Loading [MathJax]/extensions/MathZoom.js
Context-Aware Synthesis for Video Frame Interpolation | IEEE Conference Publication | IEEE Xplore

Context-Aware Synthesis for Video Frame Interpolation


Abstract:

Video frame interpolation algorithms typically estimate optical flow or its variations and then use it to guide the synthesis of an intermediate frame between two consecu...Show More

Abstract:

Video frame interpolation algorithms typically estimate optical flow or its variations and then use it to guide the synthesis of an intermediate frame between two consecutive original frames. To handle challenges like occlusion, bidirectional flow between the two input frames is often estimated and used to warp and blend the input frames. However, how to effectively blend the two warped frames still remains a challenging problem. This paper presents a context-aware synthesis approach that warps not only the input frames but also their pixel-wise contextual information and uses them to interpolate a high-quality intermediate frame. Specifically, we first use a pre-trained neural network to extract per-pixel contextual information for input frames. We then employ a state-of-the-art optical flow algorithm to estimate bidirectional flow between them and pre-warp both input frames and their context maps. Finally, unlike common approaches that blend the pre-warped frames, our method feeds them and their context maps to a video frame synthesis neural network to produce the interpolated frame in a context-aware fashion. Our neural network is fully convolutional and is trained end to end. Our experiments show that our method can handle challenging scenarios such as occlusion and large motion and outperforms representative state-of-the-art approaches.
Date of Conference: 18-23 June 2018
Date Added to IEEE Xplore: 16 December 2018
ISBN Information:

ISSN Information:

Conference Location: Salt Lake City, UT, USA
Citations are not available for this document.

1. Introduction

Video frame interpolation is one of the basic video processing techniques. It is used to generate intermediate frames between any two consecutive original frames. Video frame interpolation algorithms typically estimate optical flow or its variations and use them to warp and blend original frames to produce interpolation results [1], [24], [33].

Cites in Papers - |

Cites in Papers - IEEE (217)

