Abstract—We demonstrate the electrical performances of the quaternary InAlGaN/GaN MIS-HEMTs with high quality SiNx, gate dielectric and surface passivation layer deposited by low pressure chemical vapor deposition (LPCVD) at 780 °C. Excellent LPCVD-SiNx/InAlGaN interface and SiNx film quality were obtained, resulting in very high output current density, a very small threshold voltage hysteresis and steep subthreshold slope. The LPCVD-SiNx/InAlGaN/GaN MIS-HEMT device exhibited high on/off current ratio, large gate voltage swing, high breakdown voltage, and very low dynamic on-resistance (Ron) degradation, meaning effective current collapse suppression compared to the plasma enhanced chemical vapor deposition (PECVD)-SiNx/InAlGaN/GaN MIS-HEMTs. The corresponding specific on-resistance (RONsp) for LPCVD-SiNx device was as low as 0.98 mΩ⋅cm², yielding a high figure of merit (FOM) of 737 MW/cm². These results demonstrate a great potential of the LPCVD-SiNx/InAlGaN/GaN MIS-HEMTs for high-power switching applications.

Index Terms—InAlGaN/GaN, MIS-HEMT, LPCVD, SiNx, figure of merit.

I. INTRODUCTION

InAlGaN/GaN high electron mobility transistors (HEMTs) have attracted much attention owing to the combination of AlGaN and InAlN to form a quaternary barrier layer (InAlGaN), which provides a narrower immiscibility gap. High electron mobility and high two-dimension electron gas (2DEG) density in the channel were obtained due to much stronger spontaneous polarization and ultrathin barrier layer [1-3]. Therefore, lattice-matched InAlGaN barrier HEMTs have been extensively studied as alternatives to the conventional AlGaN/GaN HEMTs for RF and millimeter-wave power applications [4-6]. Despite the excellent properties, excessive gate leakage current remains a challenge for the development of InAlGaN/GaN HEMTs due to the strong polarization-induced electric field in the InAlGaN barrier [7-9]. The high gate leakage degrades the output power efficiency and the breakdown voltage of the devices. In addition, the current collapse increases the dynamic on-resistance (Ron), which leads to the potential instability of the devices. Thus, the high quality gate dielectric and effective surface passivation become important issues for GaN power devices.

Silicon nitride films deposited by plasma enhanced chemical vapor deposition (PECVD) [10], plasma enhanced atomic layer deposition (PEALD) [11] or in-situ grown by metal-organic chemical vapor deposition (MOCVD) [12] have been widely used as the gate dielectrics for the GaN MIS-HEMTs. Recently, several studies report that the high quality SiNx film grown by low pressure chemical vapor deposition (LPCVD) at high deposition temperature (>600 °C) is free of plasma-induced damages and can be used as gate dielectric and passivation layer for GaN HEMT devices since the LPCVD-SiNx film has high thermal stability and excellent electric strength [13-17].

In this study, we use LPCVD-SiNx film as gate dielectric and passivation layer prior-to-ohmic process for the InAlGaN/GaN MIS-HEMTs fabrication. The performances of these devices are compared to the performances of the InAlGaN/GaN MIS-HEMT devices with PECVD-SiNx, passivation films.

II. DEVICE FABRICATION

The quaternary InAlGaN/GaN heterostructure was grown by MOCVD on a sapphire substrate. Trimethylindium (TMI), trimethylaluminum (TMAI), trimethylgallium (TMGa), and ammonia (NH₃) were used as the precursors for In, Al, Ga, and N, respectively. The epitaxial structure consisted of a 4-nm InAlGaN barrier layer, a 1-nm AlN spacer, a 2.5-μm Fe-doped GaN buffer layer, and a 120-nm AlN nucleation layer. Hall measurements at room temperature revealed a 2DEG sheet charge density of 1.7×10^{13} cm⁻² and an electron mobility of 1600 cm²/V⋅s, resulting in a sheet resistance of 210 Ω/square.

LPCVD-SiNx layer was deposited on the wafer first before the ohmic and gate metal depositions for the MIS-HEMT fabrication. Prior to the device fabrication, the epitaxial wafer was cleaned by a standard RCA treatment and subsequently loaded into the LPCVD chamber. A 20-nm LPCVD-SiNx film was deposited as the gate dielectric and passivation layer at the temperature of 780 °C and the pressure of 180 mTorr with a...
The surface morphology of the quaternary InAlGaN/GaN heterostructure was characterized by atomic force microscopy (AFM) over a 5×5 μm² scan region, as shown in Fig. 1(b). The atomic steps were observed on the InAlGaN surface [5] and the root-mean-square (RMS) roughness was 0.35 nm with no surface pits, indicating high quality of InAlGaN barrier layer.

The influences of PECVD-SiNₓ and LPCVD-SiNₓ passivation on the sheet resistance (R_{SH}) and mobility (μ) of InAlGaN/GaN structure were investigated. Table I lists the characteristics of InAlGaN/GaN structure after different surface passivation. For the InAlGaN/GaN structure with LPCVD-SiNx passivation, both the R_{SH} and μ were improved, proving the benefits of LPCVD-SiNx passivation for InAlGaN/GaN structure.

