Operation of an Electrical Excited Synchronous Machine by Contactless Energy Transfer to the Rotor

Marcel Maier and Nejila Parspour

Abstract—This paper deals with the design, the setup, and the operation of a rotating contactless energy transfer (CET) system. The system is used to replace the slip rings of an electrical excited synchronous machine and to transfer energy onto the rotor of the machine without mechanical contact. A compensation topology with an autoresonant circuit to generate the high frequency voltage is presented. Furthermore, the required parameters of the CET system are calculated. Based on these calculations, the system consisting of the power electronics, the compensation network, the magnetic path, the control system, and the electrical excited synchronous machine with controller, is set up. Finally, the calculated parameters are verified by measurements.

Index Terms—DC–AC power converters, electric machines, inductive power transmission, power electronics, resonant inverters, synchronous machines.

I. INTRODUCTION

DURING the electrification of the automotive technology, permanent magnet synchronous machines are the most contemplated type of traction drive. Beside a high torque and power density, permanent magnet synchronous machines also have several characteristics, which are not desired for the use in electric cars. The main common safety issue of permanent magnetic synchronous machines is the high induced voltage in the case of a lack of control over the power electronics in high speed operation [1]. A reasonable alternative to these machines are electrical excited synchronous machines, which use electromagnets to generate the rotor flux and offer a constant power operation over a wide speed range, by field weakening [2]–[5]. Mechanical slip rings offer a simple solution to conduct current onto the rotor field winding but maintenance and debris issues are unacceptable for many applications [6]–[8]. Compared to slip rings, rotating contactless energy transfer (CET) systems provide a reliable and maintenance-free solution [9]–[11].

In recent years, inductive power based CET systems have been established in many technical applications, e.g., to avoid plug connections or for rotating transformers [12], [13].

There are efforts to establish industrial standards like Qi from Wireless Power Consortium [14] for low power applications or WiPT for charging electrical vehicles [15]. Nevertheless, CET is still an important field of research [16]–[18].

Using a CET system instead of slip rings to operate an electrical excited synchronous machine (iEESM) implies some differences compared to well established applications, like battery charging or voltage stable power supply [19], [20]. The task of the CET-system, besides transferring energy to the rotor, is also to enable an accurate control of the rotor side excitation current. Due to high temperature and high rotational speed and associated high forces, it is advisable to avoid as many electronic parts on the rotor as possible. Hence, the current on the rotor has to be controlled using measured values and active components on the stator side. The CET system proposed in this paper does not contain ferrite parts for flux guidance or active electronics on the secondary side and therewith on the rotating part. Considering high temperature and high centrifugal forces this approach offers decisive advantages. Fig. 1 shows an exploded view of such a system. The first part of this paper shows the theoretical fundamentals of the proposed system. Then the transfer functions of a primary side serial, secondary side parallel compensated system (1s2p-system), and a primary side parallel, secondary side parallel compensated system (1p2p-system) are presented. Different possibilities of the arrangement of the compensation network are shown and evaluated for this use case. Furthermore, the parameters of the designed CET-system are calculated and the experimental setup on a test bench is described. At last, the experimental results are discussed and a conclusion is given.

Manuscript received September 4, 2017; revised February 23, 2018; accepted March 2, 2018. Date of publication March 9, 2018; date of current version July 17, 2018. Paper 2017-EMC-1050.R1, presented at the 17th International Conference on Power Electronics and Motion Control, Varna, Bulgaria, Sep. 25–30, 2016, and approved for publication in the IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS by the Electric Machines Committee of the IEEE Industry Applications Society. (Corresponding author: Marcel Maier.)

