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& IN AN IDEAL world, it would be possible to

build a provably correct and secure processor.

However, the complexity of today’s processors

puts this ideal out of reach. The complete verifi-

cation of a modern processor remains intracta-

ble. Statically verifying even a simple security

property—for example, “hardware privilege esca-

lation never occurs”—remains beyond the state

of the art in formal verification.

Testing can complement formal verification

methods, yet testing is incomplete and bugs in

the hardware that leave it vulnerable continue

to elude test suites. Further, a crafty malicious

actor can evade typical testing coverage metrics.

Recent efforts, including that of three of the

authors, have explored the use of static analysis

on the design files (e.g., hardware description

level source code or gate-level netlists) to find

suspicious circuitry.1–3 These techniques rely on

heuristics to define patterns that indicate a likely

trojan and then search for instances in the

design that match the pattern. However, mali-

cious circuitry that does not match the pattern

will be missed, as will inadvertent bugs that

open vulnerabilities. By the time the weakness is

uncovered, the hardware is already in the end

user’s hands and vulnerable to attack.

In the absence of a full proof of correctness,

what is needed is a final filter: a runtime verifica-

tion technique that works—postdeployment—to

detect and respond to security property viola-

tions as they occur during execution. In this arti-

cle, we make the case for final filters using our

tool, FinalFilter, as a case study.

FINALFILTER
Prior research, including our own, has

shown that assertions hard-coded into the

design can be a cheap and effective way to

verify the correctness of any single execution

run.4;5 Assertions can cover properties that

would be intractable to prove statically for

the current state of the art. The downside
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is that, like all execution monitors, this

approach cannot prove that the property can

never be violated, only that if such a violation

occurs the monitor will catch it. As such, a

final filter is a verification approach that is

complementary to and should be used in

conjunction with existing testing and static

verification methods.

We extend the basic idea of an assertion-

based execution monitor to make it configurable

so that the set of properties being monitored

can be updated postdeployment to reflect new

information about exploitable vulnerabilities in

the design. FinalFilter is a reconfigurable, run-

time verification system that monitors the state

and events of the processor for invalid updates

to privileged registers.

The mechanism of a final filter is simple

and presents a small attack surface. Yet, mak-

ing it configurable does add complexity. To

minimize FinalFilter’s cost to the system’s

trustworthiness, we formally verify the cor-

rectness properties of its component modules

and of the composed system. Finally, we show

how to verify key properties for individual

configurations.

As a formally verified execution monitor, Final-

Filter guarantees that any trace violating a given

security property will be

detected at the point of violation.

This is independent of how the

violation occurs or what the root

cause is.

THREAT MODEL
The trusted computing base

for FinalFilter includes our speci-

fication and verification process

and tools, the fabrication pro-

cess and tools, and the filter’s

current configuration.

Lifecycle Assumptions

Referring to Figure 1, we

assume we are the last ones to

touch the processor design. We

rely on orthogonal techniques

to ensure that FinalFilter is not

tampered with in the supply

chain, which includes fabrica-

tion of the processor and shipping to the end

user.

Architectural Scope

FinalFilter protects privileged instruction set

architecture (ISA)-level registers. FinalFilter does

not detect side-channel attacks as doing so

requires knowledgeofmore than the current trace

of execution. The focus of this paper is the integer

core of the processor. Notably, we assume the

memory hierarchy is correct.

Attacker Model

The attacker is free to take any action not

precluded by our assumptions, either in hard-

ware or in software. This includes an attacker

capable of creating and exploiting a hardware

defect. An example might be a defect that causes

the processor to return from an exception with-

out restoring the privilege level.

DESIGN
FinalFilter enforces properties over privileged

ISA state and events necessary for the security of

software running on the processor. An example

property that we will return to is, “the processor

transitions from user mode to supervisor mode if,

and only if, there is an interrupt or exception.” Any

Figure 1. Processor design flowwith FinalFilter: (a) Hardware description language

implementation of the instruction set specification. (b) Vulnerability is accidentally or

maliciously opened in the processor. (c) FinalFilter is added to the design as the last

action,6 with taps directly on the outputs of ISA state storing elements. (d) FinalFilter

dynamically verifies the properties encoded by trusted software. FinalFilter triggers

existing repair/recovery approaches in the event of an invariant violation. FinalFilter

continues to protect the repair/recovery software.
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processor that correctly implements the specifica-

tion must satisfy this property. Proving this prop-

erty statically requires a proof across all possible

execution traces—currently an intractable task.