Fig. 2 compares the gate leakage currents under both reverse and forward gate biases for the Schottky-gate InAlGaN/GaN HEMT, PECVD-SiNx/InAlGaN/GaN MIS-HEMTs and LPCVD-SiNx/InAlGaN/GaN MIS-HEMTs. As results, MIS-HEMTs exhibited great effects on suppressing leakage current, compared with Schottky-gate HEMTs. Especially, LPCVD-SiNx, MIS-HEMTs showed more reduction in the gate leakage current at both reverse (I_{G} = 2×10^{-6} mA/mm at $V_{GS} = -30$ V) and forward (I_{G} = 8.7×10^{-7} mA/mm at $V_{GS} = 10$ V) bias regions, which is mainly due to the larger barrier height. Besides, the forward gate breakdown voltage of LPCVD-SiNx, MIS-HEMTs was 23.5 V, indicating that LPCVD-SiNx has better quality and higher electric field strength compared to the PECVD-SiNx [19].

Fig. 3 shows the DC characteristics of the PECVD-SiNx/InAlGaN/GaN MIS-HEMTs and LPCVD-SiNx/InAlGaN/GaN MIS-HEMTs. with LPCVD-SiNx passivation, both the $R_{ON,sp}$ and μ were improved, proving the benefits of LPCVD-SiNx passivation for InAlGaN/GaN structure.

![Fig. 1. (a) Schematic cross-sectional view of the InAlGaN/GaN MIS-HEMT with 20-nm SiNx as gate insulator. (b) AFM image of the surface morphology of the InAlGaN/GaN film. The scan area is 5×5μm².](image)

![Fig. 2. Gate leakage current of the Schottky-gate InAlGaN/GaN HEMT, PECVD-SiNx/InAlGaN/GaN MIS-HEMTs and LPCVD-SiNx/InAlGaN/GaN MIS-HEMTs.](image)

![Fig. 3. DC characteristics of the PECVD-SiNx/InAlGaN/GaN MIS-HEMTs and LPCVD-SiNx/InAlGaN/GaN MIS-HEMTs.](image)

Table I

<table>
<thead>
<tr>
<th>Passivation</th>
<th>R_{SH} (Ω/sq.)</th>
<th>μ (cm²/V·s)</th>
<th>$R_{ON,sp}$ (mΩ·cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o PECVD-SiNₓ</td>
<td>210</td>
<td>1600</td>
<td>0.20</td>
</tr>
<tr>
<td>PECVD-SiNₓ</td>
<td>227</td>
<td>1620</td>
<td>0.18</td>
</tr>
<tr>
<td>LPCVD-SiNₓ</td>
<td>194</td>
<td>1650</td>
<td>0.15</td>
</tr>
</tbody>
</table>
The specific ON-resistance is determined using the following equation:

$$R_{ON,sp} = \frac{R_{ON} \times W_G}{L_{SD} + 2 \times 1.5 \mu m}$$

where R_{ON} is extracted at a current level of 200 mA/mm when $V_{GS} = 2$ V from the output curves, W_G is gate width, and L_{SD} is source-drain spacing. The transfer length for each ohmic contact is 1.5 μm for calculating the device effective active area. This performance is much better than the MIS-HEMTs with PECVD-SiNx gate dielectric ($I_{DS, max} = 760$ mA/mm and $R_{ON,sp} = 1.46$ mΩ·cm²).

Fig. 4 shows the transfer characteristics of the fabricated devices in the semilog scale with V_D of 10 V, where the gate voltage was up-sweep from −18 V to 2 V and down-sweep from 2 V to −18 V. The PECVD-SiNx devices exhibit very small threshold hysteresis (ΔV_{TH}) of ~70 mV, low subthreshold slope (SS) of ~65 mV/dec and high I_{ON}/I_{OFF} ratio in the order of ~10⁵, suggesting that PECVD-SiNx/InAlGaN has better interface quality and lower leakage due to the LPCVD-SiNx gate dielectric. These performances are also much better than the reported AlGaN/GaN and InAlN/GaN device data. Further improvement could be achieved by using in-situ pre-deposition plasma nitridation process for the PECVD-SiNx deposition [17].

To investigate the PECVD-SiNx/InAlGaN and LPCVD-SiNx/InAlGaN interface quality, capacitance-voltage ($C-V$) measurements were performed on the MIS diode with different frequencies varying from 1 kHz to 1 MHz at room temperature, as shown in Fig. 5 (a) and (b). In Fig. 5 (b), a smaller frequency dispersion and a steeper C- V curve for LPCVD-SiNx/InAlGaN/GaN MIS diode can be observed, indicating the gate dielectric/barrier layer interface has low interface trap density.

