Svetlana Pavlitska - IEEE Xplore Author Profile

Showing 1-9 of 9 results

Filter Results

Show

Results

The growing concerns regarding energy consumption and privacy have prompted the development of AI solutions deployable on the edge, circumventing the substantial CO2 emissions associated with cloud servers and mitigating risks related to sharing sensitive data. But deploying Convolutional Neural Networks (CNNs) on non-off-the-shelf edge devices remains a complex and labor-intensive task. In this p...Show More
Understanding emotions and expressions is a task of interest across multiple disciplines, especially for improving user experiences. Contrary to the common perception, it has been shown that emotions are not discrete entities but instead exist along a continuum. People understand discrete emotions differently due to a variety of factors, including cultural background, individual experiences, and c...Show More
Model compression and hardware acceleration are essential for the resource-efficient deployment of deep neural networks. Modern object detectors have highly interconnected convolutional layers with concatenations. In this work, we study how pruning can be applied to such architectures, exemplary for YOLOv7. We propose a method to handle concatenation layers, based on the connectivity graph of conv...Show More
Real-time traffic light recognition is essential for autonomous driving. Yet, a cohesive overview of the underlying model architectures for this task is currently missing. In this work, we conduct a comprehensive survey and analysis of traffic light recognition methods that use convolutional neural networks (CNNs). We focus on two essential aspects: datasets and CNN architectures. Based on an unde...Show More
Anomalies in the domain of autonomous driving are a major hindrance to the large-scale deployment of autonomous vehicles. In this work, we focus on high-resolution camera data from urban scenes that include anomalies of various types and sizes. Based on a Variational Autoencoder, we condition its latent space to classify samples as either normal data or anomalies. In order to emphasize especially ...Show More
Increasing the model capacity is a known approach to enhance the adversarial robustness of deep learning networks. On the other hand, various model compression techniques, including pruning and quantization, can reduce the size of the network while preserving its accuracy. Several recent studies have addressed the relationship between model compression and adversarial robustness, while some experi...Show More
Smart city intersections may support connected automated vehicles in the future and are the core of intelligent traffic management and control. In this work, we consider the traffic surveillance task in multi-camera and event-camera setups at road intersections with a focus on efficient edge computation. We give an overview over different aspects of such systems from the literature, including rele...Show More
Traffic sign recognition is an essential component of perception in autonomous vehicles, which is currently performed almost exclusively with deep neural networks (DNNs). However, DNNs are known to be vulnerable to adversarial attacks. Several previous works have demonstrated the feasibility of adversarial attacks on traffic sign recognition models. Traffic signs are particularly promising for adv...Show More
Sparsely-gated Mixture of Expert (MoE) layers have been recently successfully applied for scaling large transformers, especially for language modeling tasks. An intriguing side effect of sparse MoE layers is that they convey inherent interpretability to a model via natural expert specialization. In this work, we apply sparse MoE layers to CNNs for computer vision tasks and analyze the resulting ef...Show More