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Abstract — Optimization-based  radio  resource  management  (RRM)  has  shown  significant  performance  gains  on
high-throughput  satellites  (HTSs).  However,  as  the  number  of  allocable  on-board  resources  increases,  traditional
RRM is difficult to apply in real satellite systems due to its intense computational complexity. Deep reinforcement
learning (DRL) is a promising solution for the resource allocation problem due to its model-free advantages. Never-
theless, the action space faced by DRL increases exponentially with the increase of communication scale, which leads to
an excessive exploration cost of the algorithm. In this paper, we propose a recursive frequency resource allocation al-
gorithm based on long-short term memory (LSTM) and proximal policy optimization (PPO), called PPO-RA-LOOP,
where RA means resource allocation and LOOP means the algorithm outputs actions in a recursive manner. Specifi-
cally, the PPO algorithm uses LSTM network to recursively generate sub-actions about frequency resource allocation
for each beam, which significantly cuts down the action space.  In addition, the LSTM-based recursive architecture
allows PPO to better allocate the next frequency resource by using the generated sub-actions information as a prior
knowledge, which reduces the complexity of the neural network. The simulation results show that PPO-RA-LOOP
achieved higher spectral efficiency and system satisfaction compared with other frequency allocation algorithms.
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 I. Introduction
With the development of 5G, terrestrial mobile com-

munication  networks  have  achieved  significant  progress.
However, there is a situation that terrestrial networks will
become  congested  or  dysfunctional  due  to  emergencies.
Multi-beam satellite  (MBS)  can  be  regarded  as  an  effi-
cient supplement  of  the  terrestrial  communication  net-
work [1] with the flexible on-board payloads such as the
digital  channelizer,  which  is  a  critical  on-board  payload
on MBSs,  allowing  dynamic  channel  allocations  to  effi-
ciently  exploit  the  system spectrum resource  [2],  [3].  As
the  channel  reuse  technology  may  bring  about  severe
co-channel interference (CCI) among beams, suitable and
efficient  frequency  resource  allocation  algorithms  are

needed  to  further  improve  the  performance  of  satellite
systems [4]–[6].

Precoding technology is  a  means to solve the prob-
lem  of  CCI.  Zhang et  al. proposed  a  precoding  scheme
facing phase perturbations for the downlink of MBS com-
munication, which achieves good accuracy and efficiency
compared to the benchmarks [7]. Zhang et al. proposed a
successive  convex  approximation  based  algorithm  for
generating  the  beamforming  vectors  at  the  centralized
processor, which  is  capable  of  providing  feasible  solu-
tions within a few iterations [8].  In this paper, we focus
on the  resource  allocation  technique,  especially  frequen-
cy  resource  allocation,  which  is  another  way  to  reduce
CCI.  Some  classical  optimization  algorithms  such  as
the  simulated  annealing  (SA)  algorithm [9],  which  have 
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achieved the desired effect in satellite resource allocation.
Kawamoto et  al. also suggested  that  optimization  tech-
niques are a valid and efficient approach to address the
resource  allocation  problem  [10].  However,  at  a  larger
scale, the  number  of  resources  to  be  managed,  the  con-
straints arising  from  the  system  and  the  massive  num-
ber of traffic demand situations typically may result in a
problem that conventional algorithms cannot solve opti-
mally or are too complex to be implemented. In addition,
typical radio  resource  management  (RRM)  problem  in-
volving  carrier  allocation  can  be  regarded  as  an  integer
combinatorial  problem [11].  This  means  that  traditional
optimization-based RRM  algorithms  must  cost  too  nu-
merous  iterations  and lots  of  time to  reach convergence
point.

Deep reinforcement learning (DRL) as a field of ma-
chine  learning  has  appeared  as  a  promising  alternative
for  dealing  with  computationally  expensive  optimization
procedure. DRL utilizes deep neural networks to update
strategy  with  the  aim  of  maximizing  long-term  benefits
through interactions with the environment and is widely
used to solve the Markov decision process (MDP) and make
optimal  decisions.  Liu et  al. adopted  deep  Q-network
(DQN) to solve the problem of  dynamic channel  alloca-
tion [12]. Wang et al. proposed a deep deterministic poli-
cy  gradient  (DDPG)  algorithm  to  jointly  optimize  the
power allocation and flight trajectory of unmanned aeri-
al  vehicle  (UAV)  with  constrained  effective  energy  to
maximize the throughput to ground users [13]. Then, Ma
et al. used the proximal policy optimization (PPO) algo-
rithm to allocate frequency resource to all beams at once,
which  met  the  real-time  communication  [14].  However,
the  above  algorithms  inevitably  face  complex  CCI  and
huge action space which increases exponentially with the
number of beams and channels.

