Loading [a11y]/accessibility-menu.js
Design of a Planar First-Order Loudspeaker Array for Global Active Noise Control | IEEE Journals & Magazine | IEEE Xplore

Design of a Planar First-Order Loudspeaker Array for Global Active Noise Control


Abstract:

This paper proposes a method to design a planar first-order loudspeaker array structure for global active noise control. Compared with the traditional spherical loudspeak...Show More

Abstract:

This paper proposes a method to design a planar first-order loudspeaker array structure for global active noise control. Compared with the traditional spherical loudspeaker array, the planar array provides a practical design with flexible source locations. The planar array is capable of achieving global noise control, provided that the loudspeakers have general variable first-order responses in elevation. On x-y plane, we use spherical harmonics to analyze the required first-order loudspeakers consisting of monopole and tangential dipole components. By exploiting the properties of the associated Legendre functions and its derivative, we can divide the primary soundfield into even harmonics controlled by the monopole component, and odd harmonics controlled by the dipole component. Through the appropriate choice of radii of circles, we avoid the ill-conditioning problem of matrix inversion and derive a robust solution for loudspeaker weights to suppress the primary noise field. Besides, we use the closely-located monopole pairs, instead of the ideal general first-order loudspeakers, to design an alternative planar array for practical implementation. As an illustration, we use several simulation examples to validate the performance of the two proposed planar loudspeaker arrays.
Page(s): 2240 - 2250
Date of Publication: 03 August 2018

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Acoustic noise problems are becoming increasingly ubiquitous in industry and daily life. The methods to acoustic noise control can be broadly grouped into two categories: passive methods and active noise control (ANC). The former applies the acoustic insulation materials to produce a modest attenuation over a broadband frequency range [1], [2]. However, since the low-frequency noise possesses strong penetrating capability, the acoustic insulation is relatively ineffective and costly. By contrast, ANC attempts to introduce the anti-noise wave through an appropriate array of secondary sources to reduce the primary (unwanted) noise levels, based on the principle of superposition [3]–[5]. The ANC systems have been used in many different applications, where the noise fields are dominated by the low frequencies, such as engine noise in automobile and mechanical vibration in manufacturing.

