Abstract:
Pyramidal- and wedge-absorber materials are used extensively in anechoic measurement chambers to attenuate stray signals. Typical absorber layouts result in large absorbe...Show MoreMetadata
Abstract:
Pyramidal- and wedge-absorber materials are used extensively in anechoic measurement chambers to attenuate stray signals. Typical absorber layouts result in large absorber walls in which the absorber tips and bases are roughly aligned in the same plane. Such a quasi-periodic configuration produces a strong coherent specular reflection which dominates the absorber scattered field. Based on the multisection impedance transformer concept, one can divide absorber elements into different levels (layers) so that this coherence can be destroyed to reduce the specular absorber scattering level. The synthesis of this desired behavior can be implemented by the Chebyshev transformer technique, which provides the largest bandwidth given a passband ripple threshold. The resulting reflected field is then the product of the original absorber response times the Chebyshev reduction factor, which is independent of polarization and absorber properties. Various measured results are used to show that more than a 10-dB improvement can be achieved at the critical low end of the frequency band using this approach. This improvement cannot be achieved using conventional design concepts unless the absorber size is doubled.
Published in: IEEE Transactions on Antennas and Propagation ( Volume: 45, Issue: 8, August 1997)
DOI: 10.1109/8.611249
Citations are not available for this document.
Cites in Papers - |
Cites in Papers - IEEE (23)
Select All
1.
Vince Rodriguez, "Numerical Analysis of Techniques to Improve Oblique Incidence of Absorber", 2020 Antenna Measurement Techniques Association Symposium (AMTA), pp.1-4, 2020.
2.
G. Brzezina, J. Smithson, K. Oueng, U. Hashmi, A. Momciu, "Mitigation Techniques for the Concealment of a New Fire Suppression Network and HVAC System within a Pre-Existing Large Anechoic Chamber", 2020 Antenna Measurement Techniques Association Symposium (AMTA), pp.1-4, 2020.
3.
Vince Rodriguez, "Numerical Study of Chebyshev RF Absorber Arrangements Versus Tilted RF Absorber Pyramids", 2020 14th European Conference on Antennas and Propagation (EuCAP), pp.1-5, 2020.
4.
Vince Rodriguez, Brett Walkenhorst, Jorgen Bruun, "Measurement of RF Absorber at Large Angles of Incidence using Spectral Domain Transformations", 2019 Antenna Measurement Techniques Association Symposium (AMTA), pp.1-6, 2019.
5.
Can-Yu Wang, Jian-Gang Liang, Tong Cai, Hai-Peng Li, Wen-Ye Ji, Qing Zhang, Cheng-Wu Zhang, "High-Performance and Ultra-Broadband Metamaterial Absorber Based on Mixed Absorption Mechanisms", IEEE Access, vol.7, pp.57259-57266, 2019.
6.
Vicente Rodriguez, "Basic Rules for Indoor Anechoic Chamber Design [Measurements Corner]", IEEE Antennas and Propagation Magazine, vol.58, no.6, pp.82-93, 2016.
7.
Kenneth L. Ford, Daniel G. Holtby, Barry Chambers, "Oblique incidence optimisation of a pyramidal absorber using a frequency selective surface", Proceedings of the Fourth European Conference on Antennas and Propagation, pp.1-4, 2010.
8.
Daniel G. Holtby, Kenneth L. Ford, Barry Chambers, "Genetic Algorithm optimisation of dual polarised pyramidal absorbers loaded with a binary FSS", 2009 Loughborough Antennas & Propagation Conference, pp.217-220, 2009.
9.
Daniel G. Holtby, Kenneth L. Ford, Barry Chamber, "Optimisation of a stepped permittivity impedance loaded (SPIL) absorber", 2009 3rd European Conference on Antennas and Propagation, pp.2691-2693, 2009.
10.
Mike Shields, "The compact RCS / antenna range at MIT Lincoln Laboratory", 2009 3rd European Conference on Antennas and Propagation, pp.939-943, 2009.