In this paper, we aim to apply reinforcement learn-
ing to  a  larger  scale  frequency  resource  allocation  prob-
lem, so  we  use  the  PPO  algorithm  as  the  basic  frame-
work  to  extend  frequency  resource  allocation  to  specific
user  terminals,  which implies  a  larger  action  space,  and
call  this  algorithm  PPO-RA.  Furthermore,  we  propose
an improved PPO-RA-LOOP algorithm by using LSTM
network structure  to  allocate  frequency  resource  recur-
sively. Compared with PPO-RA, the PPO-RA-LOOP al-
gorithm  significantly  reduces  the  action  space  thus  can
effectively handle the complex frequency resource alloca-
tion  problem faced  by  MBS.  The  main  contributions  of
this paper are summarized as follows:

1) Proposing a PPO-based frequency resource alloca-
tion algorithm. Different from the way to output the fre-
quency resource allocation schemes of all beams at once,
the PPO-RA-LOOP algorithm regards the frequency re-
source allocation scheme of one beam as a sub-action and
then recursively outputs these sub-actions, which signifi-
cantly reduces the action space.

2) Adopting the LSTM network to predict the next
sub-action.  Specifically,  the  previously  generated  sub-

actions, as a prior knowledge, are fed to the LSTM layer
to  predict  the  next  sub-action,  which  is  beneficial  for
making better action decisions.

3) Compared with the PPO-RA algorithm, the pro-
posed  PPO-RA-LOOP  algorithm  decreases  the  explor-
ation cost,  accelerates  the  convergence  speed  and  re-
duces  the  complexity  of  neural  network  thus  achieving
better system performance.

 II. System Model and Problem
Formulation

N
B = {n|n = 1, 2, . . . , N}

K
U = {k|k = 1, 2, . . . ,

K}
Btotal Btotal M

C = {m|m = 1,
2, . . . ,M}

Bch = Btotal/M
Ptotal

n
Pn n

k Gn,k

Gmax
n Hn,k k
n

As  shown  in Figure  1,  the  GEO  satellite  system,
forms  a  coverage  area  on  the  Earth  surface  with 
beams,  which  is  represented  as .
We  assume  that  there  are  users  under  the  satellite
coverage area,  which are defined as 

.  The  total  of  system available  frequency  is  denoted
as .  is  divided into  sub-channels  and the
available sub-channel set is expressed as 

.  Thus,  the  frequency  of  sub-channel  can  be
calculated  by .  Similarly,  we  divide  the
total transmission power  equally to each beam and
the antenna transmission power of beam  is denoted as

.  According to  [15],  the  transmission gain of  beam 
to user  is  denoted as  and its  maximum value is
denoted as . Then, the channel gain  for user 
under beam  can be calculated by

 

Hn,k = Gn,kGrLpath (1)

Gr

Lpath k
where  represents the  receive  gain  for  all  user  termi-
nals.  is free space loss of the user , which is repre-
sented as

 

Lpath = 4πfdn,k/c (2)

f c dn,k
n k

where  is the frequency and  is the speed of light. 
represents  the  distance  between  beam  and  user ,
which is defined as

 

dn,k =
(
(x− x0)

2 + (y − y0)
2 + (z − z0)

2
)1/2 (3)

(x0, y0, z0) (x, y, z)
n k

where  and  represent the center coor-
dinates of beam  and the coordinates of user , respec-
tively.