Select All
1.
Chee-Kim Gan, Jian-Jiun Ding, Chang-Yu Hsieh, De-Yan Lu, "Exploiting Attention-to-Motion via Transformer for Versatile Video Frame Interpolation", ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1-5, 2025.
2.
Luiz Henrique Cancellier, André Beims Bräscher, Ismael Seidel, Mateus Grellert, Luís A. da Silva Cruz, José Luís Güntzel, "Asymmetric Multi-Layer Compression: Decoupling Inter-Layer Coding Dependencies With a Learned Model", IEEE Access, vol.13, pp.31671-31682, 2025.
3.
Bo Zhang, Jinli Suo, Qionghai Dai, "Event-Enhanced Snapshot Compressive Videography at 10K FPS", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.47, no.2, pp.1266-1278, 2025.
4.
Bin Fan, Ying Guo, Yuchao Dai, Chao Xu, Boxin Shi, "Self-Supervised Learning for Rolling Shutter Temporal Super-Resolution", IEEE Transactions on Circuits and Systems for Video Technology, vol.35, no.1, pp.769-782, 2025.
5.
Dengyong Zhang, Runqi Lou, Jiaxin Chen, Xin Liao, Gaobo Yang, Xiangling Ding, "Dual Motion Attention and Enhanced Knowledge Distillation for Video Frame Interpolation", 2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp.1-6, 2024.
6.
Bin Fan, Zhexiong Wan, Boxin Shi, Chao Xu, Yuchao Dai, "Unified Video Reconstruction for Rolling Shutter and Global Shutter Cameras", IEEE Transactions on Image Processing, vol.33, pp.6821-6835, 2024.
7.
Hanjing Meng, Yizhen Li, Yizhou Xu, Kun Xia, "Phase Analysis Based Vessel Recompletion with Incomplete DSA for Dynamic Coronary Roadmap", 2024 17th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp.1-6, 2024.
8.
Zan Chen, Ran Li, Yongqiang Li, Yuanjing Feng, Xingsong Hou, Xueming Qian, "Deep Motion Regularizer for Video Snapshot Compressive Imaging", IEEE Transactions on Computational Imaging, vol.10, pp.1519-1532, 2024.
9.
Xue Jiao Chen, Gang Zhou, Ya Jun Liu, Xin Zhang, Jie Tang, "New View Synthesis via Multiscale-depth and Transformers", 2024 IEEE 25th China Conference on System Simulation Technology and its Application (CCSSTA), pp.669-673, 2024.
10.
Antoine Deckyvere, Anthony Cioppa, Silvio Giancola, Bernard Ghanem, Marc Van Droogenbroeck, "Investigating Event-Based Cameras for Video Frame Interpolation in Sports", 2024 IEEE International Workshop on Sport, Technology and Research (STAR), pp.138-143, 2024.
11.
Qin Jiang, Qinglin Wang, Lihua Chi, Jie Liu, "Implicit Neural Alignment Network for Arbitrary-scale Space-Time Video Super-Resolution", 2024 International Joint Conference on Neural Networks (IJCNN), pp.1-8, 2024.
12.
Xinyu Zhou, Peiqi Duan, Boyu Li, Chu Zhou, Chao Xu, Boxin Shi, "EvDiG: Event-guided Direct and Global Components Separation", 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.9612-9621, 2024.
13.
Guangyang Wu, Xin Tao, Changlin Li, Wenyi Wang, Xiaohong Liu, Qingqing Zheng, "Perception-Oriented Video Frame Interpolation via Asymmetric Blending", 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.2753-2762, 2024.
14.
JungEun Kim, Hangyul Yoon, Geondo Park, Kyungsu Kim, Eunho Yang, "Data-Efficient Unsupervised Interpolation Without Any Intermediate Frame for 4D Medical Images", 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.11353-11364, 2024.
15.
Mengshun Hu, Kui Jiang, Zhihang Zhong, Zheng Wang, Yinqiang Zheng, "IQ-VFI: Implicit Quadratic Motion Estimation for Video Frame Interpolation", 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.6410-6419, 2024.
16.
Yuhan Liu, Yongjian Deng, Hao Chen, Zhen Yang, "Video Frame Interpolation via Direct Synthesis with the Event-based Reference", 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.8477-8487, 2024.
17.
Yuxuan Jiang, Jakub Nawała, Fan Zhang, David Bull, "Compressing Deep Image Super-Resolution Models", 2024 Picture Coding Symposium (PCS), pp.1-5, 2024.
18.
Zhibo Chen, Heming Sun, Li Zhang, Fan Zhang, "Survey on Visual Signal Coding and Processing With Generative Models: Technologies, Standards, and Optimization", IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol.14, no.2, pp.149-171, 2024.
19.
Yeonjun Kim, Han-Sol Ryu, Kyung-Hoon Han, Ji-Hoon Ha, Goo Kim, Sungwook Hong, "Temporal Resolution Enhancement of COMS Satellite Using Geo-Kompsat-2A Satellite Through Data-to-Data Translation", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.17, pp.9759-9771, 2024.
20.
Issa Khalifeh, Luka Murn, Ebroul Izquierdo, "Parameter Reduction of Kernel-Based Video Frame Interpolation Methods Using Multiple Encoders", IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol.14, no.2, pp.245-260, 2024.
21.
Prasanna B, Niranjan S, V. Sabaresan, "Video Frame Interpolation Using Real-Time Intermediate Flow Estimation", 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), vol.1, pp.1-5, 2024.
22.
Chao Ding, Mingyuan Lin, Haijian Zhang, Jianzhuang Liu, Lei Yu, "Video Frame Interpolation With Stereo Event and Intensity Cameras", IEEE Transactions on Multimedia, vol.26, pp.9187-9202, 2024.
23.
Jun Lyu, Xunkang Zhao, M. Shamim Hossain, "Temporal Super-Resolution in T1 Mapping: Pioneering Speed and Detail Preservation for Multimodal Consumer Health Data", IEEE Transactions on Consumer Electronics, vol.70, no.4, pp.7195-7202, 2024.
24.
Lukas Mehl, Andrés Bruhn, Markus Gross, Christopher Schroers, "Stereo Conversion with Disparity-Aware Warping, Compositing and Inpainting", 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp.4248-4257, 2024.
25.
Bin Fan, Yuchao Dai, Hongdong Li, "Learning Bilateral Cost Volume for Rolling Shutter Temporal Super-Resolution", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.46, no.5, pp.3862-3879, 2024.
26.
Razieh Kaviani Baghbaderani, Yuanxin Li, Shuangquan Wang, Hairong Qi, "Temporally-Consistent Video Semantic Segmentation with Bidirectional Occlusion-guided Feature Propagation", 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp.674-684, 2024.
27.
Zixu Li, Jinjiang Li, Lu Ren, Zheng Chen, "Transformer-Based Dual-Branch Multiscale Fusion Network for Pan-Sharpening Remote Sensing Images", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.17, pp.614-632, 2024.
28.
Min Wu Jeong, Chae Eun Rhee, "FIACCEL: Memory Efficient Frame Interpolation Accelerator for Full-HD Video", IEEE Transactions on Circuits and Systems II: Express Briefs, vol.71, no.4, pp.2289-2293, 2024.
29.
Ping Hu, Simon Niklaus, Lu Zhang, Stan Sclaroff, Kate Saenko, "Video Frame Interpolation With Many-to-Many Splatting and Spatial Selective Refinement", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.46, no.2, pp.823-836, 2024.
30.
Shili Zhou, Weimin Tan, Bo Yan, "A Motion Distillation Framework for Video Frame Interpolation", IEEE Transactions on Multimedia, vol.26, pp.3728-3740, 2024.