The authors are with the Institute of Electrical Energy Conversion, University of Stuttgart, Stuttgart 70569, Germany (e-mail: marcel.maier@iew.uni-stuttgart.de; parspour@iew.uni-stuttgart.de).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIA.2018.2814558
simplifies the calculation. Furthermore, it is advantageous to calculate the 1s2p-system with H-parameters [23]

\[
H_{11} = j\omega L_1 (1 - k^2) \quad H_{12} = k \sqrt{\frac{L_1}{L_2}}
\]

\[
H_{21} = -k \sqrt{\frac{L_1}{L_2}} \quad H_{22} = \frac{1}{\omega} \sqrt{\frac{L_2}{L_1}} - j \frac{k^2 L_1}{L_2}
\]

Based on the equivalent circuit shown in Fig. 3 and (1), the input impedance \( Z_{IN} \) is calculated

\[
Z_{IN} = \frac{U_{IN}}{I_{IN}} = \frac{1}{j\omega C_{1s}} \left[ 1 + j\omega L_1 (1 - k^2) + \frac{k^2 L_1}{L_2} \right] = \frac{1}{j\omega L_2} \frac{1}{\frac{1}{\omega} L_1 k} + j\omega C_{2p} + j \frac{k^2 L_1}{L_2}.
\]

Setting the reactance \( X_1 \) and the susceptance \( B_2 \) to zero leads to the following compensation capacities \( C_{1s} \) and \( C_{2p} \) [23]:

\[
C_{1s} = \frac{1}{\omega^2 L_1 (1 - k^2)} \quad C_{2p} = \frac{1}{\omega^2 L_2}.
\]

In this design, there are up to three resonance frequencies, depending on the value of the equivalent load resistance \( R_L \). Setting the imaginary part of \( Z_{IN} \) to zero leads to these resonance frequencies and to the characteristic equivalent load resistance \( R_{L,c} \). Two resonance frequencies \( \omega_{ph1} \) and \( \omega_{phH} \) exist only for equivalent load resistances greater than the characteristic equivalent load resistance \( R_L > R_{L,c} \).

\[
\omega_{ph0} = \omega_0 \quad \omega_{ph1} < \omega_0 \quad \omega_{phH} > \omega_0
\]

\[
R_{L,c} = \omega_0 L_2 \left( \frac{1}{k^2} - 1 \right) \approx \frac{\omega_0 L_2}{k}.
\]

Afterward the input impedance \( Z_{IN} \), the voltage transfer function \( M_U = \frac{|U_1|}{|U_{IN}|} \), and the transadmittance \( M_Y = \frac{|L_1|}{|L_{IN}|} \) can be calculated for these resonant frequencies. This yields to (6)–(8) for \( \omega_{ph0} \)

\[
Z_{IN} = \frac{U_{IN}}{I_{IN}} = R_L k^2 L_1 \quad M_U = \frac{|U_1|}{|U_{IN}|} = \frac{1}{k} \sqrt{\frac{L_2}{L_1}} \quad M_Y = \frac{|L_1|}{|L_{IN}|} = \frac{1}{R_L k} \sqrt{\frac{L_2}{L_1}}
\]

and to (9)–(11) for \( \omega_{ph1} \) and \( \omega_{phH} \)

\[
Z_{IN} = \frac{U_{IN}}{I_{IN}} = \omega_0^2 L_1 L_2 (1 - k^2) \quad M_U = \frac{|U_1|}{|U_{IN}|} = \frac{R_L}{\omega_0 \sqrt{L_1 L_2 (1 - k^2)}} \quad M_Y = \frac{|L_1|}{|L_{IN}|} = \frac{1}{\omega_0 \sqrt{L_1 L_2 (1 - k^2)}}.
\]

Fig. 4 shows the transfer functions, when driving the circuit with a stable resonance frequency, which is \( \omega_{ph0} \), \( \omega_{ph1} \), and \( \omega_{phH} \) for \( R_L \geq R_{L,c} \) and \( \omega_{ph0} \) otherwise.
In this design, there are up to three resonant frequencies, depending on the value of the equivalent load resistance $R_L$. Setting the imaginary part of $Y_{IN}$ to zero leads to these resonance frequencies and to the characteristic equivalent load resistance $R_{L,c}$:

$$
\omega_{ph0} = \omega_0, \quad \omega_{phL} < \omega_0, \quad \omega_{phH} > \omega_0
$$

(15)

$$
R_{L,c} = \frac{\omega_0 L_2 (1 - k^2)}{\sqrt{2 - 2\sqrt{1 - k^2}}} \approx \frac{\omega_0 L_2}{k}.
$$

