K. P. Soman - IEEE Xplore Author Profile

Showing 1-16 of 16 results

Filter Results

Show

Results

Radial basis function (RBF) kernels for SVM have been routinely used in a wide range of classification problems, delivering consistently good performance for those problems where the kernel computations are numerically feasible (high-dimensional problems typically use linear kernels). One of the drawbacks of RBF kernels is the necessity of selecting the proper value of the hyperparameter γ in addi...Show More
In this paper we consider a new paradigm of learning: learning using hidden information. The classical paradigm of the supervised learning is to learn a decision rule from labeled data (xi, yi), xi isin X, yi isin {-1, 1}, i = 1, hellip, lscr. In this paper we consider a new setting: given training vectors in space X along with labels and description of this data in another space X*, find in space...Show More
We present a novel kernel method for data clustering using a description of the data by support vectors. The kernel reflects a projection of the data points from data space to a high dimensional feature space. Cluster boundaries are defined as spheres in feature space, which represent complex geometric shapes in data space. We utilize this geometric representation of the data to construct a simple...Show More
The problem of estimating density, conditional probability, and conditional density is considered as an ill-posed problem of solving integral equations. To solve these equations the support vector method (SVM) is used.Show More
We study the use of support vector machines (SVM) in classifying e-mail as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features were constrained to the 1000 best features and another data set where the dimensionality was over 700...Show More
Statistical learning theory was introduced in the late 1960's. Until the 1990's it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990's new types of learning algorithms (called support vector machines) based on the developed theory were proposed. This made statistical learning theory not only a tool for the theoretical...Show More
It is well known that for a given sample size there exists a model of optimal complexity corresponding to the smallest prediction (generalization) error. Hence, any method for learning from finite samples needs to have some provisions for complexity control. Existing implementations of complexity control include penalization (or regularization), weight decay (in neural networks), and various greed...Show More
Traditional classification approaches generalize poorly on image classification tasks, because of the high dimensionality of the feature space. This paper shows that support vector machines (SVM) can generalize well on difficult image classification problems where the only features are high dimensional histograms. Heavy-tailed RBF kernels of the form K(x, y)=e/sup -/spl rho///spl Sigma//sub i//sup...Show More
We address the problem of determining what size test set guarantees statistically significant results in a character recognition task, as a function of the expected error rate. We provide a statistical analysis showing that if, for example, the expected character error rate is around 1 percent, then, with a test set of at least 10,000 statistically independent handwritten characters (which could b...Show More
The support vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights, and threshold that minimize an upper bound on the expected test error. The present study is devoted t...Show More
This paper compares the performance of several classifier algorithms on a standard database of handwritten digits. We consider not only raw accuracy, but also training time, recognition time, and memory requirements. When available, we report measurements of the fraction of patterns that must be rejected so that the remaining patterns have misclassification rates less than a given threshold.Show More
The authors have designed a writer-adaptable character recognition system for online characters entered on a touch terminal. It is based on a Time Delay Neural Network (TDNN) that is pre-trained on examples from many writers to recognize digits and uppercase letters. The TDNN without its last layer serves as a preprocessor for an optimal hyperplane classifier that can be easily retrained to peculi...Show More
A method for computer-aided cleaning of undesirable patterns in large training databases has been developed. The method uses the trainable classifier itself, to point out patterns that are suspicious, and should be checked by the human supervisor. While suspicious patterns that are meaningless or mislabeled are considered garbage, and removed from the database, the remaining patterns, like ambiguo...Show More
Achieving good performance in statistical pattern recognition requires matching the capacity of the classifier to the amount of training data. If the classifier has too many adjustable parameters (large capacity), it is likely to learn the training data without difficulty, but will probably not generalize properly to patterns that do not belong to the training set. Conversely, if the capacity of t...Show More