Abstract:
A new approach to achieving a polarization-insensitive semiconductor optical amplifier is presented. The active layer consists of a tensile-strained-barrier MQW structure...Show MoreMetadata
Abstract:
A new approach to achieving a polarization-insensitive semiconductor optical amplifier is presented. The active layer consists of a tensile-strained-barrier MQW structure that enhances TM mode gain. Polarization sensitivity below 0.5 dB is realized at a wavelength of 1.56 /spl mu/m. A signal gain of 27.5 dB is obtained along with a saturation output power of 14 dBm. Deriving the refractive indices of well and barrier layers from both experiment and theory, we succeed in separation of the effect of the confinement factor and the gain coefficient. It is determined that TM mode gain enhancement in this structure is primarily due to the increase in the confinement factor.<>
Published in: IEEE Journal of Quantum Electronics ( Volume: 30, Issue: 3, March 1994)
DOI: 10.1109/3.286156
Citations are not available for this document.
Cites in Papers - |
Cites in Papers - IEEE (18)
Select All
1.
Aref Rasoulzadeh Zali, Netsanet M. Tessema, Steven Kleijn, Luc Augustin, Ripalta Stabile, Nicola Calabretta, "Assessment of Low Polarization Dependent Multicast and Select Switch Based on Bulk SOA for Data Center Application", Journal of Lightwave Technology, vol.42, no.2, pp.780-792, 2024.
2.
Aref Rasoulzadeh Zali, Ripalta Stabile, Nicola Calabretta, "Design and Analysis of Novel O-Band Low Polarization Sensitive SOA Co-Integrated With Passive Waveguides for Optical Systems", IEEE Photonics Journal, vol.14, no.5, pp.1-10, 2022.
3.
Aref Rasoulzadeh Zali, Steven Kleijn, Luc Augustin, Netsanet M. Tessema, Kristif Prifti, Ripalta Stabile, Nicola Calabretta, "Design and Fabrication of Low Polarization Dependent Bulk SOA Co-Integrated With Passive Waveguides for Optical Network Systems", Journal of Lightwave Technology, vol.40, no.4, pp.1083-1091, 2022.
4.
Aref Rasoulzadeh Zali, Ripalta Stabile, Nicola Calabretta, "Low Polarization Dependent MQW Semiconductor Optical Amplifier with Tensile-Strained-Barrier Design for Optical Datacom and Telecom Networks", 2020 22nd International Conference on Transparent Optical Networks (ICTON), pp.1-4, 2020.
5.
Nami Yasuoka, Hiroji Ebe, Kenichi Kawaguchi, Mitsuru Ekawa, Shigeaki Sekiguchi, Ken Morito, Osamu Wada, Mitsuru Sugawara, Yasuhiko Arakawa, "Polarization-Insensitive Quantum Dot Semiconductor Optical Amplifiers Using Strain-Controlled Columnar Quantum Dots", Journal of Lightwave Technology, vol.30, no.1, pp.68-75, 2012.
6.
Radhakrishnan Nagarajan, Masaki Kato, Jacco Pleumeekers, Peter Evans, Scott Corzine, Sheila Hurtt, Andrew Dentai, Sanjeev Murthy, Mark Missey, Ranjani Muthiah, Randal A. Salvatore, Charles Joyner, Richard Schneider, Mehrdad Ziari, Fred Kish, David Welch, "InP Photonic Integrated Circuits", IEEE Journal of Selected Topics in Quantum Electronics, vol.16, no.5, pp.1113-1125, 2010.
7.
Shinsuke Tanaka, Ayahito Uetake, Susumu Yamazaki, Mitsuru Ekawa, Ken Morito, "Polarization-Insensitive GaInNAs–GaInAs MQW-SOA With Low Noise Figure and Small Gain Tilt Over 90-nm Bandwidth (1510–1600 nm)", IEEE Photonics Technology Letters, vol.20, no.15, pp.1311-1313, 2008.
8.
Shinsuke Tanaka, Shuichi Tomabechi, Ayahito Uetake, Mitsuru Ekawa, Ken Morito, "Highly Uniform Eight-Channel SOA-Gate Array With High Saturation Output Power and Low Noise Figure", IEEE Photonics Technology Letters, vol.19, no.16, pp.1275-1277, 2007.
9.
S. Tanaka, S. Tomabechi, M. Ekawa, K. Morito, "A high saturation output power (+22 dBm) polarization insensitive semiconductor optical amplifier", 2005 IEEE LEOS Annual Meeting Conference Proceedings, pp.794-795, 2005.
10.
D. Alexandropoulos, M.J. Adams, Z. Hatzopoulos, D. Syvridis, "Proposed scheme for polarization insensitive GaInNAs-based semiconductor optical amplifiers", IEEE Journal of Quantum Electronics, vol.41, no.6, pp.817-822, 2005.
11.
Wa Peng Wong, Kin Seng Chiang, "Design of waveguide structures for polarization-insensitive optical amplification", IEEE Journal of Quantum Electronics, vol.36, no.11, pp.1243-1250, 2000.
