Analytical Calculation of Influence of Ferroelectric Properties on Electrical Characteristics Negative Capacitance Germanium FETs

YUE PENG, GENQUAN HAN (Member, IEEE), ZHIBIN CHEN, QINGLONG LI, JINCHENG ZHANG, AND YUE HAO (Senior Member, IEEE)
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China
CORRESPONDING AUTHOR: G. Han (e-mail: hangenquan@ieee.org)

This work was supported by the National Natural Science Foundation of China under Grant 61534004, Grant 61604112, and Grant 61622405.

ABSTRACT Negative capacitance (NC) germanium (Ge) p-channel field effect transistors with different ferroelectric parameters are investigated by the analytical model. The channel surface potential amplification induced by the NC effect, which determines the subthreshold swing (SS) and the drain current I_{DS} of the device, can be tuned by varying the thickness t_{fe}, the coercive field E_{C}, and the remnant polarization P_{r} of the ferroelectric film. For the logic device, hysteresis phenomenon must be avoided, which is enabled by reducing t_{fe} or E_{C} of the ferroelectric film. Under the condition of $t_{fe} = 30$ nm, $E_{C} = 30$ KV/cm, and $P_{r} = 30 \mu$C/cm2, NC Ge transistors display the superior SS and I_{DS} compared to the baseline FETs.

INDEX TERMS Negative capacitance, FET, germanium, ferroelectric, hysteresis.

I. INTRODUCTION

With the continuous scaling of CMOS, the reduction of power consumption in integrated circuits is limited by the Boltzmann’s tranny, which precludes the conventional MOSFETs from achieving a sub-kT/q subthreshold swing (SS) [1]–[3]. The negative capacitance (NC) phenomena in the NCFETs have been extensively studied in silicon (Si) [4]–[7], germanium (Ge) [8], germanium-tin (GeSn) [9], and indium gallium arsenide (InGaAs) [10] channel FETs integrated with various ferroelectrics. The theoretical and experimental studies showed that the NC effect induced by ferroelectrics can improve the SS and drain current (I_{DS}) characteristics of the transistors, and the properties of the ferroelectric material played an important role in determining the electrical performance of the devices [11].

The previous theoretical study focused on the Si channel NC transistor. The exploration of NC Ge based transistors has been also very successful [9], [12], [13]. Recently, we reported the NC Ge pFETs, which demonstrated sub-60 mV/decade SS and the higher I_{DS} over the control pMOSFETs [8]. Nevertheless, the undesirable hysteresis induced by the polarization switching of ferroelectric film was also observed in NC Ge pFETs. The NC Ge pFETs exhibited the significant peak in the gate capacitance C_{G} as function of gate voltage V_{GS} curves and the negative differential resistance in the I_{DS} versus V_{DS} curves, which are well consistent with the theoretical results [14]–[19]. In NC transistors, the matching between the capacitance induced by ferroelectric film C_{fe} and the MOS capacitance C_{MOS} is the crucial factor affecting the device performance. Currently, there is still a lack of a detailed study on the impacts of the parameters of ferroelectric, determining the matching between C_{fe} and C_{MOS}, and on the performance of NC Ge transistors.

In this paper, we comprehensively study the influence of ferroelectric material properties, including thickness t_{fe}, coercive field E_{C}, and remnant polarization P_{r}, on the electrical characteristics of the NC Ge pFETs utilizing the analytical model. It is demonstrated that, through optimizing design of the ferroelectric properties, improved I_{DS} and SS over...
the baseline device are achieved in the hysteresis-free NC transistor.

II. DEVICE STRUCTURE AND ANALYTICAL MODEL APPROACH

Fig. 1(a) illustrates the schematic diagram of the NC Ge pFET investigated in this work. In our calculation, we use Ge (001) substrate with a n-type carrier concentration of 10^{18} cm$^{-3}$. HfO$_2$ is used as the insulator dielectric with an EOT of 1.2 nm. The workfunction of internal and top gates is 4.7 eV. The internal gate layer can average out the potential profile along the channel as well as any charge non-uniformity coming from the domain formation in the ferroelectric film, and thus we can use one-dimensional Landau-Ginzburg-Devonshire’s (LGD) theory to describe the action of FE material in the NC Ge pFET [20], [21]. It is noted that the NC transistors with and without the internal gate have the similar performance, except for the strong inversion region [22]. Fig. 1(b) presents the simplified equivalent capacitance model of the NC Ge pFET.