(16)

Afterward the input impedance $Z_{IN}$, the voltage transfer function $M_U = \frac{|U_1|}{|U_{IN}|}$ and the current transfer function $M_I = \frac{|I_1|}{|I_{IN}|}$ are calculated for these resonant frequencies. This yields to (17)–(19) for $\omega_{ph0}$

$$
Z_{IN} = \frac{U_{IN}}{I_{IN}} = \frac{\omega_0^2 L_1 L_2 (1 - k^2)^2}{R_L k^2},
$$

(17)

$$
M_U = \frac{|U_1|}{|U_{IN}|} = \frac{R_L k}{\omega_0 \sqrt{L_1 L_2 (1 - k^2)}},
$$

(18)

$$
M_I = \frac{|I_1|}{|I_{IN}|} = \frac{\omega_0 \sqrt{L_1 L_2 (1 - k^2)}}{R_L k},
$$

(19)

and to (20)–(22) for $\omega_{phL,phH}$

$$
Z_{IN} = \frac{U_{IN}}{I_{IN}} = \frac{R_L L_1}{L_2},
$$

(20)

$$
M_U = \frac{|U_1|}{|U_{IN}|} = \sqrt{\frac{L_2}{L_1}},
$$

(21)

$$
M_I = \frac{|I_1|}{|I_{IN}|} = \sqrt{\frac{L_1}{L_2}},
$$

(22)

Fig. 6 shows the curves, when driving the circuit with a stable resonance frequency, which is $\omega_{ph0}$, $\omega_{phL}$, and $\omega_{phH}$ for $R_L \geq R_{L,c}$ and $\omega_{ph0}$ otherwise.

D. Selection of a Topology

To define an operation range of the CET-system, first the topology of the primary side compensation network has to be chosen. Therefore, all requirements for the transfer behavior and the load have to be considered. It is advantageous to choose an operation range where the current transfer function $M_I = \frac{|I_1|}{|I_{IN}|}$ or the transadmittance $|Y_T| = \frac{|I_1|}{|U_{IN}|}$ are continuous over a variable equivalent load resistance $R_L$. The operation mode with a resonance frequency $\omega = \omega_{phL,phH}$ at
the 1s2p-system and the operation mode with a frequency $\omega = \omega_{ph0}$ at the 1p2p-system are matching the desired behavior of the transfer functions. The setup, calculation, and measurements of the 1s2p-system with a half-bridge inverter is already presented in [20]. Therefore, an inverter setup to drive the 1p2p-system is chosen [24] and will be investigated further. For a 1p2p-system, the equivalent load resistance $R_L$ has to be greater than the characteristic equivalent load resistance $R_{L,c}$, but as close to $R_{L,c}$ as possible. If it differs too much, the maximum transferable power and the efficiency will decrease. The operation range is shown in Fig. 6.

Furthermore, it has to be considered that the equivalent load resistance of the system $R_L$, which is proportional to the resistance of the excitation winding $R_{rotor}$, depends on the temperature and can change during operation. But as the operation range has a hard lower limit and a soft upper limit, only the minimal temperature and thereby the minimal equivalent load resistance $R_{L,min}$ has to be defined. This minimal temperature depends on the application area and has to be considered in the calculation.

### III. SYSTEM DESIGN

Fig. 7 shows the equivalent circuit of the complete system and all necessary parameters, which are used to calculate the 1p2p-system. The equivalent circuit for the 1s2p-system is shown in [20].

#### A. Calculation of the 1s2p-System

To calculate the parameters of the CET-system, the parameters of the iEESM and other basic parameters are required (see Table I). The calculation of the 1s2p-system parameters is already shown in [20]. Table II shows an overview of all calculated parameters.

#### B. Calculation of the 1p2p-System

To calculate the parameters of the 1p2p-system, some additional parameters to the parameters in table I are required (see Table III).