The dynamic R_{ON} is generally used to examine the trapping effects caused by the surface and interface states in the GaN device structure. Therefore, the dynamic R_{ON} can be used to investigate the effectiveness of the passivation. The measurement setup is similar to the previous report [20]. The Agilent B1505A power device analyzer system was used to investigate the dynamic switching characteristics of the InAlGaN/GaN MIS-HEMT devices with high drain voltage. First, the device was turned off with 3s hold time at stress voltage (V_{stress}), while the gate bias was set at $V_{GS} = -18$ V. Then, the device was turned on at $V_{GS} = 1$ V and $V_{DS} = 1$ V. The ON-state resistance was sampled at the end of 0.1 s to calculate the dynamic R_{ON}. The switching time was set to be 20 μs by Agilent High Voltage / High Current Switch component. As results shown in Fig. 6, the two samples exhibited similar dynamic R_{ON} when the off-state drain bias stress voltage (V_{stress}) was below 120 V; however, they started to show large difference when the V_{stress} exceeded 120 V. The dynamic R_{ON} increased only 1.34 times at the V_{stress} of 400 V for the LPCVD-SiNx, MIS-HEMT device, suggesting that the high quality of gate dielectric and passivation layer can practically suppress the current collapse.

The three-terminal OFF-state breakdown characteristics of the fabricated InAlGaN/GaN MIS-HEMTs are shown in Fig. 7.
It can be observed that the breakdown voltage (BV) improved and the leakage current was lower for the device with LPCVD-SiNₓ film compared to the device with PECVD-SiNₓ film. For the LPCVD-SiNₓ MIS-HEMTs device, the BV of 850 V at a leakage current of 1 μA/mm was achieved, yielding a high figure of merit (FOM) = BV²/RON,sp of 737 MW/cm². In Fig. 8, the specific ON-resistance versus breakdown voltage data of the PECVD-SiNₓ passivated and LPCVD-SiNₓ passivated MIS-HEMTs devices were plotted and benchmarked with other reported AlGaN/GaN MIS-HEMTs and InAlN/GaN MIS-HEMTs data. It can be clearly observed that the fabricated LPCVD-SiNₓ/InAlGaN/GaN MIS-HEMTs with L GD = 15 μm exhibited much better performances than other reported GaN MIS-HEMT devices.

The microstructure of the LPCVD-SiNₓ/InAlGaN/GaN MIS-HEMT is characterized with high-resolution transmission electron microscopy (TEM). The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) micrograph in Fig. 9(a) shows the cross section of LPCVD-SiNₓ/InAlGaN/GaN MIS-HEMTs in the gate region. From this micrograph, we can confirm that the thickness of LPCVD-SiNₓ, InAlGaN barrier layer, and AlN spacer were 20 nm, 4 nm, and 1 nm, respectively. Fig. 9(b) shows the TEM micrograph of the LPCVD-SiNₓ/InAlGaN/GaN stack, and a sharp interface between the LPCVD-SiNₓ and InAlGaN barrier layer has been obtained. In addition, the continuous crystalline structure maintains well-ordered without obvious defects at the LPCVD-SiNₓ/InAlGaN interface, indicating LPCVD-SiNₓ passivates the dangling bonds on InAlGaN surface [26].

The LPCVD-SiNₓ/InAlGaN/GaN MIS-HEMT device fabricated in this study shows a remarkable enhancement on the electrical performances compared to the InAlGaN/GaN MIS-HEMT with conventional PECVD-SiNₓ passivation. Besides, the performance of LPCVD-SiNₓ device is also much better than that reported data of AlGaN/GaN or InAlN/GaN devices. Excellent bulk and interface properties of the LPCVD-SiNₓ film were achieved, resulting in high drain current density and a very small threshold voltage hysteresis for the devices. The fabricated LPCVD-SiNₓ MIS-HEMTs exhibited improvements in ON/OFF current ratio, leakage current, gate voltage swing, breakdown voltage, and dynamic R_ON. Thus, the LPCVD-SiNₓ/InAlGaN/GaN MIS-HEMTs are extremely promising for the new generation of power electronic applications.

REFERENCES

Huan-Chung Wang received the Ph.D. degree from the Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, in 2018. His research interests mainly focus on GaN power devices for power switching applications.

Franky Juanda Lumbantoruan is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan. His research interests mainly focus on III-V compound semiconductor material growth and characterization for high-frequency power applications.

Ting-En Hsieh received the Ph.D. degree from the Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, in 2015, where he is currently a Post-Doctoral Researcher. His research interests mainly focus on III-V compound semiconductor power devices.

Chia-Hsun Wu is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan. His current research interests include fabrication and reliability assessment on E-mode GaN power devices for power switching applications.

Yueh-Chin Lin received the Ph.D. degree in the Department of Materials Science and Engineering from National Chiao Tung University (NCTU), Hsinchu, Taiwan, in 2006. He is currently a Post-Doctoral Researcher with the Compound Semiconductor Device Laboratory, NCTU. His research interests include MBE material growth and HEMT device design and fabrication for wireless communication and power application.

Edward Yi Chang (F’14) received the Ph.D. degree from the University of Minnesota, Minneapolis, MN, USA, in 1985. He is currently a Senior Vice President with National Chiao Tung University, Hsinchu, Taiwan, where he is also the Dean of Research and Development and a Distinguished Professor of the Department of Materials Science and Engineering and the Department of Electronics Engineering.