S. Yasufuku - IEEE Xplore Author Profile

Showing 1-3 of 3 results

Filter Results

Show

Results

This paper introduces an experimental platform designed for the validation and demonstration of a novel class of Control Barrier Functions (CBFs) tailored for Unmanned Ground Vehicles (UGVs) to proactively prevent collisions with kinematic obstacles by integrating the concept of collision cones. While existing CBF formulations excel with static obstacles, extensions to torque/acceleration-controll...Show More
In this paper, we propose a new class of Control Barrier Functions (CBFs) for Unmanned Ground Vehicles (UGVs) that help avoid collisions with kinematic (non-zero velocity) obstacles. While the current forms of CBFs have been successful in guaranteeing safety/collision avoidance with static obstacles, extensions for the dynamic case have seen limited success. Moreover, with the UGV models like the ...Show More
This work presents a simple linear policy for direct force control for quadrupedal robot locomotion. The motivation is that force control is essential for highly dynamic and agile motions. We learn a linear policy to generate end-foot trajectory parameters and a centroidal wrench, which is then distributed among the legs based on the foot contact information using a quadratic program (QP) to get t...Show More