1) Equivalent Load Resistance: The transmission ratio between the equivalent load resistance $R_L$ and the actual resistance of the rotor of the iEESM $R_{rotor}$ depends on the topology of the rectifier and the compensation topology. For the described CET-system with a secondary side parallel compensation, a full-wave rectifier with the following transmission ratio is established [18]:

$$R_L = R_{rotor} \frac{\pi^2}{8} \approx \frac{1}{0.81} \cdot R_{rotor}. \quad (23)$$

2) Equivalent Output Current: The transmission ratio between the equivalent current $I_L$ and the current of the rotor of the iEESM $I_{rotor}$ depends both on the topology of the rectifier and the compensation. It is calculated using the transmission ratio of the resistances

$$I_L = I_{rotor} \frac{\sqrt{8}}{\pi} \approx 0.9 \cdot I_{rotor}. \quad (24)$$

3) Equivalent Input Voltage: The transmission ratio between the equivalent voltage $U_{IN}$ and the dc-link voltage $U_{DC}$ depends on the topology of the inverter and the compensation. For this CET-system with a primary side parallel compensation, a Royer converter with the following transmission ratio is established [23]:

$$I_{IN} = I_{DC} \frac{\sqrt{2}}{\pi}. \quad (25)$$

4) Secondary Side Inductance: According to (16), the constant coupling factor $k$ and the constant design frequency $\omega_0$, the inductance of the secondary side coil $L_2$ directly affects the characteristic equivalent load resistance $R_L$. To meet the optimal operation range as shown in Fig. 6, the secondary side inductance $L_2$ is calculated by transforming (16)

$$L_2 = \frac{R_{L,c} \sqrt{2 - 2 \sqrt{1 - k^2}}}{\omega_0 (1 - k^2)} \leq \frac{R_L \sqrt{2 - 2 \sqrt{1 - k^2}}}{\omega_0 (1 - k^2)}. \quad (26)$$
TABLE IV  
CALCULATED PARAMETERS OF THE CET-SYSTEM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_L$</td>
<td>Resistance of the equivalent load at 20°C</td>
<td>6.17Ω</td>
</tr>
<tr>
<td>$R_{L,150}$</td>
<td>Resistance of the equivalent load at 150°C</td>
<td>9.87Ω</td>
</tr>
<tr>
<td>$</td>
<td>I_{L,\text{max}}</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>U_{IN}</td>
<td>$</td>
</tr>
<tr>
<td>$L_2$</td>
<td>Secondary side inductance</td>
<td>3.98 μH</td>
</tr>
<tr>
<td>$L_1$</td>
<td>Primary side inductance</td>
<td>15.92 μH</td>
</tr>
</tbody>
</table>

5) **Primary Side Inductance**: The inductance of the primary coil is found using (22)

$$L_1 = \frac{|I_L|^2}{|U_{IN}|} L_2. \quad (27)$$

6) **Overview of the Calculated Parameters**: Table IV shows the calculated parameters.

IV. **EXPERIMENTAL SETUP**

To verify the operation of an iEESM, the CET-system was constructed and adapted to an electrical excited synchronous machine and put in operation on a test bench for electrical machines. Fig. 8 shows an overview of all components of this test bench. The iEESM is coupled with an induction machine. The three stator phases of the iEESM are fed by a six pulse inverter. The insulated gate bipolar transistors are controlled by a pulse-width modulated voltage signal with up to 18 kHz switching frequency. The 600 V dc power supply is provided by an active front end, connected to the three phase grid. The control algorithm for the field oriented control of the iEESM is done in MATLAB/Simulink and built in a digital signal processor of the rapid prototyping environment MicroAutoBox II by dSPACE. Malfunction monitoring and analog signal detection is done with complex programmable logic device-based signal and safety electronics, developed at the Institute of Electrical Energy Conversion, University of Stuttgart (IEW Mainboard).

As explained in Section III, the CET-system has a Royer converter on the primary side and a full bridge rectifier on the secondary side. The input current $I_{DC}$ and therewith the rotor current $I_{\text{rotor}}$ is controlled by a buck converter connected to the input pins of the Royer converter.

A. **Electrical Excited Synchronous Machine**

Fig. 9 shows the electrical excited synchronous machine with the adapted CET-system. The electrical machine has a power output of about 60 kW and a maximum rotational speed of about 10 000 rpm.