In addition, the bandwidth occupancy of user termi-
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Figure 1  The MBS satellite system.
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k n tnal  under beam  at time slot  can be expressed as
 

Xt
n,k = [xt

n,k,1, x
t
n,k,2, . . . , x

t
n,k,M ] (4)

xt
n,k,m = 1 m

k n
m k

m n
btn,m

 indicates  that  sub-channel  is  assigned  to
user  terminal  under  beam  and  0  means  that  sub-
channel  is  not  allocated to user  terminal .  Further,
we denote the occupancy of subchannel  under beam 
by , which is defined as

 

btn,m =
∑
k∈Sn

xt
n,k,m (5)

Sn n
m

btn,k ≤ 1

k m n

where  is the set of users served by the beam . Sub-
channel  can only be allocated to at most one user at a
time  slot.  Thus,  there  is .  Based  on  the  above
definitions,  the  signal  to  interference  plus  noise  ratio
(SINR) for user  over sub-channel  under beam  can
be calculated by

 

SINRt
n,k,m =

PnHn,kx
t
n,k,m

N0 +
∑

n′ ̸=n
Pn′Hn′ ,kb

t
n′ ,m

(6)

N0

t
k

 is additive white Gaussian noise (AWGN) power. At
time slot , according to Shannon’s formula, the through-
put of user  can be obtained by

 

T t
n,k = Bch

M∑
m=1

log2 (1 + SINRt
n,k,m) (7)

n
To  facilitate  measuring  system  satisfaction,  the

offered  capacity  and  requested  capacity  of  beam  are
defined as

 

Cn
offer =

∑
k∈Sn

T t
n,k (8a)

 

Cn
req =

∑
k∈Sn

Dt
n,k (8b)

Dt
n,k k n

t
bits/s

n Cn
max

where  is the traffic demand of user  under beam 
waiting  for  transmission  in  time  slot ,  and  its  unit  is

. Further, we define the maximum value of the of-
fered capacity of beam  as , which can be achieved
under the condition that the CCI is zero.

nBased on (8),  the  satisfaction of  the  beam  is de-
fined as

 

SIn=


Cn
offer/C

n
req, Cn

req ≤ Cn
max and Cn

offer ≤ Cn
req

Cn
offer/C

n
max, Cn

req > Cn
max and Cn

offer ≤ Cn
req

1, otherwise

(9)

Our goal is to maximize the average system satisfac-
tion, so the frequency resource allocation problem can be
modeled as 

max
X

F =
1

N

N∑
n=1

SIn

s.t. C1 : Bch

M∑
m=1

btn,m ≤ Btotal,

C2 : xt
n,k,m = 0, if Dt

n,k = 0,∀n ∈ B,∀k ∈ U,∀m ∈ C
(10)

F X

m
k

n

For  the  optimization  problem  in  (10),  repre-
sents  the  frequency  resource  configuration  of  the  MBS
system. Constraint C1 based on (5) means the frequency
resource allocated by each beam cannot exceed the total
frequency.  Constraint  C2  indicates  that  sub-channel 
can  only  be  allocated  to  the  user  with  traffic  request
under beam .

 III. A DRL-Based Frequency Resource
Allocation Solution for MBS

In this section, we first briefly introduce the defined
state,  action, and reward in the MBS system. Then, we
enumerate  the  issues  faced  by  DRL-based  algorithm  in
the problem of frequency resource allocation. To address
the above  issues,  we  propose  the  PPO-RA-LOOP  algo-
rithm.
 1. State, action and reward

t

In  the  MBS  system,  the  satellite  is  regarded  as  an
agent, and  the  traffic  demand  of  user  terminals  consti-
tutes  the state.  The state  of  all  beams at  time slot  is
defined as

 

st = (Dt
1,1, D

t
1,2, . . . , D

t
N,K) (11)

Dt
n,k  is explained  in  (8).  Then,  the  agent  allocates  fre-

quency resource  according  to  states.  The  frequency  re-
source allocation schemes of all beams constitute the ac-
tion of the agent, defined as

 

at = (at
1,a

t
2, . . . ,a

t
N ) (12)

at
n n is the frequency resource allocation scheme of beam ,

which can be obtained by
 

at
n = (idtn,1, id

t
n,2, . . . , id

t
n,M ) (13)

idtn,m ∈ {0, 1, . . . ,K}

idtn,m = 0

, which is used to indicates the spe-
cific  user  terminal  number assigned to channel m under
beam n.  means the channel m is not assigned.