The series combination of C_{ox} and C_s is referred to the C_{MOS}, and the matching between C_{fe} and C_{MOS} determines the electrical performance of the NC device.

As V_{GS} is applied to the top gate of the NC Ge pFET, we have a relation of $V_{GS} = V_{FB} - \phi_s = V_{fe}$, where V_{FB} is the flatband voltage of the underlying MOS capacitor, ϕ_s is the channel surface potential, the relation between ϕ_s and the channel charge Q_i per unit area can be expressed as [23]:

$$Q_i = \pm \sqrt{2\varepsilon_s kTn_i d} \left[\left(e^{\frac{\phi_s}{kT}} + \frac{q\phi_s}{kT} - 1 \right) + \frac{n_i^2}{N_d^2} \left(e^{\frac{\phi_s}{kT}} (e^{\frac{\phi_s}{kT}} - 1) - \frac{q\phi_s}{kT} \right) \right]^{1/2},$$

(1)

where, ε_s is the permittivity of the semiconductor, q is the electron charge, n_i is the intrinsic carrier concentration, N_d is the substrate doping, V is the quasi-Fermi potential at a point in the channel, and V_{fe} is the voltage drop across the ferroelectric insulator. According to the LGD theory, for a given t_{fe}, V_{fe} is expressed by

$$V_{fe} = 2t_{fe}\alpha_0 P + 4t_{fe}\beta_0 P^3,$$

(2)

where, α_0 and β_0 are the anisotropy constants, and P is the polarization charge per unit area in ferroelectric layer. α_0 and β_0 are calculated by [11]

$$\alpha_0 = -3\sqrt{3}/4 \times E_c/P_r,$$

(3)

and

$$\beta_0 = -3\sqrt{3}/8 \times E_c/P_r^3,$$

(4)

respectively. I_{DS} of the NC Ge pFETs can be calculated using the Pao-Sah formula [23]:

$$I_{DS} = \mu_{eff} \frac{W}{L} \int_{V_F}^{V_D} (-Q_i(V)) dV,$$

(5)

where, μ_{eff} is the effective hole mobility, which is assumed as 300 cm2/Vs and V is the quasi-Fermi potential at a point in the channel. Since the polarization in a ferroelectric film is very large, Q_i is approximately equal to P. W and L are the channel width and length, respectively, which are 1 μm and 250 nm, respectively. With the development of surface passivation of Ge, the density of states D_{it} at Ge/high-k interface can be reduced to be about 10^{11} eV$^{-1}$cm$^{-2}$ at an equivalent oxide thickness of 0.7 nm, so the impact of D_{it} on device performance is not considered [24].

III. RESULTS AND DISCUSSION

By coupling the relation between V_{fe} and ϕ_s to the Q_i and P of the semiconductor and ferroelectric capacitor through Eqs. (1) and (2), Q_i can be solved for a given V_{GS}. Then, ϕ_s the can be obtained from Eq. (1). Fig. 2(a) shows the curves of ϕ_s as a function of V_{GS} for the NC Ge transistors with $P_i = 12\mu C/cm^2$, $E_c = 30$ KV/cm, and $\Delta\phi = 0$. t_{fe} varies from 0 to 100 nm. These values of P_i and E_c are similar to those of perovskite ferroelectric materials such as BaTiO3 [23], SBT [28], and Pb(Zr$_{1-x}$Ti$_x$)O3 [21]. It can be seen that with a $t_{fe} \leq 30$ nm, the correspondence between ϕ_s and V_{GS} is single valued function, and it becomes multi-valued in the case of $t_{fe} > 30$ nm. The gate voltage amplification fraction G, defined as $d\phi_s/dV_{GS}$, gets reduced as t_{fe} decreases, which can be observed from Fig. 2(b). This indicates that the boosting effect of negative capacitance decreases with decreasing t_{fe}. The maximum value of G is 5.8 with a t_{fe} of 30 nm. Later, we will show that, as the t_{fe} is larger than 30 nm, hysteresis in $I_{DS} - V_{GS}$ curves will occur.