B. **Magnetic Path**

Fig. 10 shows the draft of the magnetic path with the housing, the soft magnetic ferrite, nonmagnetic materials for mechanical reasons and the rotor and stator windings. Using finite element method (FEM) simulations in two-dimensional (2-D) and 3-D, the geometry and the dimension were optimized for the 1p2p CET-system. Compared to the 1s2p prototype, presented in [20], the dimensions of the active part of the energy transfer system could be reduced by about half. Although, this reduction leads to higher eddy current losses in the aluminum, the advantages of the smaller dimensions dominate in this purpose. Fig. 11 shows the cross-sectional view of the optimized geometry.

Due to the high rotational speed, a construction without ferrite material on the rotor is developed. To protect the rotor coil against the centrifugal force, a glass fiber bandage is wrapped around the coil and both, the coil and the glass fiber bandage, are...
potted in epoxy resin. Therewith, the rotor consists only of an aluminum pulley and a potted construction of copper and glass fiber.

C. Power Electronics of the CET-System

On the primary side, a Royer converter converts direct voltage in alternating voltage. The circuit works autoresonant with a resonance frequency, defined by the capacitor \( C_{1p} \), the inductance \( L_1 \), and the coupled secondary side magnetic path. For the first time, the circuit was developed and patented in 1954 by George Howard Royer and Richard Louis Bright [25]. An improved highly efficient variant is shown in Fig. 12 [24].

Due to the zero current switching and the high efficient gate triggering using MOSFETs, this converter can reach very high overall efficiencies. The coil with center tap \( L_1 \) is serving as the primary side of the transmission path for the CET-system. The capacitor \( C_{1p} \) is connected in parallel. The resonance frequency of the parallel resonant circuit is also the frequency for energy transfer and can be designed by varying the capacity. Basically, the Royer converter with high efficient gate triggering consists of four MOSFETs (\( Q_1, Q_2, Q_3, Q_4 \)). The MOSFETs \( Q_1 \) and \( Q_2 \) drive the active power of the system and the MOSFETs \( Q_3 \) and \( Q_4 \) provide the high efficient gate triggering of \( Q_1 \) and \( Q_2 \). The source pins of \( Q_1 \) and \( Q_2 \) are always connected to ground. The inductor \( L_{DR} \) forms, in combination with a buck converter, the constant current source. Therefore, \( L_{DR} \) should be at least ten times bigger than \( L_1 \). The buck converter can be used to control either the input voltage or the input current of the Royer converter. Fig. 13 shows the connection of the buck converter and the Royer converter. To optimize the system and reduce the amount of electronic components, the inductance \( L_{DR} \) is used both as current source for the Royer converter and as an inductor for the buck converter. Fig. 14 shows the circuit board of the buck converter, connected to the IEW Mainboard with a fiber optic cable and the Royer converter.

V. MEASUREMENT AND RESULTS

To demonstrate that the inductance \( L_{DR} \) can be used as an inductor for the buck converter and as a current source for the Royer converter, Fig. 15 shows a measurement of the output voltage of the buck converter \( U_{DC} \) and the voltage of the parallel resonance circuit \( U_{C_{1p}} \). One can see that the voltage of the parallel resonance circuit \( U_{C_{1p}} \) is hardly affected by the switching state of the buck converter.

Fig. 16 shows the transmission ratio of the output voltage \( U_L \) and the input voltage \( U_{IN} \). The measured voltage transfer function is matching the ideal voltage transfer function, deduced in Section II-C, very well. The deviation is caused by losses in the system. Simplified, the losses can be divided into serial loss resistances and parallel loss resistances. The deviation in the voltage transfer function is only affected by serial loss resistances, e.g., voltage drop of diodes. To explain the measurement
Fig. 15. Measurement of the voltage of the buck converter and the voltage of the royer capacitor.