11.
Daniel G. Holtby, Kenneth L. Ford, Barry Chambers, "Genetic algorithm optimisation of pyramidal absorbers loaded with a binary FSS", 2009 3rd European Conference on Antennas and Propagation, pp.3878-3880, 2009.
12.
M. Murugan, V. K. Kokate, "Reflection co-efficient of multilayer microwave absorbers in X-band", 2008 10th International Conference on Electromagnetic Interference & Compatibility, pp.473-478, 2008.
13.
Kenneth Lee Ford, Barry Chambers, "Improvement in the Low Frequency Performance of Geometric Transition Radar Absorbers Using Square Loop Impedance Layers", IEEE Transactions on Antennas and Propagation, vol.56, no.1, pp.133-141, 2008.
14.
K. L. Ford, D. Holtby, B. Chambers, "Pyramidal absorbers loaded with resistive FSS", 2007 IEEE Antennas and Propagation Society International Symposium, pp.4553-4556, 2007.
15.
K. L. Ford, B. Chambers, "Optimum performance of pyramidal absorbers using impedance loading layers", 2007 IEEE Antennas and Propagation Society International Symposium, pp.4517-4520, 2007.
16.
Kenneth Lee Ford, Barry Chambers, "Application of Impedance Loading to Geometric Transition Radar Absorbent Material", IEEE Transactions on Electromagnetic Compatibility, vol.49, no.2, pp.339-345, 2007.
17.
K.L. Ford, B. Chambers, "A New Approach to the Design of Low Frequency Radar Absorbent Materials", 2007 International workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications, pp.353-356, 2007.
18.
Meng Donglin, S.G. Wang, "Optimization of absorbers in anechoic chamber", 2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, vol.1, pp.594-597 Vol. 1, 2005.
19.
S. Cui, A. Mohan, D.S. Weile, "Pareto optimal design of absorbers using a parallel elitist nondominated sorting genetic algorithm and the finite element-boundary integral method", IEEE Transactions on Antennas and Propagation, vol.53, no.6, pp.2099-2107, 2005.
20.
S. Cui, D.S. Weile, "Robust design of absorbers using genetic algorithms and the finite element-boundary integral method", IEEE Transactions on Antennas and Propagation, vol.51, no.12, pp.3249-3258, 2003.
21.
Suomin Cui, D.S. Weile, "Robust design of absorbers using genetic algorithms and the finite element-boundary integral method", IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), vol.1, pp.326-329 vol.1, 2002.
22.
W.D. Burnside, T.-H. Lee, "Electromagnetic measurement system requirements", IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), vol.4, pp.428-431 vol.4, 2001.
23.
R. Silz, "Design of the GE aircraft engine compact range facility", IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), vol.4, pp.432-435 vol.4, 2001.
Cites in Papers - Other Publishers (19)
1.
Tong Cai, Xiangyang Meng, Hailin Huang, Dan Liu, Xingshuo Cui, Cunqian Feng, Guimei Zheng, Chunsheng Guan, Wenye Ji, "Multiplexing Integration Meta‐Absorber in an Ultrathin Planar Board", Advanced Engineering Materials, 2024.
2.
Ayoub Sabir Karim, "Simulation and experimental studies of broadband multi-resonators metamaterial absorber for satellite communications", Bulletin of Materials Science, vol.47, no.2, 2024.
3.
Karim Errajraji, Nawfal Jebbor, Sudipta Das, Tanvir Islam, Boddapati Taraka Phani Madhav, Tarik El-Arrouch, "Design and analysis of a multi-band miniaturized metamaterial absorber for wireless communication applications", Optical and Quantum Electronics, vol.56, no.2, 2024.
4.
A. V. Ryabov, D. I. Sobolev, M. Yu. Shmelev, "Mechanically Machined Microwave Multi-Layer Antireflective Coating of a Dielectric", Radiophysics and Quantum Electronics, 2023.