Calculations with compact models showed that the significant peaks in $C_G - V_{GS}$ curves are the typical characteristics of the NC transistors [15], [19]. In order to investigate the impact of t_{fe} on C_G in NC Ge pFETs, C_G versus V_{GS} curves for several values of t_{fe} are plotted, as shown in Fig. 3. From the simplified capacitance model of the NC device, we know that C_G is equal to $C_{fe} \times C_{MOS}/(C_{MOS} + C_{fe})$, the peak will appear only if C_{fe} is negative and its magnitude is greater than or approximately equal to the magnitude of C_{MOS}. Furthermore, we have experimentally demonstrated that I_{DS} of the NC transistor can be enhanced as the C_G peak gets increased in [25].
Inset of Fig. 3 illustrates that the peak of C_G increases with t_{fe} varies from 10 to 30 nm. The peak of C_G is indicative of the large gain of the devices. Generally, there are two methods to verify the existence of NC effect in the device. One is to measure the C_G of the transistor and a peak in the C_G vs. V_{GS} curve is the signature of the NC effect. The other is to measure the I_{DS} vs. V_{GS} curves and extract the SS, which can be calculated by

$$SS = \frac{\partial V_{GS}}{\partial \left(\log I_{DS} \right)} = \frac{kT}{q} \ln 10 \left(1 + \frac{C_s}{C_{ox}} + \frac{C_s}{C_{fe}} \right).$$

(6)

Based on Eq. (6), SS less than 60 mV/decade can be achieved as C_{fe} is negative and its magnitude is greater than C_{ox}. Fig. 4(a) illustrates the transfer characteristics of the NC Ge pFETs with the different t_{fe}. It is clear to see that, when the t_{fe} is smaller than 30 nm, there is no hysteresis phenomenon occurring. The appearing of the multi-valued function in the $\phi_s - V_{GS}$ curves produces the hysteresis in $I_{DS} - V_{GS}$ curves. Fig. 4(b) compares the I_{DS} of the NC devices with the different t_{fe} at $V_{GS} - V_{TH} = V_{DS} = -0.25$ V. Here, V_{TH} is defined as the V_{GS} at I_{DS} of 10^{-6} A/μm. For the forward sweeping of V_{GS}, I_{DS} of the devices increases with t_{fe}. While for the reverse sweeping, maximum I_{DS} is obtained at a t_{fe} of 80 nm. With a t_{fe} of 30 nm, an I_{DS} of 0.35 mA/μm at $V_{GS} - V_{TH} = V_{DS} = -0.25$ V, and a steep SS of 37 mV/decade is achieved. It is noted that the steep SS of the devices, which is the evidence of NC effect, appears at the same V_{GS} value where the C_G peaks (Fig. 3) and the maximum G are observed [Fig. 2(b)]. According to the experimental work in [25], the NC device exhibits the peaks in $C_G - V_G$ curves with the forward and reverse sweeping of V_{GS}, showing the significantly higher magnitude of C_G compared to the control transistor, which is due to the NC effect. NC transistors with the greater C_G peak obtain the higher I_{DS}, which proves that the NC effect promotes the performance improvement of the device. It is noted that these results are well consistent with our simulation.

In addition to the t_{fe}, we also investigate the effect of the E_c of ferroelectric film on the device performance. Fig. 5(a) and (b) present the ϕ_s vs. V_{GS} and G vs. V_{GS} curves, respectively, for different values of E_c with a t_{fe} of 30 nm and a P_r of 12 μC/cm2. The ferroelectric film with $E_c > 30$ KV/cm gives rise to the hysteresis behavior, i.e., $\phi_s - V_{GS}$
curves become multi-valued function of V_{GS}. From Fig. 5(b), we can see that the G gets reduced as E_c decreases, which manifests that the boosting effect of C_{fe} decreases with the reduction of E_c.