Fig. 16. Transmission ratio of the output voltage $U_L$ and the input voltage $U_{IN}$.

of the efficiency of the system, an FEM-Simulation of the system was done [26] and the current density of the simulation is shown in Fig. 17. As Fig. 17 shows, there is a current density unequal to zero in the coils and in the aluminum. Due to the ferrite free rotor and the reduction of the dimension of the magnetic path, not negligible current densities and therewith losses occur in the aluminum parts.

Fig. 18 shows the overall efficiency of the CET-system for different rotor resistances $R_{rotor}$, which is, as expected, lower than it would be possible with smaller eddy current losses in the aluminum.

Fig. 19. Simplified equivalent circuit with the parallel loss resistance $R_V$.

Due to a constant current transfer function $M_I = \sqrt{\frac{L_L}{L_I}}$ for $\omega = \omega_{phL,phH}$, the equivalent load resistance $R_V$ is converted to a primary side resistance $R'_L = M_I^2 R_L$. The loss resistance $R_V$ was measured with a LCR-meter and is $R_V = 180 \, \Omega$. Considering this simplified loss model and the measured parallel loss resistance $R_V$, the current transfer function $M_I$ is adapted to

$$M_{I,R_V} = \frac{R_V}{R_V + R'_L} M_I.$$  (28)

Fig. 20 shows the transmission ratio of the output current $I_L$ to the input current $I_{IN}$ depending on the equivalent load resistance $R_L$. 

Regarding the rated power of 40 kW of the electrical excited synchronous machine (EESM) the losses of about 100 W have a very small influence on the efficiency of the EESM, but the losses influence the transmission behavior of the CET-system. The eddy current losses and the copper losses of the parallel resonant circuit are modeled as a parallel loss resistance $R_V$ on the primary side (see Fig. 19).
Fig. 20. Transmission ratio of the output current $I_O$ and the input voltage $U_{IN}$.

Fig. 21. Overall efficiency of the iEESM.

One can see, that the measured transfer function is matching the ideal transfer function with losses very well. To prove the low influence of the efficiency of the CET-system, the overall efficiency of the iEESM was measured and is shown in Fig. 21.

VI. CONCLUSION

In order to evaluate the performance of an electrical excited synchronous machine with CET to the rotor, the design, the setup, and measurements of such an iEESM are shown. First of all, the transfer behaviors of a 1s2p-system and a 1p2p-system are discussed and the optimal operation ranges of those systems are defined. Furthermore, the parameters for the 1p2p CET-system depending on the parameters of an iEESM are calculated and a magnetic path and power electronics are built. In the final step, the complete system is set up on a test bench and measurements for the switching behavior, the transmission ratio, the efficiency of the CET-system, and the overall efficiency of the iEESM are made. One can see that a system using only one inductor for a buck converter and a Royer converter is working very well. Furthermore, the measured transmission ratios of the CET-system are matching very well to the theoretically calculated ratios. Therewith, a rotating CET-system with many advantages over conventional solutions was built and tested. As the rotor is without ferrite parts, it can be built very stable and easy to balance. Due to the segmented construction of the flux leading material, the dimension and the rated power can be varied easily. Overall, it is shown that this novel rotating CET-system offers the possibility of using inductive electrical excited synchronous machines for electrical vehicles.


Marcel Maier received the Dipl. Ing. degree in electrical engineering and information technology. He was born on June 26, 1986, in Heidelberg, Germany. He graduated from the secondary school, Sindelfingen, Germany, and studied electrical engineering at the University of Stuttgart, Stuttgart, Germany.

Since 2012, he has been with the Institute of Electrical Energy Conversion, University of Stuttgart. His research interest focuses on rotating contactless energy transfer systems for electrical excited synchronous machines.

Nejila Parspour received the Master's and the Ph.D. (summa cum laude) degrees in electrical engineering from the Technical University of Berlin, Berlin, Germany, in 1991 and 1995, respectively.

She is currently a Professor in electrical energy conversion with the University of Stuttgart, Stuttgart, Germany, and the Head of the Institute of Electrical Energy Conversion. Before joining the University of Stuttgart, she was with the Philips for five years and six years with the University of Bremen. Her research and teaching interests include electrical machines and drives with a focus on machine design and in the field of contactless energy transfer with a focus on inductive charging systems.