Cites in Papers - Other Publishers (85)

1.
Tianyu Zhang, Guocheng Qian, Jin Xie, Jian Yang, "FastPCI: Motion-Structure Guided Fast Point Cloud Frame Interpolation", Computer Vision – ECCV 2024, vol.15132, pp.251, 2025.
2.
Renlong Wu, Zhilu Zhang, Yu Yang, Wangmeng Zuo, "Dual-Camera Smooth Zoom on\\xa0Mobile Phones", Computer Vision – ECCV 2024, vol.15108, pp.250, 2025.
3.
Zhijie Tang, Congqi Xu, Siyu Yan, "An adaptive interpolation and 3D reconstruction algorithm for underwater images", Machine Vision and Applications, vol.35, no.2, 2024.
4.
Binfeng Wang, Yunhao Zou, Zhijie Gao, Ying Fu, "Lightweight Rolling Shutter Image Restoration Network Based on\\xa0Undistorted Flow", Artificial Intelligence, vol.14473, pp.195, 2024.
5.
Yeongjoon Kim, Sunkyu Kwon, Donggoo Kang, Hyunmin Lee, Joonki Paik, "Enhancing video frame interpolation with region of motion loss and self-attention mechanisms: A dual approach to address large, nonlinear motions", Neurocomputing, pp.128728, 2024.
6.
Xiaohui Yang, Weijing Liu, Shaowen Wang, "Video frame interpolation based on depthwise over-parameterized recurrent residual convolution", Journal of Electronic Imaging, vol.33, no.04, 2024.
7.
Caisong Yang, Guangqian Kong, Xun Duan, Huiyun Long, Jian Zhao, "Space-time video super-resolution via multi-scale feature interpolation and temporal feature fusion", Signal, Image and Video Processing, 2024.
8.
Zhaoyang Jia, Yan Lu, Houqiang Li, "Exploring Neighbor Correspondence Matching for Multiple-hypotheses Video Frame Synthesis", ACM Transactions on Multimedia Computing, Communications, and Applications, vol.20, no.4, pp.1, 2024.
9.
Shaowen Wang, Xiaohui Yang, Zhiquan Feng, Jiande Sun, Ju Liu, "EMCFN: Edge-based multi-scale cross fusion network for video frame interpolation", Journal of Visual Communication and Image Representation, pp.104226, 2024.
10.
Chengyu WU, Jiangshan QIN, Xiangyang LI, Ao ZHAN, Zhengqiang WANG, "Real-Time Video Matting Based on RVM and Mobile ViT", IEICE Transactions on Information and Systems, vol.E107.D, no.6, pp.792, 2024.
11.
胡志宏 Hu Zhihong, 刘孝保 Liu Xiaobao, 姚廷强 Yao Tinqiang, 申吉泓 Shen Jihong, "融合特征金字塔与可变形分离卷积的CT图像层间插值方法", Laser & Optoelectronics Progress, vol.61, no.12, pp.1237004, 2024.
12.
Yifei Xu, Jingjing Li, Pingping Wei, Aichen Wang, Yuan Rao, "A dual-branch residual network for inhomogeneous dehazing", Journal of Visual Communication and Image Representation, pp.104191, 2024.
13.
Aoran Chen, Hai Huang, Yueyan Zhu, Junsheng Xue, "Real-Time Multi-Person Video Synthesis with Controllable Prior-Guided Matting", Sensors, vol.24, no.9, pp.2795, 2024.
14.
Haoyu Qin, Haonan Zhang, Jie Guo, Ming Yang, Wenyang Bai, Yanwen Guo, "FASSET: Frame Supersampling and\\xa0Extrapolation Using Implicit Neural Representations of\\xa0Rendering Contents", Computational Visual Media, vol.14592, pp.177, 2024.
15.
Xin Ning, Yuhang Li, Ziwei Feng, Jinhua Liu, Youdong Ding, "An Efficient Multi-Scale Attention Feature Fusion Network for 4k Video Frame Interpolation", Electronics, vol.13, no.6, pp.1037, 2024.
16.
