The Atlas pulsed power driver has recently been commissioned at Los Alamos National Laboratory. This paper provides an overview of the Atlas facility, its initial experimental program and plans for the future. The reader desiring more detailed information is referred to papers in this conference by Keinigs et al. on materials studies, Cochrane et a1.on machine performance and Ballard et a1. on fabrication and assembly. Atlas is a high current generator capable of driving 30 megamps through a low-inductance load. It has been designed to require minimal maintenance, provide excellent diagnostic access, and rapid turnaround. Its capacitor bank stores 23.5 megajoules in a four-stage Marx configuration which erects to 240 kV at maximum charge. It has a quarter-cycle time of 4.5 microseconds. It will typically drive cylindrical aluminum liners in a z-pinch configuration to velocities up to 10 mm/msec while maintaining the inner surface in the solid state. Diagnostic access includes 3600 of radial view as well as axial views from above and below. Atlas construction began in 1996 and high-current acceptance tests were completed in December of 2000. Initial shots include liner characterization shots using a target design similar to NTLX experiments (see several papers by Turchi et at, this meeting). These will be followed by experiments studying hydro features, useful for validating hydrodynamic algorithms used in weapons computer codes. DOE plans to relocate the Atlas generator to the Nevada Test Site as early as 2002, where it will continue its experimental program supporting the Stockpile Stewardship program and other users.
Abstract:
Summary form only given, as follows. The Atlas pulsed power driver has recently been commissioned at Los Alamos National Laboratory. The paper provides an overview of the...Show MoreMetadata
Abstract:
Summary form only given, as follows. The Atlas pulsed power driver has recently been commissioned at Los Alamos National Laboratory. The paper provides an overview of the Atlas facility, its initial experimental program and plans for the future. The reader desiring more detailed information is referred to papers in this conference by Keinigs et al. on materials studies, Cochrane et al. on machine performance and Ballard et al. on fabrication and assembly. Atlas is a high current generator capable of driving 30 megamps through a low-inductance load. It has been designed to require minimal maintenance, provide excellent diagnostic access, and rapid turnaround. Its capacitor bank stores 23.5 megajoules in a four-stage Marx configuration which erects to 240 kV at maximum charge. It has a quarter-cycle time of 4.5 microseconds. It will typically drive cylindrical aluminum liners in a z-pinch configuration to velocities up to 10 mm/msec while maintaining the inner surface in the solid state. Diagnostic access includes 3600 of radial view as well as axial views from above and below. Atlas construction began in 1996 and high-current acceptance tests. were completed in December of 2000. Initial shots include liner characterization shots using a target design similar to NTLX experiments (see several papers by Turchi et al., this meeting). These will be followed by experiments studying hydro features, useful for validating hydrodynamic algorithms used in weapons computer codes. DOE plans to relocate the Atlas generator to the Nevada Test Site as early as 2002, where it will continue its experimental program supporting the Stockpile Stewardship program and other users.
Date of Conference: 17-22 June 2001
Date Added to IEEE Xplore: 07 August 2002
Print ISBN:0-7803-7141-0
Citations are not available for this document.
Cites in Papers - |
Cites in Papers - IEEE (1)
Select All
1.
D.A. Clark, B.G. Anderson, G. Rodriguez, J.L. Stokes, L.J. Tabaka, "Liner velocity, current, and symmetry measurements on the 32 megamp flux compression generator experiment ALT-1", PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No.01CH37251), vol.2, pp.1390-1393 vol.2, 2001.