After executing  the  action,  the  agent  gets  corre-
sponding  reward  at  each  time  slot.  The  reward  is  the
same as the optimization objective in (10), which is rep-
resented as

 

rt =
1

N

N∑
n=1

SIn (14)

SIn  is explained in (9). The goal of agent is to maximize
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the cumulative rewards.
 2. PPO-RA algorithm

As a classic DRL method, the PPO algorithm is able
to deal with both discrete and continuous action spaces,
which consists of an actor network for generating action
and a critic network for evaluating state. The optimiza-
tion objective of the actor network is written as

 

θk+1 = argmax
θ

1

T

T∑
t=1

L(st,at, θ, θk) (15)

L(st,at, θ, θk)and  is defined as
 

L(st,at, θ, θk) =min
(
ρt(θ, θk)A

πθk (st,at),

clip(ρt(θ, θk), 1− ζ, 1 + ζ)Aπθk (st,at)
)

(16)

ρt(θ, θk)=πθ(at|st)/πθk(at|st)
Aπθk (st,at)

θk ζ
clip

where  represents the prob-
ability  ratio  of  new and  old  policies.  is  the
advantage function of policy .  is a (fractional value)
hyperparameter.  The  function  limits  the  updated
magnitude of  the new policy by removing incentives for
the policy to change dramatically.

Vβ(st)

β

The critic network is used to judge the action gener-
ated  by  actor  network  through  estimating  the  value

.  Then,  the  critic  network  updates  its  parameters
 by the following equations

 

βk+1 = argmin
β

1

T

T∑
t=1

(Vβ(st)− R̂t)
2

R̂t =

T∑
t′>t

γt
′
−trt′ (17)

γwhere  is the  discount  factor.  Based  on  the  state,  ac-
tion and reward defined in (11)–(14), utilizing the frame-
work of  the  PPO  algorithm,  we  derive  a  frequency  re-

source allocation algorithm, named PPO-RA, which fur-
ther extends the DBA-PPO algorithm [14] by allocating
frequency resource to multiple requesting users.

N
M

MN
K

KMN

However, in large-scale satellite systems, with the in-
crement of the number of sub-channels, users and beams,
the dimension of  the action space will  increase dramati-
cally, which is a hard challenge faced by the PPO-RA al-
gorithm.  Specifically,  the  satellite  has  a  total  of 
beams, and each beam can use all  channels, so there
are  channels available.  For each available channel,
it can be assigned to one of  users. The size of action
space is  defined  as  the  total  number  of  all  possible  fre-
quency  resource  allocation  schemes,  so  the  total  action
space  is ,  which  increases  exponentially  with  the
number of beams and sub-channels.

The  high-dimensional  action  space  will  lead  to  two
problems. Firstly,  the  high-dimensional  action  space  re-
quires more complex networks to fit  and results  in high
exploration costs.  Secondly,  the high exploration cost of
the  optimal  policy  leads  to  the  slow convergence  of  the
PPO-RA algorithm. To address the above problems, we
propose the PPO-RA-LOOP algorithm.
 3. Proposed PPO-RA-LOOP algorithm

N

at N
KMN KM

KMN KM

As shown in Figure 2, different from the way to out-
put  the  frequency  resource  allocation  schemes  of  all
beams at once, PPO-RA-LOOP algorithm (Algorithm 1)
adopts a recursive network structure which splits the ac-
tion  into  sub-actions to  recursively  output  the  fre-
quency resource allocation schemes for each beam one by
one.  Then,  the  total  frequency  resource  allocation
schemes of all beams  are obtained after  iterations.
Thus,  the  action  space  is  reduced  from  to ,
which  avoids  the  explosive  growth  of  the  action  space.
Correspondingly, the  neurons  in  the  output  layer  of  ac-
tor network are reduced from  to , which also
reduces the number of parameters of the actor network.
This is one reason why we use the recursive structure.

 
 

The actor network of PPO-RA The actor network of PPO-RA-LOOP

Loop N times

… … … …

…

Input
layer

Hidden
layers

Hidden
layers

Input
layer

Output
layer

Output
layer

MASK At … … …

…

LSTM MASK
Pseudocode step 10

Pseudocode step 11
MASK

MASK

LSTM

LSTM

LSTM

n−1
t

Pseudocode step 12

Full connected unit

Long-short term memory unit

at
1

a
at

n

Figure 2  Actor network for two algorithms.
 