Bo Wang, Yifan Zhang, Jian Li, Yang Yu, Zhenping Sun, Li Liu, Dewen Hu, "SplatFlow: Learning Multi-frame Optical Flow via Splatting", International Journal of Computer Vision, 2024.
17.
Xunkang Zhao, Jun Lyu, Fanwen Wang, Chengyan Wang, Jing Qin, "Temporal Super-Resolution for\\xa0Fast T1 Mapping", Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers, vol.14507, pp.443, 2024.
18.
Haokai Zhang, Dongwei Ren, Zifei Yan, Wangmeng Zuo, "Arbitrary Timestep Video Frame Interpolation with Time-Dependent Decoding", Mathematics, vol.12, no.2, pp.303, 2024.
19.
Qianrui Wang, Dengshi Li, Yu Gao, Aolei Chen, "SVMFI: speaker video multi-frame interpolation with the guidance of audio", Multimedia Tools and Applications, 2023.
20.
Mingyi Yang, Xile Zhou, Fuzheng Yang, Mingcai Zhou, Hao Wang, "PIMnet: A quality enhancement network for compressed videos with prior information modulation", Signal Processing: Image Communication, pp.117005, 2023.
21.
Xuhu Lin, Lili Zhao, Xi Liu, Jianwen Chen, "MVFI-Net: Motion-Aware Video Frame Interpolation Network", Computer Vision ? ACCV 2022, vol.13843, pp.340, 2023.
22.
Tao Yang, Peiran Ren, Xuansong Xie, Xian-Sheng Hua, Lei Zhang, "Beyond a Video Frame Interpolator: A Space Decoupled Learning Approach to Continuous Image Transition", Computer Vision ? ECCV 2022 Workshops, vol.13804, pp.738, 2023.
23.
Jie Deng , Xunhe Zhang , Ziqian Yang , Congying Zhou , Rui Wang , Kai Zhang , Xuan Lv , Lujia Yang , Zhifang Wang , Pengju Li , Zhanhong Ma , " Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index ", Computers and Electronics in Agriculture , vol. 215 , pp. 108434 , 2023 .
24.
Jinhui Hu, Qianrui Wang, Dengshi Li, Yu Gao, "STDC-Net: A spatial-temporal deformable convolution network for conference video frame interpolation", Multimedia Tools and Applications, 2023.
25.
Youngbok Lee, EunSeong Lee, Minhun Lee, Joohyung Byeon, Hyeonmo Ahn, Donggyu Sim, "Deep Learning-Based Image Enhancement Techniques for Maritime Video in Storage and Transmission Systems: A Research Study", JOURNAL OF BROADCAST ENGINEERING, vol.28, no.4, pp.410, 2023.
26.
Pu Ren, Chengping Rao, Yang Liu, Zihan Ma, Qi Wang, Jian-Xun Wang, Hao Sun, "PhySR: Physics-informed Deep Super-resolution for Spatiotemporal Data", Journal of Computational Physics, pp.112438, 2023.
27.
Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, Du Tran, "FLAVR: flow-free architecture for fast video frame interpolation", Machine Vision and Applications, vol.34, no.5, 2023.
28.
Hao Ge, Xi Chen, Yungang Tian, Hui Ding, Ping Chen, Flora Kumama Wakolo, "Frame Interpolation for Weather Radar Data", Artificial Intelligence in China, vol.871, pp.211, 2023.
29.
Minyan Zheng, Jianping Luo, "Space-Time Video Super-Resolution 3D Transformer", MultiMedia Modeling, vol.13834, pp.374, 2023.
30.
Hannah Halin Kim, Shuzhi Yu, Shuai Yuan, Carlo Tomasi, "Cross-Attention Transformer for Video Interpolation", Computer Vision ? ACCV 2022 Workshops, vol.13848, pp.325, 2023.
Contact IEEE to Subscribe

References

References is not available for this document.