5.
H. J. S. Coelho, B. Araújo, M. W. B. Silva, T. N. Ferreira, A. L. P. S. Campos, C. Junqueira, Erich Kemptner, Andrey Osipov, "Multiband metasurface-based absorber for applications in X, Ku, and K bands", Radio Science, vol.58, no.8, pp.1-11, 2023.
6.
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Muharrem Karaaslan, "New compact six-band metamaterial absorber based on Closed Circular Ring Resonator (CCRR) for Radar applications", Optics Communications, vol.503, pp.127457, 2022.
7.
Fahad Ahmed, Nosherwan Shoaib, "Metasurface: An Insight into Its Applications" in Backscattering and RF Sensing for Future Wireless Communication, pp.85-118, 2021.
8.
Tania Tamoor, Nosherwan Shoaib, Fahad Ahmed, Tayyab Hassan, Abdul Quddious, Symeon Nikolaou, Akram Alomainy, Muhammad Ali Imran, Qammer H. Abbasi, "A multifunctional ultrathin flexible bianisotropic metasurface with miniaturized cell size", Scientific Reports, vol.11, no.1, 2021.
9.
Taowu Deng, Jiangang Liang, Tong Cai, Canyu Wang, Xin Wang, Jing Lou, Zhiqiang Du, Dengpan Wang, "Ultra-thin and broadband surface wave meta-absorber", Optics Express, vol.29, no.12, pp.19193, 2021.
10.
Taowu Deng, Jiangang Liang, Jing Lou, Chiben Zhang, Zhiqiang Du, Canyu Wang, Tong Cai, "High-performance meta-absorber for the surface wave under the spoof surface plasmon polariton mode", Optics Express, vol.29, no.5, pp.7558, 2021.
11.
Chao-Hui Wang, Yong-Xiang Li, Shuai Zhu, "Absorbers with spin-selection based on metasurface", Acta Physica Sinica, vol.69, no.23, pp.234103, 2020.
12.
Canyu Wang, Jiangang Liang, Yu Xiao, Tong Cai, Haisheng Hou, Haipeng Li, "High-performance and broadband chirality-dependent absorber based on planar spiral metasurface", Optics Express, vol.27, no.10, pp.14942, 2019.
13.
Jianwei Lian, Liang Chen, Haiyan Yan, Yanlong Li, Proceedings of the Second International Conference on Mechatronics and Automatic Control, vol.334, pp.1123, 2015.
14.
L B Kong, Z W Li, L Liu, R Huang, M Abshinova, Z H Yang, C B Tang, P K Tan, C R Deng, S Matitsine, "Recent progress in some composite materials and structures for specific electromagnetic applications", International Materials Reviews, vol.58, no.4, pp.203, 2013.
15.
S. Pandi, Sabarish Narayanan B, V. P. McGinn, "Analysis and Design of Planar Multi-layered Parabolic Absorber for Low-Power Applications", Electromagnetics, vol.31, no.6, pp.448, 2011.
16.
D.G. Holtby, K.L. Ford, B. Chambers, "Geometric transition radar absorbing material loaded with a binary frequency selective surface", IET Radar, Sonar & Navigation, vol.5, no.4, pp.483-488, 2011.
17.
K.L. Ford, D.G. Holtby, B. Chambers, "Optimisation of a pyramidal geometric transition radar absorbing material loaded with a resistive frequency selective surface", IET Radar, Sonar & Navigation, vol.3, no.6, pp.596-600, 2009.
18.
D.G. Holtby, K.L. Ford, B. Chambers, "Optimisation of stepped permittivity impedance loaded absorber", Electronics Letters, vol.45, no.7, pp.339-340, 2009.
19.
Sotirios K. Goudos, "A versatile software tool for microwave planar radar absorbing materials design using global optimization algorithms", Materials & Design, vol.28, no.10, pp.2585, 2007.