Using the Standard Linear Ramps of the CMS Superconducting Magnet for Measuring the Magnetic Flux Density in the Steel Flux-Return Yoke

Vyacheslav Klyukhin,1,2 Benoit Curé,2 Nicola Amapane,3 Austin Ball,2 Andrea Gaddi,2 Hubert Gerwig,2 Alain Hervé,4 Richard Loveless,4 and Martijn Mulders2

1Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
2CERN, Geneva, Switzerland
3INFN Turin, University of Turin, Turin, Italy
4Department of Physics, University of Wisconsin, Madison, WI 53706 USA

The principal difficulty in large magnetic systems having an extensive flux-return yoke is to characterize the magnetic flux distribution in the yoke steel blocks. Continuous measurements of the magnetic flux density in the return yoke are not possible and the usual practice uses software modeling of the magnetic system with special 3-D computer programs. The 10 000 t flux-return yoke of the Compact Muon Solenoid (CMS) magnet encloses a 3.8 T superconducting solenoid with a 6 m diameter by 12.5 m length free bore and consists of five dodecagonal three-layered barrel wheels around the coil and four endcap disks at each end. The yoke steel blocks, up to 620 mm thick, serve as the absorber plates of the muon detection system. A magnetostatic 3-D model of the CMS magnet has been developed to describe the magnetic field outside the solenoid volume, which was measured with a field-mapping machine. To verify the magnetic flux distribution calculated in the yoke steel blocks, direct measurements of the magnetic flux density with 22 flux loops installed in the selected regions of the yoke were performed during the CMS magnet test in 2006 when four “fast” discharges of the CMS coil (190 s time constant) were triggered manually to test the magnet protection system. No fast discharge of the CMS magnet from its operational current of 18.2 kA, which corresponds to a central magnetic flux density of 3.8 T, has been performed at that time. For the first time, in this paper, we present measurements of the magnetic flux density in the steel blocks of the return yoke based on the several standard linear discharges of the CMS magnet from the operational magnet current of 18.2 kA. To provide these measurements, the voltages induced in the flux loops (with amplitudes of 20–250 mV) have been measured with six 16 bit data acquisition modules and integrated offline over time. The results of the measurements during magnet linear ramps performed with a current rate as low as 1–1.5 A/s are presented and discussed.

Index Terms—Electromagnetic modeling, flux loops, Hall effect devices, magnetic field measurement, magnetic flux density, measurement techniques, superconducting magnets.

I. INTRODUCTION

The principal difficulty in large magnetic systems having an extensive flux-return yoke [1], [2] is to characterize the magnetic flux distribution in the yoke steel blocks. Continuous measurements of the magnetic flux density in the return yoke are not possible, and the usual practice uses software modeling of the magnetic system with special 3-D computer programs [3], [4]. The magnetic flux density in the central part of the Compact Muon Solenoid (CMS) detector [2], one of the large physics detectors located at the Large Hadron Collider (LHC) at CERN, Geneva, Switzerland, was measured with a precision of 7×10^{-4} with a field-mapping machine [5] before the solenoidal volume was filled with physics detectors. The magnetic flux everywhere outside of this measured volume was estimated by a 3-D magnetic field model with the program TOSCA [6] from Cobham CTS Limited, Wimborne, U.K. This model reproduced the magnetic flux density distribution measured with the field-mapping machine inside the CMS coil to within 0.1% [7].

To verify the magnetic flux distribution calculated in the yoke steel blocks, direct measurements of the magnetic flux density in the selected regions of the yoke were performed during the CMS magnet test in 2006 when four “fast” discharges of the CMS coil (190 s time constant) were triggered manually to test the magnet protection system. These discharges were used to induce voltages with amplitudes of 0.5–4.5 V in 22 flux loops wound around the yoke blocks in special grooves, 30 mm wide and 12–13 mm deep. The loops have 7–10 turns of 45 wire flat ribbon cable and the cross sections of areas enclosed by the flux loops vary from 0.3 to 1.59 m2 on the yoke barrel wheels and from 0.5 to 1.12 m2 on the yoke endcap disks [8]. An integration technique [9] was developed to reconstruct the average initial magnetic flux density in the cross sections of the steel blocks at full magnet excitation.

The comparisons of the magnetic flux densities measured with the flux loops during the CMS coil fast discharges and the magnetic field values computed with the CMS magnet model are presented elsewhere [8], [10]. At the time, those papers were published no fast discharge of the CMS magnet from its operational current of 18.2 kA, which corresponds to a central magnetic flux density of 3.8 T, had been performed.

