −25V, taking care to avoid current densities over 1.6 \times 106 A/cm2 or 800μA/1μm. The range is in agreement with the measured range of the current density in the ON-state, $J = 1 \times 10^5$ A/cm2 of the vacuum MOS field-effect transistor with ITO intermediate gate, [5]. The transfer characteristics, I_D-V_G, are presented at logarithmic scale, besides to the gate currents, Fig. 5.

As in the NOI-transistor case, the strong tunneling regime ensures highest currents up to 600μA/1μm in maximum bias conditions, offering a maximum transconductance of 2μS and low enough gate currents with $I_A/I_G = 10^3$ at $V_A = 30V$.

An ON-OFF states transition becomes visible only in weak tunneling regime, when $V_A < 3V$. For $V_A = 2V$ the transfer characteristics present: $I_{OFF} = 10^{-17}$A/1μm, $I_{ON} = 1.8 \times 10^{-7}$A/1$\mu$m, while the gate current is extremely low, $I_A/I_G = 10^{14}$ at $V_A = 2V$.

The parameters of the NOI-triode device must be similarly defined to those of the solid-state transistors, in order to compare their performances. In any vacuum triodes, the I_A-V_G characteristics reveal a drive current over a gate turn-on voltage V_{G-ON} [3], [9], equivalent to a general threshold voltage. Let be the convention:

$$V_{G-ON} = V_T = V_G|_{I_A=1\%-I_{A,max}}.$$ \hfill (2)

The sub-threshold swing (SS) is computed in sub-threshold conditions, after its traditional definition:

$$SS = \frac{\Delta V_G}{\Delta (\lg I_A)} \frac{[mV/Decade]}{|V_G|<|V_T|}.$$ \hfill (3)

Unfortunately, this NOI-triode1 variant with higher sizes than the studied NOI-transistors [14], [17], offers inferior swing. An optimum SS is extracted at $V_A = 0.7V$ as 900mV/dec, Fig. 5. The next target is to find other arrangement of the electrodes and vacuum gap, so that the SS parameter decreases under 200mV/dec. A first optimization direction is to decrease the gap length x_C from 14nm (Fig. 6a) to 8nm or to 4nm (Fig. 6c).

Another algorithm is to keep $x_C = 14$nm, but to approach the gate metal, increasing its thickness from 3nm (Fig. 6a) to 8nm or to 4nm (Fig. 6c). Combining both strategies, the gate metal thickness is increased to 9nm and the gap length is decreased to 4nm, (Fig. 6d). Details of the NOI-triode1 variants, beneath the vacuum cavity, for each strategy, are presented in Fig. 6.

Figure 7 comparatively presents the I_A, I_G-V_G simulated curves of the NOI-triode1.
RAVARIU: VACUUM NANO-TRIODE IN NOI CONFIGURATION WORKING IN TERAHERTZ DOMAIN

III. THE NOI-TRIODE-2

A. THE DEVICE EFFICIENCY AND COMPARISONS WITH LITERATURE

The NOI-triode2 sizes are inspired by the previous conclusions and are connected to the prior NOI devices, accepting $x_C = 3\text{nm}$ for nano-cavity and $x_G = 1\text{nm}$ for the gate metal, $y_Si = 10\text{nm}$, $x_Si = 12\text{nm}$ and $z_Si = 12\text{nm}$ for the Si-islands, in agreement with the NOI demands, [13], [17]. The other construction parameters are conserved from the NOI-triode1 variant: oxide thickness, film doping, fixed interface charge, ohmic contacts, Tamm states, beside to the Atlas models.

This NOI-triode2 structure is presented in Fig. 8.