12.
A. Reale, A. Di Carlo, D. Campi, C. Cacciatore, A. Stano, G. Fornuto, "Study of gain compression mechanisms in multiple-quantum-well In/sub 1-x/Ga/sub x/As semiconductor optical amplifiers", IEEE Journal of Quantum Electronics, vol.35, no.11, pp.1697-1703, 1999.
13.
J.S. Lee, J.R. Kim, S. Park, M.W. Park, J.S. Yoo, S.D. Lee, A.G. Choo, T.I. Kim, "Spot size converter integrated semiconductor optical amplifier", Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464), vol.4, pp.1155-1156 vol.4, 1999.
14.
A. Di Carlo, A. Reale, L. Tocca, P. Lugli, "Polarization-independent /spl delta/-strained semiconductor optical amplifiers: a tight-binding study", IEEE Journal of Quantum Electronics, vol.34, no.9, pp.1730-1739, 1998.
15.
L.F. Tiemeijer, P.J.A. Thijs, T. van Dongen, J.J.M. Binsma, E.J. Jansen, S. Walczyk, G.N. van den Hoven, E.C.M. Pennings, "High-gain, high-power 1550-nm polarization independent MQW optical amplifier", IEEE Photonics Technology Letters, vol.8, no.9, pp.1142-1144, 1996.
16.
J.-Y. Emery, P. Doussiere, L. Goldstein, F. Pommereau, C. Fortin, R. Ngo, N. Tscherptner, J.-L. Lafragette, P. Aubert, F. Brillouet, G. Laube, J. Barrau, "New, process tolerant, high performance 1.55 /spl mu/m polarization insensitive semiconductor optical amplifier based on low tensile bulk GaInAsP", Proceedings of European Conference on Optical Communication, vol.3, pp.165-168 vol.3, 1996.
17.
L.F. Tiemeijer, P.J.A. Thijs, T. van Dongen, J.J.M. Binsma, E.J. Jansen, "Polarization resolved, complete characterization of 1310 nm fiber pigtailed multiple-quantum-well optical amplifiers", Journal of Lightwave Technology, vol.14, no.6, pp.1524-1533, 1996.
18.
P. Cinguino, E. Dovio, G. Fornuto, F. Martinez, C. Paputta, P. Pastorino, A. Piccirillo, D. Re, D. Soldani, F. Taiariol, "InGaAs/InGaAs tensile-strained-barrier MQW structures for optical amplifiers", Proceedings of 8th International Conference on Indium Phosphide and Related Materials, pp.184-187, 1996.
Cites in Papers - Other Publishers (29)
1.
Yuhong Wang, Hanxu Tai, Ruonan Duan, Ming Zheng, Yue Shi, Jianwei Zhang, Xing Zhang, Yongqiang Ning, Jian Wu, "Ultra-broadband depolarization based on directly-coupled quantum wire-to-well modulation and their aliasing effect for polarization-insensitive light-emitting diodes", Nanoscale, 2023.
2.
Ruijian Rao, Shuwen Chen, Bing Chen, Cheng Bai, "Study of a sub-wavelength scale plasmonic traveling wave amplifier with electrically pumped multiple quantum wells", Engineering Research Express, vol.3, no.4, pp.045029, 2021.
3.
Ming Zheng, Qingnan Yu, Xue Li, Hanxu Tai, Xing Zhang, Jianwei Zhang, Yongqiang Ning, Jian Wu, "Ultrabroadband and independent polarization of optical amplification with InGaAs-based indium-rich cluster quantum-confined structure", Applied Physics Letters, vol.116, no.25, pp.252106, 2020.
4.
Handbook of Optoelectronic Device Modeling and Simulation, pp.631, 2017.
5.
Ali Farmani, Mahmoud Farhang, Mohammad H. Sheikhi, "High performance polarization-independent Quantum Dot Semiconductor Optical Amplifier with 22 dB fiber to fiber gain using Mode Propagation Tuning without additional polarization controller", Optics & Laser Technology, vol.93, pp.127, 2017.
6.
Sudha Mokkapati, Chennupati Jagadish, Wiley Encyclopedia of Electrical and Electronics Engineering, pp.1, 2014.
7.
Rene Bonk, Thomas Vallaitis, Wolfgang Freude, Juerg Leuthold, Richard Penty, Anna Borghesani, Ian F. Lealman, "Linear Semiconductor Optical Amplifiers", Fibre Optic Communication, vol.161, pp.511, 2012.
8.
Takahiro Numai, "Semiconductor Optical Amplifiers" in Laser Diodes and Their Applications to Communications and Information Processing, pp.233-245, 2010.
9.
Grzegorz S\kek, Paweł Podemski, Janusz Andrzejewski, Jan Misiewicz, Sebastian Hein, Sven Höfling, Alfred Forchel, "Immersion Layer in Columnar Quantum Dash Structure as a Polarization Insensitive Light Emitter at 1.55 µm", Applied Physics Express, vol.2, pp.061102, 2009.
10.
