Earlier this spring, Nvidia hosted its 10th annual GPU Technology Conference (GTC) in San Jose, Calif. Attendees lined up early, some of the 8,300 people reportedly camping overnight to get into CEO Jensen Huang’s overflowing keynote address. With many of the breakout sessions also standing room only, it’s just a matter of time before this conference bursts out of the San Jose Convention Center.

Huang, in his trademark leather jacket, seemed to be everywhere. He popped up unannounced at a press lunch shortly after his nearly 3-hour keynote to field some tough questions about the recent Uber tragedy, and later joined Nvidia cofounder Chris Malachowsky to reminisce and hand out a million dollars, divided among three new startups.

During his keynote, Huang suggested that Moore’s Law has been blown out of the water by graphics processors. These follow a new “supercharged” law, although by supercharged he could have been referring equally to his own supersize personality. He repeatedly made the point that because of extreme advances in technology, graphics processing units (GPUs) are governed by a law of their own. Huang never called it Huang’s Law, and I’m guessing he’ll leave that to others. After all, Gordon Moore wasn’t the one who gave Moore’s Law its now-famous moniker. (Moore’s Law—Moore himself called it an observation—refers to the regular doubling of the number of components per integrated circuit that drove a dramatic reduction in the cost of computing power.)

But Huang did make sure no one attending GTC missed the memo.

Just how fast does GPU technology advance? In his address, Huang pointed out that Nvidia’s GPUs today are 25 times as fast as they were five years ago. If they were advancing according to Moore’s Law, he said, they would have increased in speed by only a factor of 10.

Huang later considered the increasing power of GPUs in terms of another benchmark: the time to train the convolutional neural network AlexNet on 15 million images. He said that five years ago, it took AlexNet six days on two of Nvidia’s GTX 580s to go through the training process; with one DGX-2, the company’s latest hardware, it takes 18 minutes—a factor of 500.

During his speech, Huang threw out a lot of numbers, so it seems he’s still working out the exact very large multiple he’ll settle on. But he was clear about the reasons that GPUs need a law of their own. They benefit from simultaneous advances on multiple fronts: architecture, interconnects, memory technology, algorithms, and more. —Tekla S. Perry

A version of this article appears in our View From the Valley blog.