Select All
1.
L. L. Beranek, I. L. Vér and L. R. Quartararo, "Noise and vibration control engineering: Principles and applications", J. Acoust. Soc. Amer., vol. 1, no. 3, pp. 231-232, 1995.
2.
S. Marburg, "Developments in structural-acoustic optimization for passive noise control", Arch. Comput. Methods Eng., vol. 9, no. 4, pp. 291-370, 2002.
3.
P. A. Nelson and S. J. Elliott, Active Control of Sound, Cambridge, MA, USA:Academic Press, 1991.
4.
S. M. Kuo and D. R. Morgan, "Active noise control: A tutorial review", Proc. IEEE, vol. 87, no. 6, pp. 943-973, Jun. 1999.
5.
C. N. Hansen, Understanding Active Noise Cancellation, Boca Raton, FL, USA:CRC Press, 2002.
6.
P. Joseph, S. Elliott and P. Nelson, "Statistical aspects of active control in harmonic enclosed sound fields", J. Sound Vib., vol. 172, no. 5, pp. 629-655, 1994.
7.
J. Garcia-Bonito and S. Elliott, "Active cancellation of acoustic pressure and particle velocity in the near field of a source", J. Sound Vib., vol. 221, no. 1, pp. 85-116, 1999.
8.
A. Kempton, "The ambiguity of acoustic sources - possibility for active control", J. Sound Vib., vol. 48, no. 4, pp. 475-483, 1976, [online] Available: http://www.sciencedirect.com/science/article/pii/0022460X76905514.
9.
J. S. Bolton, B. K. Gardner and T. A. Beauvilain, "Sound cancellation by the use of secondary multipoles", J. Acoust. Soc. Amer., vol. 98, no. 4, pp. 2343-2362, 1995.
10.
T. A. Beauvilain, J. S. Bolton and B. K. Gardner, "Sound cancellation by the use of secondary multipoles: Experiments", J. Acoust. Soc. Amer., vol. 107, no. 3, pp. 1189-1202, 2000.
11.
E. G. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, Cambridge, MA, USA:Academic Press, 1999.
12.
F. Zotter, A. Sontacchi and R. Holdrich, "Modeling a spherical loudspeaker system as multipole source", Fortschritte der Akustik, vol. 33, no. 1, pp. 221-222, 2007.
13.
A. M. Pasqual, A. de França, J. Roberto and P. Herzog, "Application of acoustic radiation modes in the directivity control by a spherical loudspeaker array", Acta Acustica United with Acustica, vol. 96, no. 1, pp. 32-42, 2010.
14.
A. M. Pasqual and V. Martin, "On the acoustic radiation modes of compact regular polyhedral arrays of independent loudspeakers", J. Acoust. Soc. Amer., vol. 130, no. 3, pp. 1325-1336, 2011.
15.
M. Daikohara and Y. Haneda, "Directivity control for regular polyhedron loudspeaker array based on weighted least-squares method using adjusted weight in spherical harmonics domain", J. Acoust. Soc. Amer., vol. 140, no. 4, pp. 3056-3056, 2016.
16.
T. Martin and A. Roure, "Optimization of an active noise control system using spherical harmonics expansion of the primary field", J. Sound Vib., vol. 201, no. 5, pp. 577-593, 1997.
17.
X. Qiu and C. Hansen, "Secondary acoustic source types for active noise control in free field: Monopoles or multipoles", J. Sound Vib., vol. 232, no. 5, pp. 1005-1009, 2000.
18.
B. Rafaely, "Analysis and design of spherical microphone arrays", IEEE Trans. Speech Audio Process., vol. 13, no. 1, pp. 135-143, Jan. 2005.
19.
B. Rafaely, "Spherical microphone array with multiple nulls for analysis of directional room impulse responses", Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp. 281-284, 2008.
20.
M. Azarpeyvand, "Active noise cancellation of a spherical multipole source using a radially vibrating spherical baffled piston", Acoust. Phys., vol. 51, no. 6, pp. 609-618, 2005.
21.
B. Rafaely, "Spherical loudspeaker array for local active control of sound", J. Acoust. Soc. Amer., vol. 125, no. 5, pp. 3006-3017, 2009.
22.
T. Peleg and B. Rafaely, "Investigation of spherical loudspeaker arrays for local active control of sound", J. Acoust. Soc. Amer., vol. 130, no. 4, pp. 1926-1935, 2011.
23.
S. Spors, H. Buchner and R. Rabenstien, "A novel approach to active listening room compensation for wave field synthesis using wave-domain adaptive filtering", Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 4, pp. iv–29-iv–32, 2004.
24.
S. Spors, H. Buchner, R. Rabenstein and W. Herbordt, "Active listening room compensation for massive multichannel sound reproduction systems using wave-domain adaptive filtering", J. Acoust. Soc. Amer., vol. 122, no. 1, pp. 354-369, 2007.
25.
J. Zhang, W. Zhang and T. D. Abhayapala, "Noise cancellation over spatial regions using adaptive wave domain processing", Proc. Appl. Signal Process. Audio Acoust., pp. 1-5, 2015.
26.
W. Zhang, C. Hofmann, M. Brger, T. Abhayapala and W. Kellermann, "Online secondary path modelling in wave-domain active noise control", Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp. 116-120, 2017.
27.
J. Zhang, T. D. Abhayapala, W. Zhang, P. N. Samarasinghe and S. Jiang, "Active noise control over space: A wave domain approach", IEEE/ACM Trans. Audio Speech Lang. Process., vol. 26, no. 4, pp. 774-786, Apr. 2018.
28.
H. Chen, T. D. Abhayapala and W. Zhang, "Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis", J. Acoust. Soc. Amer., vol. 138, no. 5, pp. 3081-3092, 2015.
29.
R. A. Kennedy, P. Sadeghi, T. D. Abhayapala and H. M. Jones, "Intrinsic limits of dimensionality and richness in random multipath fields", IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2542-2556, Jun. 2007.
30.
V. Brunel, F. Fazi, L. Hörchens and P. Nelson, "Measurement and Fourier-bessel analysis of loudspeakers radiation patterns using a spherical array of microphones", Proc. Audio Eng. Soc. Conv. 124, pp. 17-20, 2008.

References

References is not available for this document.