Sudha Mokkapati, Chennupati Jagadish, "III-V compound SC for optoelectronic devices", Materials Today, vol.12, no.4, pp.22, 2009.
11.
Dimitris Alexandropoulos, Hercules Simos, Spiros Mikroulis, Dimitris Syvridis, "Polarization properties of active semiconductor micro-ring structures", Optics Communications, vol.281, no.3, pp.421, 2008.
12.
R. Prasanth, J. E. M. Haverkort, J. H. Wolter, "InAsP∕InGaAs composite quantum well for separate TE and TM gain", Applied Physics Letters, vol.88, no.6, pp.062108, 2006.
13.
S. Tanaka, S. Tomabechi, A. Uetake, M. Ekawa, K. Morito, "Record high saturation output power (+20 dBm) and low NF (6.0 dB) polarisation-insensitive MQW-SOA module", Electronics Letters, vol.42, no.18, pp.1059-1060, 2006.
14.
Qing-yuan Miao, De-xiu Huang, Tao Wang, Xiao-jian Kong, Chang-jian Ke, "Characteristics measurement of gain and refractive index of traveling-wave semiconductor optical amplifier", Optoelectronics Letters, vol.1, no.1, pp.46, 2005.
15.
Semiconductor Optical Amplifiers, pp.43, 2004.
16.
Hong Ma, Sihai Chen, Xinjian Yi, Guangxi Zhu, "1.55 µm spot-size converter integrated polarization-insensitive quantum-well semiconductor optical amplifier with tensile-strained barriers", Semiconductor Science and Technology, vol.19, no.7, pp.846, 2004.
17.
Wang Shu-Rong, Liu Zhi-Hong, Wang Wei, Zhu Hong-Liang, Zhang Rui-Ying, Zhou Fan, Wang Lu-Feng, Ding Ying, "Wide-Band Polarization-Insensitive High-Output-Power Semiconductor Optical Amplifier Based on Thin Tensile-Strained Bulk InGaAs", Chinese Physics Letters, vol.21, no.2, pp.310, 2004.
18.
Jinyan Jin, Decheng Tian, Jing Shi, Tongning Li, "Fabrication and complete characterization of polarization insensitive 1310 nm InGaAsP–InP quantum-well semiconductor optical amplifiers", Semiconductor Science and Technology, vol.19, no.1, pp.120, 2004.
19.
M. S. Wartak, P. Weetman, "On the design of polarization-insensitive semiconductor optical amplifiers", Microwave and Optical Technology Letters, vol.35, no.3, pp.227, 2002.
20.
A Ramdane, A Ougazzaden, "Quantum well bandgap engineering for 1.5 μm telecom applications", Materials Science and Engineering: B, vol.74, no.1-3, pp.66, 2000.
21.
W. P. Wong, K. S. Chiang, "Calculation of confinement factors for multiple-quantum-well optical amplifiers by the effective-index model", Microwave and Optical Technology Letters, vol.25, no.4, pp.275, 2000.
22.
J. E. M. Haverkort, B. H. P. Dorren, M. Kemerink, A. Yu. Silov, J. H. Wolter, "Design of composite InAsP/InGaAs quantum wells for a 1.55 μm polarization independent semiconductor optical amplifier", Applied Physics Letters, vol.75, no.18, pp.2782, 1999.
23.
G.N. van den Hoven, L.F. Tiemeijer, "High Performance Semiconductor Optical Amplifiers", Optical Amplifiers and Their Applications, pp.SD1, 1997.
24.
Charles H. Joyner, Optical Fiber Telecommunications IIIB, pp.163, 1997.
25.
Charles H. Joyner, Optical Fiber Telecommunications III, pp.163, 1997.
26.
J.-Y. Emery, T. Ducellier, M. Bachmann, P. Doussiere, F. Pommereau, R. Ngo, F. Gaborit, L. Goldstein, G. Laube, J. Barrau, "High performance 1.55 /spl mu/m polarisation-insensitive semiconductor optical amplifier based on low-tensile-strained bulk GaInAsP", Electronics Letters, vol.33, no.12, pp.1083-1084, 1997.
27.
Osamu Hanaizumi, Ki Tae Jeong, Shin-ya Kashiwada, Ibrahim Syuaib, Kenji Kawase, Shojiro Kawakami, "Observation of gain in an optically pumped surface-normal multiple-quantum-well optical amplifier", Optics Letters, vol.21, no.4, pp.269, 1996.
28.
Hironobu Takaya, Toshio Kambayashi, "The analysis of polarization-insensitive characteristics for semiconductor optical amplifiers with tensile strained multiple quantum wells", Electronics and Communications in Japan (Part II: Electronics), vol.79, no.6, pp.103, 1996.
29.
A. Ougazzaden, D. Sigogne, A. Mircea, E.V.K. Rao, A. Ramdane, L. Silvestre, "Atmospheric pressure MOVPE growth of high performance polarisation insensitive strain compensated MQW InGaAsP/InGaAs optical amplifier", Electronics Letters, vol.31, no.15, pp.1242-1244, 1995.