An Investigation of Anode Hole Injection-Induced Abnormal Body Current in n-Channel HfO₂/TiN MOSFETs

JIH-CHIEN LIAO¹, TING-CHANG CHANG∥² (Senior Member, IEEE), WEI-REN SYONG², KAI-CHUN CHANG², YING-HSIN LU², HSI-WEN LIU², CHIEN-YU LIN², LI-HUI CHEN³, FU-YUAN JIN², YU-HSUAN CHEN¹, CHEN-HSIN LIEN¹, OSBERT CHENG⁴, CHENG-TUNG HUANG⁴, AND YI-HAN YE⁴

¹ Department of Electronics Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan
² Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
³ Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
⁴ Device Department, United Microelectronics Corporation, Tainan 744, Taiwan

CORRESPONDING AUTHORS: T.-C. CHANG AND C.-H. LIEN (e-mail: tcchang3708@gmail.com; chlien@ee.nthu.edu.tw)

This work was supported in part by the Ministry of Science and Technology (MOST) Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung-Pingtung Area and in part by the Ministry of Science and Technology, Taiwan, under Contract MOST-106-2112-M-110-008-MY3 and Contract MOST 107-2622-8-110-003-TE1.

ABSTRACT This paper investigates an anode hole injection (AHI)-induced abnormal body current (abn IB) in n-channel HfO₂/TiN MOSFETs. Traditionally, body current is independent of gate voltage during initial electrical characteristic measurements. Nevertheless, in this paper, the opposite is found in our experiment. Therefore, two different measurement techniques are employed, with the body current attributed to electrons in the inversion layer under the grounded source/drain. This indicates that the dominant mechanism is AHI rather than electron tunneling from the valence band. Moreover, the abn IB is dominated by tunneling mechanisms because it is independent of temperature.

INDEX TERMS Body current, anode hole injection, MOSFET.

I. INTRODUCTION

As metal oxide semiconductor field-effect transistors (MOSFETs) scale down, traditional SiO₂-based dielectrics are only a few atomic layers in thickness, resulting in increased gate leakage current, increased power dissipation, and reduced performance. To overcome these problems, conventional SiO₂ gate dielectrics are being replaced by high-k dielectric, specifically HfO₂ gate dielectric [1]. In addition, high-k gate dielectrics can be integrated with strained silicon, a silicon-on-insulator (SOI) structure, and fin field-effect transistor (FinFET) devices [2]–[4]. At present the FinFET is one promising structure because of its excellent overall performance as well as the gate control ability which suppresses short-channel effects. In this letter, we investigate the anode hole injection-induced abnormal body current (abn IB) in n-channel HfO₂/TiN MOSFETs. In general, body current is an indicator of reliability and can be used to predict the lifetime of a device, as the impact ionization current is generated near the drain side when the device is operated in the saturation region [5]. In addition, when the transistor is turned off and \(V_{GD} < -1 \text{V} \), the generation of electron-hole pairs is caused by band-to-band tunneling (BTBT), and the body current and drain current increases are termed gate-induced drain leakage (GIDL) current [6]. However, the abnormal body current we note operates in the linear region, unlike the case explained above. Further details will be explained later.

II. EXPERIMENT

The HfO₂/TiN n-FinFETs used in this letter were fabricated by 16 nm technology with a gate-last process. To begin, high quality 1 nm thermal oxide was grown as an interfacial layer for the core device. Then 2 nm of HfO₂ dielectric was deposited by atomic layer deposition (ALD). Furthermore, after the deposition of the HfO₂, the process was divided into two parts: one group was annealed at high temperature in N₂ ambient (normal devices), while the other was not annealed (abnormal current devices). Finally, work function metal (WFM) layers of TiN were deposited by ALD. In this work, the dimensions of devices were width = 154 nm and...
length = 20, 38, 60, 80, and 100 nm. Figure 1(a) shows the structure of a FinFET device. A cross-section of corresponding point A to A’ in this FinFET 3D structure is shown in Figure 1(b). All experimental curves were measured using an Agilent B1500 semiconductor parameter analyzer and a Cascade M150 probe station.

III. RESULTS AND DISCUSSION

Figure 2(a) shows the drain current-gate voltage ($I_D - V_G$), gate current-gate voltage ($I_G - V_G$), and body current-gate voltage ($I_B - V_G$) log-scale curve at the linear region measurement for abnormal current/normal devices. $I_G - V_G$ and $I_B - V_G$ electrical characteristics under grounded and floating S/D operations for (b) abnormal current device and (c) normal device. (d) IB-VS/D electrical characteristics under floating gate operation.

FIGURE 2. (a) $I_D - V_G$, $I_G - V_G$, and $I_B - V_G$ log-scale curve at linear region measurement for abnormal current/normal devices. $I_G - V_G$ and $I_B - V_G$ electrical characteristics under grounded and floating S/D operations for (b) abnormal current device and (c) normal device. (d) IB-VS/D electrical characteristics under floating gate operation.