Figure 9 comparatively presents the simulated transfer characteristics of the NOI-triode2 and NOI-transistor, besides to experimental picked points from [5], [6], [9]. In order to have the intensity of the gate stimulus on the Ox axis, for so many devices, some of them negative biased and others positive biased, the gate voltage is represented in modulus in figure 10. For the NOI-triode2 device, figure 10 firstly shows that the NOI-triode2 offers better parameters than the NOI-transistor: $SS_{NOI-triode2} = 90\text{mV/dec} < SS_{NOI-transistor} = 650\text{mV/dec} [14]$, improved I_{ON} current $- I_{ON-NOI-triode2} = 10^{-4}\text{A} > I_{ON-NOI-transistor} = 10^{-5}\text{A}$ and comparable I_{OFF} current, in agreement with prior results [11]–[12]. The main disadvantage of the NOI-triode2 device is its higher gate current, with $I_A/I_G = 20$ at $|V_{G,\text{max}}| = 10\text{V}$ and $I_A/I_G = 1000$ at $V_G \approx 0\text{V}$. Working at lower voltages, (e.g., $|V_{G,\text{max}}| = 8\text{V}$), the ratio I_A/I_G is improved to 250. The comparisons of performances among the experimental vacuum devices, simulated NOI-transistor and NOI-triode2 from Fig. 9, prove.

$SS = 195\text{mV/dec}$, $V_T = -1\text{V}$, keeping $I_A/I_G = 10^{11}$ ratio still affordable.
- strong points for the NOI-triode devices are: (1) best SS parameter among all devices, reaching 90mV/dec; (2) best ION/IOFF ratio with highest ION and lowest IOFF values, working in weak tunneling regime, at low V_A = 0.6V; (3) taking into account the power limitation, the NOI-triode2 configuration efficiently work at low gate voltage, I_G < 1.5V, offering a strong drive current of \(1 \ldots 100\mu A/\mu m\).

- strong points of the experimental vacuum transistors: (1) lowest threshold voltage, reaching \(V_T \sim 0.5V\) [5]; (2) excellent \(I_A/I_G = 10^6\), only for the insulated gate configuration [9]; (3) lowest gate currents [6], [9].

However, the field-effect transistor with MOS capacitor and ITO intermediate gate metal [5] benefits on sensitive current acted by extremely low gate voltages up to 2V, but suffers from a huge \(I_G/I_A = 10^{-1}\) ratio, Fig. 10 and [5] and offers extremely poor drive current around 80nA, [5].

The simulated NOI-Triode2 transfer characteristics \(I_A-V_G\), for different anode voltages indicate a SS improving, if the anode voltage is decreased, so that the minimum SS = 85mV/dec is accomplished at \(V_A = 0.4V\). This behavior is in agreement to the entire theory of weak tunneling regime presented for the NOI-transistor, [18], and completely justifies the relationship of the NOI-triode with the NOI devices.

B. TECHNOLOGICAL SOLUTIONS, PLANAR TECHNOLOGY

A technological solution to fabricate the NOI-triode2 structure is to rotate the NOI-triode2 structure by \(90^\circ\). In this way, the lateral width problem is converted into thickness problem, being more convenient for the nowadays technologies.

So, in this section, a planar technology is proposed to achieve the 1nm gate thickness, inside the vacuum cavity of 5nm thickness. The successive technological steps are simulated by Athena from Silvaco.

The start wafer is a SOI wafer with 20nm Si-film on 20nm buried oxide. Over the Si-film surface follows the subsequent depositions: 2nm SiO2; next 1nm Al deposition; next 2nm SiO2 deposition; next 20nm Si-film growing.

The subsequent etching processes are distinctly applied to different materials: top-Si-film is left etched from \(x = 30nm\), Fig. 10a; the upper oxide is left etched underneath Si; then Al-gate is left etched underneath Si, achieving an intermediate structure, Fig. 10a. The second oxide layer is left etched at the same coordinate as the upper oxide. This is possible in Athena, specifying the removal coordinates. By a selective mask, the anode and cathode Al-contacts can be deposited. Optionally, a thermal oxidation can laterally convert a half part of the top Si-film toward the right, to accomplish a lateral isolation of the anodic island, Fig. 10b.

