Solution #1: Dishes Crazy!
You should choose to start the game and place a dish in the center of the table. Then, each time the other server places a dish on the table, you should put another one symmetrical to the centered plate. As a result, you will always have one place to put the next dish, until there is no room left for the other server to put a new dish.

Solution #2: Life Is a Highway
Since a half hour with a steady velocity of 40 mi/h is required to reach city B from city A, the distance is 20 mi. Compared to the 31.4 mi of the national road, there is a ratio of 31.4/2. The simplest answer is that the road has the shape of a semicircle. Other shapes may be a triangle or a trapezoid. In the case of the semicircle, since the diameter is 20 mi long, then the radius (r) is calculated to be 10 mi. Thus, half the circumference is $\pi \times r = 31.4$, as described by the problem. The triangle may be calculated considering that the base is 20 mi, and the height may be calculated considering that the two sides are 31.4 mi. Finally, there are numerous trapezoids with the bottom length equal to 20 mi and the rest of the sides adding up to a length of 31.4 mi.

Solution #3: It’s in the Cards
Remove the first 13 cards from the deck and place them turned in, so the “bottom-up” cards will become “upside down” and vice versa. The two groups now consist of the same number of upside-down cards. For example, if there are three upside-down cards out of the 13, then, in the first group, there will be ten upside-down cards, and, in the second group, the ten remaining bottom-up cards will be turned in and they will now be upside down.

Solution #4: A Weighty Proposition
Consider that 27 is the cube of three. As a result, separate the coins into three groups of nine coins (A, B, C). Weigh group A against B and then A against C. Take the group with the different weight (note whether it is lighter or heavier) and break it into three other groups of three coins (D, E, F). Weigh group D against E. If D and E are found equal, then F is the odd group. If D and E differ, the lighter or heavier (based on the A, B, C comparison) is the odd group. You now have three coins (G, H, I). Weigh G and H. If $G = H$, then I is the odd one and is lighter or heavier (based on the A, B, C comparison). If G and H are not equal, then the lighter or heavier (based on the A, B, C comparison) is the odd coin. So, the minimum number of comparisons is 3 + 1.

Solution #5: Hack Attack
The hacker switches on two of the switches (for our problem, S1 and S2) for 10 min and then switches off one of them (assume S1). Considering that each bulb emits temperature during operation (state on), then reading the two sensor sets results to the following cases:
1) If T1 and T2 have the same temperature, then S1 and S2 correspond to rooms A and B and S3 to room C. We can associate S1 to room A or room B by checking which bulb (via L1 and L2) is set to off.
2) If T1 and T2 have a different temperature, then we can assume that switch S3 controls the bulb in room A or room B. Comparing the two temperature values, we can associate S3 to the room with the lower temperature. Excluding this set of sensors, we can now check the value of the light sensor of the remaining set and associate the rest of the switches to the remaining rooms.