To further investigate the mechanism of abnormal I_B, we investigate models used in previous reports [7]–[10], which have proposed that the significant tunneling current components of the poly-Si gate are hole tunneling from the valence band (HVB), electron tunneling from the valence band (EVB), and electron tunneling from the conduction band (ECB), as shown in Figure 3(a). One of these gate leakage currents is likely to be the main cause of abnormal I_B. First, the HVB model can be eliminated because the TiN metal gate has fewer holes in the FinFET structure. Second, the band diagram of EVB indicates the electrons tunnel from the valence band of the Si substrate to the TiN metal gate. The remaining holes collect in the substrate. The EVB model may, then, explain the cause. Third, Figure 3(b) shows the electrons tunneling from the inversion layer to the metal gate (anode), and generating electron-hole pairs by impact ionization at the HfO$_2$/metal interface; these holes can then inject to the body (cathode); this model is similar to anode hole injection (AHI) [8], which corresponds to ECB in previous reports [7]. The EVB and AHI mechanisms generate holes that contribute to body current; however, an important difference between the EVB and the AHI model.
is the source of electrons. In the EVB model, the electrons come from the valence band, but the electrons come from the conduction band under the AHI model. Therefore, two operation conditions which can be used to distinguish the different sources of electrons are floating (GB) and grounded (GSDB) source/drain (S/D) operations, schematics of which are shown in Figure 3(c) and (d). Because the S/D cannot supply sufficient electrons to the inversion layer under GB operation, the gate leakage current becomes insignificant, as shown in Figure 2(b). Similarly, the I_B is negligible in this operation. In contrast, both currents show very pronounced increases under GSDB operation. These results demonstrate that the origin of abnormal I_B can be attributed to the electrons in the inversion layer rather than the electron-hole pairs separated in the valence band of the substrate. Consequently, the AHI model is confirmed to be the dominant mechanism contributing to abnormal I_B.

Figure 4(a) and (b) shows $I_G - V_G$ and $I_B - V_G$ curves under different V_D in abnormal current devices. It can be clearly observed that I_G and I_B become smaller with increasing V_D. The reduction of the vertical electric field near the drain side leads to the reduction of electrons tunneling from the inversion layer, as shown in Figure 4(c). In other words, the lateral electric field becomes stronger so that the electrons tend to drift into drains. Therefore, the generation of electron-hole pairs by electron impact ionization at the HfO$_2$/metal interface is also reduced. In addition, when these abnormal current devices are operated under the condition of large V_D measurement, the electrons undergo impact ionization on the drain side, as shown in Figure 4(d). In conclusion, the impact ionization occurs at the gate when abnormal current devices are operated in the linear region and the impact ionization occurs at the drain when abnormal current devices are operated in the saturation region.

Figure 5(a) shows $I_G - V_G$ and $I_B - V_G$ at different temperatures for $V_D = 0$V. It is clear that I_G and I_C increase significantly with increasing temperature. However, they have insignificant changes after a V_T correction for different temperatures, as shown in the inset of Figure 5(a). In general, the dominant mechanism of I_G is Poole-Frenkel (I_P) in the hafnium oxide rather than the tunneling (I_T) mechanism in the silicon oxide [11]. Because the Poole-Frenkel current path and tunneling current path are in series, the current fitting is dominated by the smaller one. Therefore, the I_G and I_B are dominated by tunneling mechanism because they are independent of temperature. Accordingly, the HfO$_2$ has more bulk traps, resulting in the tunneling mechanism ($I_{P-F} > I_T$), as confirmed by current fitting.

To further verify that the HfO$_2$ has more bulk traps in the abnormal current devices than the normal devices, we performed measurements of the reliability of positive bias stress (PBS) [12]. Thus, we define device failure criteria as 50mV V_T shift, the lifetime for the device to reach this degradation value. Figure 5(b) shows the lifetime during PBS at $V_G = V_T + V_{stress}$ with $V_{stress} = 1.5V \sim 1.9V$ and $1.7V \sim 2.1V$ for abnormal current/normal devices, respectively. Clearly, the lifetime of the abnormal current devices is 3 orders of magnitude shorter than that of the normal devices. Consequently, many bulk traps in HfO$_2$ lead to the abnormal body current. Because the electron can easily tunnel from the inversion layer to the metal gate and generate electron-hole pairs by impact ionization at the HfO$_2$/metal interface, these holes can easily tunnel to the body.