Yet, as an execution monitor, FinalFilter can verify

the property for every trace that is executed.Moni-

toring is done by a set of hardware-based asser-

tions over architecturally visible states and events.

FinalFilter is designed to be used in conjunc-

tion with existing software-level recovery and

repair tools. For example, BlueChip,1 a tool devel-

oped by three of the authors, can route execution

around vulnerable circuitry. FinalFilter provides

precise introspection points and can support a

variety of repair and recovery approaches.

Three aspects of the design are worth noting.

1) FinalFilter is reconfigurable after deployment

and can protect multiple security-critical

properties concurrently.

2) FinalFilter’s design is formally specified and

its implementation proven correct.

3) Execution overhead is incurred only in the

rare case that a processor violates one of the

monitored security properties.

The key insight that allowed us to make the

monitor both reconfigurable and able to handle

multiple invariants concurrently is that many

security properties can be implemented as a

Boolean combination of more simple assertions,

and these simple component assertions are usu-

ally in one of only a few forms. Users can specify

a number of simple component assertions and

combine them into one or more complex asser-

tions that monitor hardware state.

Running Example

Weuse security invariants (or just invariants) to

describe properties of the ISA that must be true of

a secure implementation—that if violated would

open an exploitable vulnerability. Invariants are

dynamically verified by one or more assertions

over architecturally visible state.

Consider the following component of the

privilege escalation property mentioned before:

I0 ¼: A change in processor mode from low privilege

to high privilege is caused only by an exception or

a reset:

Invariant I0 is a statement that the instruc-

tion set specification says must be true of the

system at all points of execution. It can be writ-

ten as a concrete assertion in terms of the ISA-

level state in the following way:

A0 ¼: assertðrisingEdgeðSR ½SM�Þ ! ðNPC½31 : 12� ¼ 0Þ ^
risingEdgeðSR ½SM�Þ ! ðNPC½7 : 0� ¼ 0Þ _
risingEdgeðSR ½SM�Þ ! ðreset ¼ 1ÞÞ

where SR ½SM�represents the supervisor mode bit

of theprocessor’s status register, and an exception

is indicated by the next program counter

NPCpointing to an exception vector start address.

The address will always be of the form

0x00000X00, where the “X” indicates a don’t-

care value. (Thismight seem as if it leaves the door

open for a processor attack that escalates privilege

while executing at an address that matches the

form 0x00000X00, but it does not. Pages in that

address range have supervisor permissions set

which implies that code executing in that address

range is already in supervisor mode. If the proces-

sor attack attempts to allow user mode execution

of supervisor mode pages, FinalFilter includes an

invariant to detect suchmisbehavior.)

We breakA0 into three component assertions.

Aa ¼: assertðrisingEdgeðSR ½SM�Þ ! ðNPC½31 : 12� ¼ 0ÞÞ
Ab ¼: assertðrisingEdgeðSR ½SM�Þ ! ðNPC½7 : 0� ¼ 0ÞÞ
Ac ¼: assertðrisingEdgeðSR ½SM�Þ ! ðreset ¼ 1ÞÞ:

Each of these individual assertions is evalu-

ated at each step of execution, and the results

are appropriately combined to form a statement

that is equivalent to A0.

Invariant Monitor

FinalFilter reads in ISA-level state and outputs

a signal indicating whether any of the pro-

grammed invariants were violated. It works

essentially as a programmable finite state

machine. Configuration data programs the

machine with which invariants to check and ISA-

level state acts as the input to the machine. The

number of invariants it can monitor concur-

rently depends on the complexity of the associ-

ated component assertions and the number of

assertion blocks built into the monitor.