Fig. 6 plots the C_G versus V_{GS} of NC transistors with different E_c under the condition of hysteresis free. The significant C_G peaks are also observed, which is indicative of the NC effect and the channel surface potential gain of the NC Ge pFETs. $I_{DS} - V_{GS}$ characteristics of the NC Ge pFETs with different E_c at $V_{GS} - V_{TH} = V_{DS} = -0.25$ V. It is observed that, for both forward and reverse sweeping of V_{GS}, I_{DS} of the device increases with E_c. With an E_c of 30 KV/cm, a I_{DS} of 0.32 mA/μm at $V_{GS} - V_{TH} = V_{DS} = -0.25$ V, and a steep SS of 37.7 mV/decade are achieved.

We also investigate the dependence of NC Ge pFETs on the values of P_r of the ferroelectric film, which varies from 12 to 50 μC/cm², and t_{fe} and E_c are 30 nm and 30 KV/cm, respectively. Fig. 8(a) shows the ϕ_s as a function of V_{GS} curves of the NC Ge transistors with the various values of P_r. The relationships between G and V_{GS} with different P_r are shown in Fig. 8(b), which show that the G increases with P_r rapidly. In other words, the boosting effect of C_{fe} increases with P_r.

Fig. 9 shows the calculated C_G versus V_{GS} curves of the NC devices with different values of P_r. The peaked $C_G - V_{GS}$ characteristics indicate a large gain, which becomes smaller with decreasing P_r. The transfer characteristics of the NC Ge pFETs are presented in Fig. 10(a). No hysteresis
FIGURE 9. Influence of \(P_r \) on \(C_{G} - V_{GS} \) characteristics. Inset shows that the peak \(C_{G} \) increases with \(P_r \).

FIGURE 10. (a) Influence of \(P_r \) on \(I_{DS} - V_{GS} \) characteristics of the NC Ge pFETs. (b) \(I_{DS} \) for the NC Ge transistors with different \(P_r \) at \(V_{GS} - V_{TH} = V_{DS} = -0.25 \) V. (c) Point SS versus \(V_{GS} \) characteristics of the NC device with \(P_r \) varies from 12 to 50 \(\mu \)C/cm\(^2\). Steep SS less than 60 mV/decade is achieved at all conditions.

FIGURE 11. Evolution of \(P - V \) characteristics of ferroelectric materials with the variation in (a) \(t_{fe} \), (b) \(E_c \), and (c) \(P_r \). It is clearly to observe the NC effect with the variation of the ferroelectric properties.

phenomenon is observed. The single valued function in the \(\phi_0 - V_{GS} \) curves indicates the hysteresis free in the \(I_{DS} - V_{GS} \) curves. The \(I_{DS} \) of the NC Ge pFETs increases with \(P_r \) at \(V_{GS} - V_{TH} = V_{DS} = -0.25 \) V, as illustrated in Fig. 10(b). From Fig. 10(c), it is found that the SS decrease from 41 to 37 mV/decade with \(P_r \) changing from 12 to 50 \(\mu \)C/cm\(^2\).

According to the above discussion, we know that the hysteresis window of the \(I_{DS} - V_{GS} \) curves of the NC Ge pFETs increases with the values of \(t_{fe} \) and \(E_c \) of the ferroelectric film. And the hysteresis-free can be obtained by increasing the \(P_r \) of ferroelectric film. It was experimentally demonstrated that, the hysteresis of the NC Ge transistors can be reduced by modulating the ferroelectric properties of \(P_r \) and \(E_c \) \cite{12}, which is consistent with our simulation results. As the ferroelectric material exhibits a significant increasing in the ratio of \(P_r \) to \(E_c \), which results in the improvement of the magnitude of ferroelectric NC \(C_{FE} \), leading to the reduction of hysteresis of the ferroelectric NC Ge transistors \cite{12}.