Figure 5(c) shows that I_B has a linear relationship to channel length, which is measured by grounded source, drain, and body at $V_G = 1.4V$ for different channel lengths. Because the abnormal I_B is caused by the AHI model, longer channel...
lengths lead to a larger body current. Furthermore, the AHI model-induced hole current has a linear dependence on the electron current tunneling from the inversion layer, as shown in Figure 5(d), with the $I_S + I_D$ indicating the electron tunneling current from the inversion layer. The ΔI_B is obtained by subtracting the GB component from the GSDB of I_B, which is the pure hole current induced by AHI model. These results provide further proof that the AHI model indeed exists and is the dominant mechanism contributing to abnormal body current in n-FinFETs. However, it is worth noting that since metal has no energy gap, holes are not easily generated in metal. Therefore, impact ionization is more likely to occur at the HfO$_2$/metal interface. Previous reports have indicated that doping TiO$_2$ with nitrogen will reduce the bandgap [13], [14]. In contrast, we believe that TiN will be oxidized to TiON at the HfO$_2$ gate stack, resulting in a small bandgap at the interface. However, it is difficult to verify this model with simulation, so we use sputtering to deposit a layer of TiN thin film on a dummy wafer under a trace oxygen atmosphere at thicknesses of 2.59, 5.02, and 10.75 nm. After deposition of the thin films, the E_g values measured by the N&K analyzer [15] were 1.41, 1.59, and 1.71 eV, respectively, as shown in Table 1. This also corresponds to the voltage at which the body current rises significantly in the $I_B - V_G$ diagram, which is approximately 1.1 V, as shown in Figure 4 (b). After the flatband voltage correction, according to the formula $V_G - V_{fb} = V_{ox} + 2\phi_B$, the $V_{ox} + 2\phi_B$ value is approximately 1.6 to 1.9 V. This voltage difference causes the electrons to gain energy, which is sufficient for generation of electron-hole pairs by electron impact ionization at the HfO$_2$/TiN interface.

TABLE 1. The E_g of TiON thin films of different thicknesses as measured by the N&K analyzer.

<table>
<thead>
<tr>
<th>TiON Thickness (nm)</th>
<th>E_g(eV)</th>
<th>Goodness of Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.59nm</td>
<td>1.41</td>
<td>0.9957</td>
</tr>
<tr>
<td>5.02nm</td>
<td>1.59</td>
<td>0.9963</td>
</tr>
<tr>
<td>10.75nm</td>
<td>1.71</td>
<td>0.9974</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

In this letter, different measurement techniques demonstrate that the abnormal I_D is dominated by the AHI model. Additionally, I_G and I_B exhibit the tunneling mechanism because they have insignificant changes after a V_T correction for different temperatures. Therefore, the HfO$_2$ has more bulk traps, resulting in the tunneling mechanism ($I_{P-F} > I_T$). Finally, the $V_{ox} + 2\phi_B$ value approximates the TiON bandgap, demonstrating that impact ionization occurs at the HfO$_2$/metal interface.

ACKNOWLEDGMENT

Part of this work was performed at United Microelectronics Corporation. This work was performed at the National Science Council Core Facilities Laboratory for Nano-Science and NanoTechnology, Kaohsiung-Pingtung Area, NSYSU Center for Nanoscience and Nanotechnology.

REFERENCES

JIH-CHIEN LIAO is currently pursuing the Ph.D. degree with the Institute of Electronics Engineering, National Tsing-Hua University, Hsinchu, Taiwan.
TING-CHANG CHANG (SM’12) received the Ph.D. degree from the Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan, in 1994. He is currently a Chair Professor with the Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan. He has authored over 400 articles in SCI journals. He holds 49 U.S. patents and 127 Taiwan patents. His current research includes thin film transistor, MOSFET, and resistive random access memory.

WEI-REN SYONG is currently pursuing the B.S. degree with the Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan.

KAI-CHUN CHANG is currently pursuing the M.S. degree with the Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan.

YING-HSIN LU is currently pursuing the Ph.D. degree with the Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan.

HSI-WEN LIU is currently pursuing the Ph.D. degree with the Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan.

CHIEN-YU LIN is currently pursuing the Ph.D. degree with the Department of Photonics, National Sun Yat-sen University, Kaohsiung, Taiwan.

LI-HUI CHEN received the M.S. degree from the Department of Photonics, National Sun Yat-sen University, Kaohsiung, Taiwan, in 2017. She is currently with Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan.

FU-YUAN JIN is currently pursuing the Ph.D. degree with the Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan.

YU-HSUAN CHEN is currently pursuing the Ph.D. degree with the Institute of Electronics Engineering, National Tsing-Hua University, Hsinchu, Taiwan.

CHEN-HSIN LIEN received the B.S. degree in physics from the National Tsing-Hua University (NTHU), Hsinchu, Taiwan, in 1975 and the Ph.D. degree in physics from Ohio State University, USA, in 1982. He is the a Professor with the Department of Electrical Engineering, NTHU. His research has primarily focused on the solid-state devices ranging from the quantum optoelectronic devices, CMOS devices, and nanoelectronic devices to memories. Since 1983, he has been with the Department of Electrical Engineering, NTHU, where he was the Director of the Institute of Electronic Engineering from 2004 to 2006. From 2006 to 2010, he was the Chair of the Department of Electrical Engineering, NTHU. In 2010, he was the Acting Dean with the College of Electrical Engineering and Computer Science, NTHU. His recent research interests including the studies of 2-D semiconductor devices and nonvolatile memories.

OSBERT CHENG is with United Microelectronics Corporation, Tainan, Taiwan.

CHENG-TUNG HUANG is with United Microelectronics Corporation, Tainan, Taiwan.

YI-HAN YE is with United Microelectronics Corporation, Tainan, Taiwan.