Using our running example, we now describe

each module in the configurable monitor, shown

in its configured state in Figure 2. In our system,we
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refer to Aa, Ab, and Ac as component assertions,

andA0 as simply an assertion. The difference being

thatAnumber is the implementation of an invariant, a

combination of component assertions, whereas

Aletter represents a component assertion corre-

sponding to one assertion block in the configura-

blemonitor.

Routing. The Routing block is responsible for

feeding the desired ISA-level state to the Logic

blocks. The configuration data determines which

state element gets routed to which Logic block.

To accommodate arbitrary outputs, each Rout-

ing block output is 32 bits wide, with zero pad-

ding as required. In our running example, SR ½SM�
is output to Logic blocks 0, 2, and 4, NPC is output

to Logic blocks 1 and 3, and reset is output to

Logic block 5, as shown in Figure 2.

Logic. Each Logic block implements a compari-

son operator. Given two inputs A and B, the con-

figuration data can select one comparison

operator from the set f¼; 6¼;�; < ;�; > g. Addi-
tionally, the configuration data can choose to

mask off some portion of A or B, or both, or it

can substitute a constant value for the value in

B. Returning to our running example, Logic

block 1 will evaluate NPC&0xfffff000 ¼ 0 and

output the result. Logic block 3 will evaluate

NPC&0x000000ff ¼ 0 and output the result and

Logic block 5 will evaluate reset ¼ 1 and output

the result. Logic blocks 0, 2, and 4 will evaluate

SR ½SM� ¼ 1 and output the result.

Assert. The Assert block implements compo-

nent assertions of the form p ! q, possibly across

several clock cycles (e.g., if p is true then three

cycles later, q is true). If it is ever the case that p is

true while q is false, the assertion is triggered and

the output of the Assert block will be high. In our

example, each of Aa, Ab, and Ac are implemented

in their own Assert block. The consequent q is

always a combinational proposition over ISA state

at a single step of execution: it is stateless and is

given by the current value sent by the Logic block.

However, the antecedent p can be stateful, possi-

bly depending on previous values sent from the

Logic block. For example, the individual asser-

tions in our example all have the antecedent

risingEdge(SR ½SM�). This proposition is true at

time t if and only if SR½SM�is low at time t� 1 and

high at time t. The Logic block will output a signal

that is high whenever SR½SM�is high and the Assert

block will determine when a rising edge of SR½SM�is
seen. FinalFilter allows antecedents in one of three

forms: p 2 fTrue;:st�1 ^ st; st�ng. In other words,

p can be defined as True, in which case the asser-

tion will trigger whenever q is false, or p can be

defined to be the rising edge of some ISA state s,

or p can be defined to be the value of ISA state s at

time t� n, where n is also configurable.

The Assert block uses four of the industry

standard Open Verification Library assertions:

� always(expression): expression must always

be true,

� edge(type, trigger, expression): expression
must be true when the trigger goes from 0 to

1 (type = positive),

� next(trigger, expression, cycles): expression
must be true cycles clock ticks after trigger
goes from 0 to 1,

� delta(signal, min, max): when signal changes
value, the difference must be between min
andmax, inclusive.

Figure 2. FinalFilter configured with assertion A0. Starting from

the top of the figure, the components are: ISA-level state, Routing

block, Logic blocks, Assert blocks, and Merge block. The Routing

block sends ISA-level state elements to the Logic blocks; the

Logic blocks condense multibit state and constant inputs down to

a single bit output that is sent to the Assert block; the Assert block

compares the previous value of its inputs to the current value,

outputing the result as a one bit value to the Merge block; the

Merge block combines the Assertion block results to form a higher

level result that indicates if the programmed invariants still hold;

this result is tied to the processor’s exception generation logic.
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Merge. The Merge block takes the outputs from

the Assert blocks and combines them as pre-

scribed by the configuration data. It can be

viewed as a configurable truth table. The inputs

to the truth table are the Assert block outputs—

the component assertions Aa, Ab, and Ac in our

running example. The function defining how the

component assertions combine (i.e., the out

function) is configurable at run time. The truth

table is implemented as a hierarchy of look-up

tables. For example, with 16 Assert blocks,

rather than a single lookup table with 216 rows,

the monitor would have four lookup tables with

six inputs (26 rows) each. The outputs of the

three first-level lookup tables make up the input

to a second-level lookup table, the output of

which is the output of the Merge block.

