Guest Editors’ Introduction: Special Issue on Smart and Autonomous Systems for Sustainability

Jana Doppa
Washington State University

Paul Bogdan
University of Southern California

We are pleased to present the special issue on “Smart and Autonomous Systems for Sustainability: Sustainable Computing and Computing for Sustainability.” We are witnessing the rise of the data-driven science paradigm, in which massive amounts of streaming data—much of it collected as a side-effect of ordinary human activity—can be analyzed to make sense and be able to make intelligent decisions for sustainability over multiple time scales (e.g., short-term versus long-term planning). Intuitively, sustainability refers to the ability to maintain a certain performance or efficiency over time. This concept in the context of computing systems can be seen as sustainable computing—computing systems that maintain a certain performance reliably by consuming low power for a very long period of time. To enable sustainable computing, we need adaptive approaches for managing the computing resources and methods for improving reliability and security of computing systems.

In another direction, computing algorithms and computing systems together with a large amount of data can be used to meet the human needs of the present without compromising the ability of future generations to meet their own needs (computing for sustainability). We have three articles covering diverse aspects of this important and emerging area. We also have a survey article summarizing the current state of the art and future opportunities challenges.

The first article presents a data-driven framework to improve the reliability of computing systems in the context of core router systems. Rapid error discovery is crucial for timely correction mechanisms and reliable router systems. Aiming to achieve a high degree of reliability, this article presents a machine learning framework for analyzing router time-series data to automatically evaluate the health status and detect anomalies while accounting for the important temporal characteristics of complex communication systems.

The second article presents a data-driven indoor localization framework for smartphones. Fingerprinting is essential for indoor navigation and localization due to its low cost, accuracy, and resiliency to multipath effects in constrained environments. This article aims to overcome the challenge of device heterogeneity and describes a portable lightweight fingerprinting framework while improving localization accuracy.

The third article presents an open-source platform for wearable health monitoring. It aims to design a standard set of hardware/software and wearable devices that can enable an autonomous collection of clinically relevant data. It provides reference implementations of human activity and gesture recognition applications within this platform.
We believe that the topic of this special issue is very important and fertile. We refer the readers to our survey article to understand the opportunities and challenges in this problem space.

Jana Doppa is a George and Joan Berry Assistant Professor with the School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA. His research interests include the intersection of machine learning and electronic design automation. Doppa has a PhD from Oregon State University, Corvallis, OR, and an MTech from IIT Kanpur, India.

Paul Bogdan is an Associate Professor with the Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA. His research interests include both theory and applications, specifically the theoretical foundations of cyber-physical systems, modeling and analysis of biological systems and swarms, understanding of neural and cognitive systems via new mathematical models, development of new control algorithms for dynamical systems exhibiting multifractal characteristics, modeling biological/molecular communication, development of fractal mean field games to model and analyze biological, social, and technological system-of-systems, and performance analysis and design methodologies for manycore systems. Bogdan has a PhD in electrical and computer engineering from Carnegie Mellon University, Pittsburgh, PA.

Justinian Rosca is a Senior Key Expert of Siemens Corp., Corporate Technology, Princeton, NJ, where he has been managing research and innovation since 1999. His research interests include sensing and communication, statistical signal processing, machine learning, probabilistic inference, and artificial intelligence, with an emphasis on embedded intelligence in autonomous systems. Rosca has an MS in computers and control engineering from Polytechnic University Bucharest, Bucharest, Romania, and an MS and PhD in computer science from the University of Rochester, Rochester, NY. He is a Senior Member of the IEEE and a Member of AAAI.

Direct questions and comments about this article to Jana Doppa, School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99163; jana.doppa@wsu.edu.