IV. DYNAMIC CONSIDERATIONS

The dynamic analysis starts from the estimated transconductances: \(2\mu A/V\) for the NOI-triode1, Fig. 5 and \(20\mu A/V\) for the NOI-triode2, selecting \(V_G = 2V\), Fig. 9. The frequency performance of a vacuum triode can be characterized by the cutoff frequency, \(f_T\). A model of this frequency depends...
on the gate-cathode, gate-anode capacitances, C_{GC}, C_{GA}, of a field emission triode, [26], or only to C_{GC} for a vacuum field effect transistor [9]:

$$f_T = \frac{g_m}{2\pi C_{GC}}$$

(4)

Figure 11 presents capacitances C_{GC}, C_{GA}, for both structures NOI-triode1 and NOI-triode2, biased in weak tunneling to $V_C = 0$V, $V_A = 2$V and $V_G = -8$V, during the frequency rising. The simulations show $C_{GC} = C_{GA} = 18 \times 10^{-18}$ F/μm or 0.9aF for $z_{Si} = 50$nm in the NOI-triode1 case and $C_{GC} = 82 \times 10^{-18}$ F/μm or 0.8aF and $C_{GA} = 87 \times 10^{-18}$ F/μm or 0.84aF for $z_{Si} = 12$nm in the NOI-triode2 case. Accordingly to eq. (4), the cutoff frequency is 0.35THz for NOI-triode1 and 4THz for NOI-triode2.

V. DISCUSSIONS

Table 1 comparatively summarizes the performances of the NOI-triode1 or NOI-triode2, NOI-transistor [27] and few related devices, including extremely low SS tunnel-FETs, [28].

The NOI-triode1 or NOI-triode2 devices excel by (see Table 1): (i) the anode/gate turn-on voltages are low enough among the vacuum devices, going to the MOSFET or Tunnel-FET [29] threshold voltages, especially for the NOI-triode2 case; (ii) maximum I_{ON}/I_{OFF} ratio among all devices; (iii) extremely low OFF current for NOI-triode1 or 2 at low V_A; (iv) a swing between 90 to 210mV/dec for the NOI-triodes, more compatible with MOSFETs than NOI-transistor or vacuum triodes [2]–[9], [11], [12]; (v) a high I_A/I_G ratio is ensured by a weak tunneling work regime at V_A sub-2V; [14]; (vi) the command voltages are in agreement with the reduced sizes of the proposed NOI-triode2 and are lower compared to a NOI-transistor of similar sizes or vacuum transistors [9].

Conventionally adopting a maximum simulated current of 800µA/μm, a maximum applied voltage for the NOI-triode goes up to 30V. However, not these limits up voltages are the drive voltages that can go down up to 1…3V. For instance, for NOI1-triode, Fig. 4 shows $I_A = 100$µA/μm that means 5µA for $z_{Si} = 50$nm, at the same voltage $V_A = 30$V, as experimental older literature [8]. From the I_A-V_G point of view (see Fig. 5), the anodic voltage must be under 3V to allow an ON/OFF transition, suitable for a field transistor effect. For NOI1-triode, Fig. 5 shows a current $I_A = 1$µA/μm that means 0.05µA, much lower than recent literature results: 10pA [5], 100pA [6], for the same applied voltage around 2V. The presented NOI1-triode has a larger gap of 14nm than the transistor from [6] and a device peculiarity that still persists to the NOI2-triode: flat walls and two corners of 90° for the electron emission. The anode /cathode narrowing that improves the Fowler Nordheim emission was presented elsewhere [17] and it is not the aim of this paper. Obviously, the experimental vacuum transistors with sub-100 tips posses optimized shape factor that allows emission currents of 10µA at 10V [9], or even less, 100pA at 2V [6]. Fortunately, the NOI2-triode simulations show much less drive voltage: $V_A = 0.6$V and $V_G = 2$V that ensure $I_A = 800$µA/μm (Fig. 9) that means 10µA drive current, superior to the newest experimental vacuum device [6], which provides 0.1nA at the same $V_G = 2$V. This allows a drive voltage sub-1V to command 10nA in the NOI2-triode, better than in the vacuum transistor from [6].

Table 1. Different Performances for Different Devices.