We can now complete our running example.

Let erra be the output of the Assert block for Aa,

and let errb and errc be the output of the Assert

blocks for Ab and Ac, respectively. Remembering

that the output of each Assert block will be high

when the assert triggers, i.e., when the invariant

is violated, we combine the results of the compo-

nent assertions in the following way:

err0 ¼ ðerrajerrbÞ&errc:

As desired, err0 will be high whenever A0 is false,

i.e., whenever the A0 assertion is triggered.

Configuration Data. The configuration data

are provided by trusted software (e.g., the sys-

tem BIOS) at initialization (originally, we imagine

configuration coming from processor or mother-

board manufacturers). It is the mechanism by

which FinalFilter is configured, and portions of

the configuration data are fed into each block at

the appropriate stage.

VERIFICATION
We used the commercial model checking tool

Cadence SMV for the verification of the configura-

ble assertion fabric. For each component of Final-

Filter shown in Figure 2, we formally specified its

behavior and verified that the implementation

meets the specification.

In most cases, formally specifying a com-

ponent’s behavior involved little more than

extracting the information from the design

documents. However, in two cases, the process of

formalizing the specification brought out ambigui-

ties in the design, and it was necessary to revisit

the design phase of the process. During the course

of verification, we found one implementation

error: a logical AND was used where an OR was

needed.

Ultimately, the monitor’s behavior is deter-

mined by the configuration data, and it is up to

the processor or motherboard manufacturer to

provide a correct configuration. A misconfigured

fabric could fail to provide the intended protec-

tions. We guard against misconfigurations in

three ways.

First, we protect against invalid configurations

that would result in unpredictable results. Built in

to the design of each block is a check that the

incoming configuration data are well formed. We

verify that if any of the individual components

report an invalid configuration, then FinalFilter

will not fire any assertion failures. This behavior

represents a tradeoff in the design space. On the

one hand, an accidentally misconfigured fabric,

which will never trigger an assertion, is not pro-

tecting the user. On the other hand, never firing in

the presence ofmisconfigureddata has the benefit

of being a stable behavior— it iswhat exists today.

An alternative is to always fire when the fabric is

misconfigured, but this would give an attacker an

avenue for launching a denial-of-service attack

making FinalFilter a new avenue of attack, some-

thingwewish to avoid.

Second, we built a software tool to generate

the configuration data from higher level asser-

tion statements. Although only prototypical, we

hope that further developing this tool will make

generating correct configuration data relatively

easy for the user.

Third, we built a validation tool to prove

properties about individual configurations. We

prove the following sanity checks on the configu-

ration data:

� There are assertions configured.

� None of the assertions are unsatisfiable

(e.g., the following does not occur fTrue !
q ^ :qg).

� The configured assertions, as a whole, are sat-

isfiable (e.g., the following does not occur

fp ! q; p ! :qg).
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� Assertions are not trivially violated (e.g., the

following does not occur fp ! :pg).
If any of these checks fail, a misconfiguration

error is reported along with information about

the offending assertion(s). The user can run this

tool before loading the configuration data into

FinalFilter. We used the z3 SMT solver as the

back end to this tool.

We note that while we formally verify the func-

tional correctness of each module in the filter, we

manually audit the connection between modules.

That is, we manually check that every module’s

output signals are appropriately tied to the next

module’s input signals. There is no logic involved

in the composition and our naming convention

made the checks straightforward. Our end-to-end

verification of the invalid configuration signals,

mentioned above, does not rely on this manual

audit.

EVALUATION
To evaluate the performance and efficacy of

FinalFilter, we implement it inside the OR1200

Processor. The OR1200 is an open source, 32-bit

RISC processor with a five-stage pipeline, sepa-

rate data and instruction caches, and MMU

support for virtual memory. It is popular as a

research prototype and has been used in indus-

try as well7; it is representative of what you

would see in a mid-range phone today.

We wrote a program that automatically gen-

erates the FinalFilter hardware for a given num-

ber of Assert blocks to support. Generating the

hardware programmatically makes it easy to

explore the effect of tuning different parameters,

and creates a regular naming and connection

pattern that allows us to verify the structural

connections of arbitrary filters using an induc-

tion type approach.