Based on Eq. (2), \(C_{fe} \) can be expressed as

\[
C_{fe} = \frac{dP}{dV_{fe}} = 2\alpha_0 t_{fe} + \frac{12\beta_0 t_{fe}}{P_r^2},
\]

where, the linear term is negative, which dominates the negative capacitance when \(V_{GS} \) is very small \cite{27}. However, as \(V_{GS} \) increases to a certain value, the non-linear term becomes significant and cannot be neglected. Here, we summarize the impacts of \(t_{fe} \), \(E_c \), and \(P_r \) on the \(P - V \) loops of the ferroelectric materials in Fig. 11. The negative slope segment of the \(P-V \) diagram is unstable and exhibits the hysteretic jump in charge \cite{28}. Fig. 11(a) shows the \(P - V \) plots of the ferroelectric materials with different \(t_{fe} \). The peak effect is apparent with a \(t_{fe} \) of 30 nm. From Figs. 4(a) and 2(b), we cannot see the hysteresis in the transfer characteristics but the device obtains the \(G >> 1 \). It proves that if the \(C_{fe} \) is placed in series with the positive capacitor \(C_{MOS} \), the NC effect can be effectively stabilized, which agrees well with the results reported in \cite{5}. This phenomenon can also be observed from the dependence of NC Ge pFETs on \(E_c \) and \(P_r \) of the ferroelectric materials \cite{11}.

In the small range of \(V_{GS} \), the \(Q_1 \) is small and the nonlinear term can be neglected, and then the \(C_{fe} \) can be approximated as \cite{11}

\[
C_{fe} \approx \frac{dP}{dV_{fe}} = \frac{2 P_r}{3\sqrt{3} E_c t_{fe}^2}.
\]
Here, we summarize the I_{DS} of the NC Ge pFETs as a function of C_G with different t_{fe}, E_c, and P_f in Fig. 12. Note that the enhancement of C_G and I_{DS} can be achieved simultaneously with the increased t_{fe}, E_c, and P_f. Therefore, the large peak C_G can be increased with t_{fe}, E_c, and P_f of the ferroelectric film. In the meanwhile, we find that the increase of P_f of the ferroelectric material can effectively reduce the hysteresis, but its ability to increase the I_{DS} is restricted compared to the t_{fe} and E_c of the ferroelectric film. However, increasing the t_{fe} and E_c of the FE layer of the NC Ge pFETs arbitrarily will make the hysteresis phenomena become seriously. Therefore, there is a trade-off between enhancing the I_{DS} and suppressing the hysteresis of the NC Ge pFETs.

IV. CONCLUSION

In this paper, the influence of t_{fe}, P_f, and E_c of the ferroelectric materials properties on the electrical characteristics of the NC Ge pFETs is studied using analytical model. We compare the I_{DS} versus C_G characteristics of the NC Ge pFETs with different t_{fe}, E_c, and P_f. Based on this, a guideline for designing high performance NC Ge pFETs based on the ferroelectric material is presented. Under the condition of $t_{fe} = 30$ nm, $E_c = 30$ KV/cm, and $P_f = 30$ μC/cm², the NC Ge pFETs can obtain the superior electrical properties compared to the baseline FETs, in terms of SS, the value of I_{DS}, and hysteresis.

REFERENCES

YUE PENG received the B.Eng. degree from Xidian University, Xi’an, China, where she is currently pursuing the Ph.D. degree with the School of Microelectronics.

GENQUAN HAN (M’10) received the B.Eng. degree from Tsinghua University, Beijing, China, and the Ph.D. degree from the Institute of Semiconductors, Chinese Academy of Sciences. He is a Professor with Xidian University, China. His current research interests include advanced CMOS, photonics devices, and wide bandgap materials and devices.

ZHIBIN CHEN received the M.S. degree from Xidian University, Xi’an, China, where he is currently pursuing the Ph.D. degree with the School of Microelectronics.

QINGLONG LI received the B.Eng. degree from the China University of Mining and Technology, China. He is currently pursuing the M.S. degree with the School of Microelectronics, Xidian University, Xi’an, China.

YUE HAO (SM’92) is a Professor of microelectronics and solid state electronics with Xidian University, China. His current interests include wide gap-band materials and devices, advanced CMOS devices and technology, semiconductor device reliability physics and failure mechanism and organic electronics. He is a member of the Chinese Academy of Sciences.