II. MATERIALS AND METHODS

A. Upgrading the Flux Loop Readout System

During the LHC long shutdown of 2013/2014, the readout system of the flux loop voltages was upgraded to replace the 12 bit USB-1208LS data acquisition (DAQ) modules from

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
The CMS magnet model used for the magnetic field map preparation and for the comparisons with the measurements was modified to include all the ferromagnetic parts beyond the central magnet yoke as well as the electrical current leads for the solenoid coil, as shown in Fig. 1.

The coordinate system used in this paper corresponds to the CMS reference system, where the x-axis is aligned in the horizontal plane toward the LHC center on the near side of the CMS detector, the y-axis is aligned upward, and the z-axis coincides with the superconducting coil axis and has the same direction as the positive axial component of the magnetic flux density.

To perform comparisons with the measurements presented in this paper, the magnetic flux density was calculated in the areas where the measuring devices are located on the CMS yoke steel blocks. In addition to the flux loops, the magnetic flux density was also measured with the 3-D Hall sensors installed between the barrel wheels and on the first endcap disk at the axial z-coordinates of $1.273, -1.418, -3.964, -4.079, -6.625$, and -7.251 m. The sensors are aligned in rows at the vertical y-coordinates of $-3.958, -4.805, -5.66$, and -6.685 m [10] on two sides of the magnet yoke: the near side toward the LHC center (positive x-coordinates) and the far side opposite to the LHC center (negative x-coordinates). The x-coordinates of the Hall probes are within the flux loop areas but near the edges of the flux loops. In the present analysis, the 3-D Hall sensors installed on the inner surfaces of both CMS yoke nose disks inside the coil were also used. The layout of the flux loops and the 3-D Hall probes has been reported elsewhere [11].

C. CMS Magnet Model Crosschecks

To crosscheck the model, a comparison of the magnetic flux density from the model to the measurements done with four nuclear magnetic resonance (NMR) probes and four 3-D Hall sensors installed inside the solenoidal volume was made at the operational current of 18.2 kA. Two NMR probes are located near the coil middle plane at the z-coordinates of 0.006 m and radii of 2.9148 m; another two probes are installed on the CMS tracker faces at the z-coordinates of -2.835 m and $+2.831$ m and radii of 0.651 m. Four 3-D Hall sensors are located on the CMS tracker faces at the z-coordinates of -2.899 m and $+2.895$ m and radii of 0.959 m. The averaged precision of the NMR-probe measurements was $(5.2 \pm 1.3) \times 10^{-5}$ T and that of the 3-D Hall sensors was $(3.5 \pm 0.5) \times 10^{-5}$ T. The averaged relative differences between the modeled and measured values of the magnetic flux density were $(-5.6 \pm 1.7) \times 10^{-4}$ at the NMR-probe locations, and $(-2.4 \pm 4.0) \times 10^{-4}$ at the 3-D Hall sensor locations. This close result verifies that the CMS model provides a good description of the magnetic flux distribution inside the solenoidal volume.

III. RESULTS AND DISCUSSION

The ramping of the CMS magnet occurs only a few times in a year, so collecting data for the flux loop measurements is a challenging procedure. The measurements used for the present comparisons were obtained in three CMS magnet standard discharges from a current of 18.2 kA to 0 kA, carried out in 2015 and 2016, as shown in Fig. 2.

The first discharge, on July 17 and 18, 2015, was made with a constant current ramp down rate of 1.5 A/s to a current...
Fig. 2. CMS magnet current discharges from 18.2 to 0 kA made on July 17 and 18, 2015 (blue smooth line), September 21 and 22, 2015 (green dashed line), September 10, 2016 (red small dashed line), and November 30, 2017 (pink dotted line).

Fig. 3. Induced voltage (left scale, noisy curve) and the integrated average magnetic flux density (right scale, smooth curve) in the cross section at $Z = -2.691$ m of the first layer block of the barrel wheel adjacent to the central wheel.

of 1 kA, and after a pause of 42 s, the fast discharge of the magnet was triggered manually to end the ramp down. The measurements of the voltages induced in the flux loops (with maximum amplitudes of 20–250 mV) were integrated over 15 061.5 s in the flux loops located on the barrel wheels and over 15 561.5 s in the flux loops located on the endcap disks. The preliminary results obtained in this particular magnet ramp down have been published elsewhere [12].

The typical induced voltage in the first magnet ramp down, together with the integrated average magnetic flux density, is shown in Fig. 3. The rapid maximum and minimum voltage at 11 445 s corresponds to the pause in the ramp down at a current of 1 kA, and the following transition from the standard ramp down to the fast discharge of the magnet on the external resistor.

The second magnet discharge, on September 21 and 22, 2015, was performed with two constant ramp down rates: 1 A/s to a current of 14.34 kA (3 T central magnetic flux density), and 1.5 A/s to a current of 1 kA.