For a complete system capable of booting

Linux, we implemented the processor and filter

combination as the heart of a system-on-chip

that includes DD2 memory, an Ethernet control-

ler, and a UART controller. We implemented the

system-on-chip on the FPGA that comes with the

Xilinx XUP-V5 development board. We conserva-

tively clock the system at 50 MHz.

Hardware Area Overhead

Figure 3 shows how the hardware area over-

head changes as the number of assertions sup-

ported by FinalFilter increases. We built filters

with support for as little as 1 assertion to as

many as 17 assertions (the number required

to protect all AMD processors we analyzed in

our previous study on security-critical processor

bugs5).

The figure contains data at four points in the

fabric design space:

1) None. No optimization, this favors expressi-

bility over overhead.

2) One State. This optimization uses Logic

blocks with only one state input. Logic

blocks were the biggest contributor to the

area of the fabric and 83% of our security-

critical invariants used only one input to the

Logic block. This also reduces the number of

required Routing blocks by 50%.

3) Top six. This optimization replaces the Rout-

ing blocks with new Routing blocks capable

of handling the six most frequently used state

elements. We observe that 76% of invariants

require the same six ISA-level state items.

4) Both. This includes the two previous

optimizations.

Figure 3. Hardware overheadwith respect to the number of

assertions supported by the configurable assertion fabric,

evaluated at four optimization levels. The range in the number of

assertions represents the range in protection required by the

processors in our analyzed set from AMD. The vertical line

represents the average number of assertions required to protect

the processors in our analyzed set. As a reference point, previous

work on deployed-bug patching entails hardware overheads of up

to 200%and run time overheads of up to 100% in the common case.
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USING FINALFILTER
Using FinalFilter requires hav-

ing a meaningful set of properties

to monitor. In prior work, we took

a manual approach to develop a

set of security critical properties.5

We studied errata documents to

learn what types of exploitable

errors can occur and we studied

the architecture’s specification

documents to develop a set of

properties necessary—though

not sufficient—to protect security critical state

of the processor.

In subsequent work, one of the authors has

developed a semiautomated method for learning

new security properties using information

gleaned from known exploitable bugs8; and

demonstrated that properties developed for one

RISC processor may be suitable for use, after

some translation, on a second RISC processor,

even across architectures.9 However, the devel-

opment of security-critical properties for use

with FinalFilter or any property-based verifica-

tion method is still in its infancy and more

research is needed.

Case Study

We configured FinalFilter with 18 assertions we

found to be critical to security in our prior work.5

We then introduced into the processor 14 vulner-

abilities from a mix of previously published ha-

rdware attacks and attacks based on exploitable

vulnerabilities from several years of AMD proces-

sor errata. For each one, we wrote a user-space

program that exploits the vulnerability and reports

if the attack was successful. FinalFilter is expres-

sive enough to implement all 18 invariants, and the

configured filter detects all of the attacks.

PRIOR WORK IN DYNAMIC
VERIFICATION

FinalFilter builds on a line of research that uses

dynamic verification to catch and patch func-

tional bugs postdeployment. For example, DIVA10

is a simplified checker core that verifies the com-

putation results of the full-featured core before

the processor commits the results to the ISA level.

Narayanasamy et al.11 use instruction rewriting

routines to avoid triggering a bug

that is found postdeployment.

In this article, we have not

addressed the problem of mea-

suring coverage. Boul�e et al. 12

add circuitry to assertions to

track and measure coverage. The

question of what is a meaningful

coverage metric for a set of secu-

rity properties is an open one,

but it is critical: such a measure

can give an indication of the

number of “unknown unknowns” that remain

unprotected.

CONCLUSION
Design-time verification alone is insufficient;

some exploitable vulnerabilities will make it

through. FinalFilter, a last line of defense—one

that can be formally verified—protects security

critical properties of the processor core. We

believe the idea is broadly applicable and in

future work will be exploring the use of a final fil-

ter for commercial architectures and for mod-

ules outside the processor core.
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