<table>
<thead>
<tr>
<th>Devices</th>
<th>NOI-triode</th>
<th>NOI-Transistor</th>
<th>Vacuum, MOS, related devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter ↓</td>
<td>14nm</td>
<td>3nm gap</td>
<td>2nm gap</td>
</tr>
<tr>
<td>V_{GON} or V_{T}[V]</td>
<td>-16/-1</td>
<td>-10 [12]</td>
<td>-2 [17]</td>
</tr>
<tr>
<td>$V_{A,ON}$ [V]</td>
<td>20…6/1</td>
<td>2.3 [12]</td>
<td>14 [2]</td>
</tr>
<tr>
<td>$I_{ON, max}$ [μA]</td>
<td>40 / 10</td>
<td>0.012 [11]</td>
<td>0.080 [5]</td>
</tr>
<tr>
<td>I_A/I_G</td>
<td>10^8 / 10...250</td>
<td>10^8 [12]</td>
<td>10^8 [6], [9]</td>
</tr>
<tr>
<td>I_{ON}/I_{OFF}</td>
<td>10^{15}</td>
<td>10^8 [11]</td>
<td>10^8 [9]</td>
</tr>
<tr>
<td>SS [mV/dec]</td>
<td>900 / 85</td>
<td>650 [14]</td>
<td>4400 [6], [9]</td>
</tr>
<tr>
<td>g [μS]</td>
<td>2 / 20</td>
<td>0.025 [12]</td>
<td>57 [2]</td>
</tr>
<tr>
<td>f_T [THz]</td>
<td>0.35 / 4</td>
<td>0.1...1[13]</td>
<td>0.1...10 [9, 15]</td>
</tr>
</tbody>
</table>
A cutoff frequency of 0.35 THz for NOI1 is a relative poor value, but it is in a complete agreement to the experimental value of 0.4 THz [9], of a similar fabricated vacuum nano-device of 10...14 nm gap, based on the same model (4).

A better cutoff frequency of 4 THz is estimated for the NOI2-triode, which is closer to the capability of the experimental newer device from 2017, [6]. All values are placed in the predicted interval of the frequencies served by the transistors made from “Nothing” [15]: 0.1...10 THz.

VI. CONCLUSION

This paper proposed a triode configuration for a NOI device. Some poor parameters of the previous NOI-transistors were improved by this triode configuration: SS decreased from 650 mV/dec to 85 mV/dec comparable to a MOSFET swing, g_m increased from 25 nS to an average value of 2 µS, offering a tera-hertz cutoff frequency around 0.35 THz.

For the NOI-triode1 variant with 14 nm gap, the performances were obviously inferior to a NOI-triode2 variant with 3 nm gap or NOI-transistor with 2 nm gap, but further improvements concerning the gate metal position, were discussed. The Athena simulation tool from Silvaco provided a fluent technological plan for the NOI-triode1 variant, anchored as much as possible in the nowadays processes. For NOI-triode2 variant, a technology was only drafted, based on a planar solution.

The simulated features of the NOI-triode 1 and 2 structures were permanently compared to the others vacuum devices. The turn-on anodic voltage was reduced from 20 V to 2...6 V. To ensure minimum I_C/I_A ratio, maximum I_{ON}/I_{OFF} ratio and minimum SS swing, the NOI-triode must be operated in the weak tunneling regime, at low operation voltages, like V_C = 0 V, V_A < 1.2 V and V_G = −3 V. The dynamic analysis also recommends the NOI-triode for the high-frequency operation up to 4 THz.

REFERENCES

1122

CRISTIAN RAVARIU (M’08) received the B.S., Ph.D., and Post-Doctoral degrees in electron devices domain and bioelectronics from the Polytechnic University of Bucharest, Romania, in 1993, 2001, and 2012, respectively. He was a Visiting Researcher with EPFL—Federal Institute of Technology, Lausanne, Switzerland, LAAS-CNRS Laboratory for Analysis and Architecture of Systems, Toulouse, France, and the Faculty of Bioengineering, Patras, Greece. From 1993 to 1999, he was a Researcher in device simulation with the Institute of Microtechnology Bucharest, where he is recently researching on high frequencies applications. He is currently a Professor with the Electronic Device and Circuits Department, Polytechnic University of Bucharest, being interested in the electronics devices development. He has published over 150 articles. He is the current Chairman of the EDS-015 Romania Chapter.