The third magnet discharge, on September 10, 2016, was similar but the current at which the rate transitioned from 1 to 1.5 A/s was 12.48 kA. Changing the current rates was required by the cryogenic system operational conditions. In both these magnet ramp downs, the fast discharges were triggered from a current of 1 kA, and the offline integration of the induced voltages was performed over 17 000 s.

In Figs. 4–6, the measured values (filled markers) of the magnetic flux density versus z- and y-coordinates are displayed and compared with the field values computed by the CMS model (open markers) at the operational current of 18.2 kA. The lines shown in Figs. 4 and 5 represent the magnetic flux densities modeled along the lines across the xy-coordinates of the Hall sensors those are from 0.155 to 1.325 m away of the flux loop central xy-coordinates.

These comparisons give the following differences between the modeled and measured values of the magnetic flux densities in the flux loop cross sections: 4.3% ± 7.0% in the barrel wheels and −0.6% ± 3.0% in the endcap disks.

The errors of the magnetic flux density measured with the flux loops include the standard deviation in the set of three measurements (11 ± 10 mT or 0.86% ± 0.69% on average) and a systematic error of ±3.6% arising from the flux loop conductor arrangement. The difference between the modeled and the measured magnetic flux density in the 3-D Hall sensor locations is 3% ± 7%. The error bars of the 3-D Hall sensor measurements are ±(0.02 ± 0.01) mT.

After the latest measurements, comparisons of the calculated values of the magnetic flux density in the yoke steel blocks and the measured values obtained in 2006 with the fast discharges...
measurements confirms the correctness of the CMS magnetic

avoid the large eddy current contribution. Stability of these

it possible to use the standard ramps of the CMS magnet to

and a revision of the areas enclosed by the flux loops made

12 bit DAQ modules. An upgrade of the readout electronics

due to the reading of very small voltages with the previous

the standard magnet ramps has been made before upgrading

the flux loop readout system but gave very large errors

the flux loop measurements but gave very large errors

the endcap disks.

of at least 1%–2.5%, as was calculated [13]. Based on the

Flux loop measurements of the magnetic flux density in the

steel blocks of the CMS magnet yoke during a fast discharge

were exposed to eddy currents

amplitudes of 0.5–4.5 V but were exposed to eddy currents

current contributions to the 2006 measurements are estimated

to be 5.3% ± 4.9% in the barrel wheels and 5.5% ± 3.4% in the

endcap disks.

An attempt to reduce the eddy current contribution with an

integration of the voltages induced in the flux loops during

the standard magnet ramps has been made before upgrading

the flux loop readout system but gave very large errors

due to the reading of very small voltages with the previous

12 bit DAQ modules. An upgrade of the readout electronics

and a revision of the areas enclosed by the flux loops made

it possible to use the standard ramps of the CMS magnet to

avoid the large eddy current contribution. Stability of these

measurements confirms the correctness of the CMS magnetic

field description calculated with the CMS magnet model in

TOSCA.

IV. CONCLUSION

For the first time, reliable measurements of the magnetic flux
density in the steel blocks of the CMS magnet flux return

yoke have been made using the flux loop technique and the

standard magnet discharges from an operational current of

18.2 kA to 0 kA with a current ramp down rate of 1–1.5 A/s.

The precision of the measurements is compatible with that of

results obtained in 2006, which used the fast discharges of the

magnet from similar current values. These new measurements

confirm that the new DAQ system is able to monitor the

magnetic flux density in the CMS yoke during any standard

magnet ramp as well as prove that the latest CMS magnet

model provides us with reliable magnetic flux density values

across all the CMS detector volume.

ACKNOWLEDGMENT

This work was supported by the CMS Detector Technical

Coordination.

REFERENCES

[3] D. Denisov, V. Klioukhine, V. Korablyev, R. P. Smith, and R. Yamada,
“A comparison of the magnetic field programs TOSCA and GFUN3D
for the run II D0 detector magnet system,” D0 Internal Note no. 3874,
Batavia, IL, USA, pp. 1–8, Jun. 2001, unpublished.
[4] V. I. Klioukhine et al., “3D magnetic analysis of the CMS mag-
[5] V. I. Klyukhin et al., “Measurement of the magnetic field density in
[8] V. I. Klyukhin et al., “Measuring the magnetic flux density in the CMS
Apr. 2013.
[9] V. I. Klyukhin et al., “Developing the technique of measurements of
magnetic field in the CMS steel yoke elements with flux-loops and
[10] V. I. Klyukhin et al., “Validation of the CMS magnetic field map,”
CMS barrel yoke using cosmic rays,” J. Instrum., vol. 5, p. T03021,
[12] V. I. Klyukhin et al., “Flux loop measurements of the magnetic flux
density in the CMS magnet yoke,” J. Supercond. Novel Magn., vol. 30,
magnet yoke during the solenoid discharge,” IEEE Trans. Nucl. Sci.,