In addition, to reduce CCI in MBS system, we feed
back  the  sub-action  generated  by  each  recursion,  as  a
prior knowledge that may reflect CCI in a certain extent,
to the input side of the actor network. These sub-actions
obtained by recursions are sequentially cascaded and fed
back  to  the  input  side  of  actor  network,  which  can  be

considered as sequential information. Compared with the
fully  connected  neural  network,  the  LSTM  network  is
more  efficient  in  dealing  with  sequential  information.
Thus,  we  replace  the  hidden layer  of  the  actor  network
with LSTM.  Then,  the  actor  network  predicts  the  fre-
quency  resource  allocation  for  the  next  beam  based  on
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t
at
n n

the current traffic demand and the sequential action in-
formation. Specifically, at time slot , the frequency allo-
cation scheme  of beam  can be calculated by

 

at
n = LSTM(sn−1

t ) (18)

LSTM
sn−1
t

n− 1
t

 represents the fitting function composed of LSTM
network in the actor network.  is the input state in-
formation of the LSTM network after  recursions at
time  slot .  This  recursive  actor  network  structure  fits
well  with  LSTM,  which  is  another  advantage  for  using
the recursive network structure.

Algorithm 1  PPO-RA-LOOP
 1: Initialize satellite environment;

θ 2: Initialize policy parameters ;
β 3: Initialize value function parameters ;

dθ ← 0 dβ ← 0 4: Reset gradients:  and ;
epoch = 1, 2, . . . , epochmax 5: for  do

 6: 　　Reset Replay Buffer;
t = 1, 2, . . . , stepmax 7: 　　for  do

s0t 8: 　　　　Observe the initial state ;

s0t 9: 　　　　Input initial  into the actor network of PPO-
RA-LOOP;

n = 1, 2, . . . , N10: 　　　　for  do

n at
n =

LSTM(sn−1
t )

11: 　　　　　　 Get  the th  beam  sub-action,  i.e., 
;

at
n

sn−1
t

snt = {s0t ,at
1,a

t
2,

. . . ,at
n}

12: 　　　　　　 Add  sub-action  to  the  current  state
 as  prior  knowledge  and  update  the

next state information as 
;

13: 　　　　 end for
πθ(at|st)

at N

14: 　　 　　Based  on  (18)  and  current  policy ,
actor  network  gets  the  resource  allocation
schemes  of all beams after  iterations;

Vβ(st)
15: 　　 　　Critic network estimates the value of the cur-

rent state ;
at
rt
st+1

16: 　　 　　The agent executes action  in satellite envi-
ronment and gets reward  according to (14).
Then, agent gets next state ;

{st,at, rt, st+1}17: 　　　 　Store  in Replay Buffer;
t18: 　　 　　if =Buffer size then

θ19: 　　　 　　　Update  policy  parameters  according  to
(15);

β20: 　　 　　　　Update  value  function  parameters  ac-
cording to (17);

21: 　 　　　end if
22: 　 　end for
23: end for

at
1 = LSTM(s0t )

To  improve  the  exploration  efficiency  of  the  agent
further,  we  mask  illegal  actions  (agent  allocates  sub-
channels  to  users  with  no  traffic  requests)  through  the
mask  matrix  before  generating  sub-actions,  as  shown in
the MASK module of Figure 2. After the first recursion,
the  LSTM  layer  outputs  the  action  of

s0t s1t s1tbeam 1, and changes  to .  can be represented as
 

s1t = (Dt
1,1, D

t
1,2, . . . , D

t
N,K ,at

1, 0, 0, . . . , 0)

s0t = (Dt
1,1, D

t
1,2, . . . , D

t
N,K , 0, 0, 0, . . . , 0) (19)

(N − 1)
The  input  state  information  of  the  LSTM network

after the th recursion is written as
 

sN−1
t = (Dt

1,1, D
t
1,2, . . . , D

t
N,K ,at

1,a
t
2, . . . ,a

t
N−2,a

t
N−1)
(20)

N at
N = LSTM(sN−1

t )

N t

After  recursions,  the  action 
of  beam  at  time slot  is  obtained.  At this  time,  we
get the action of all beams, which is explained in (12).

Simulation result shows that the PPO-RA-LOOP al-
gorithm using LSTM as the hidden layer has better per-
formance than that using the fully connected layer as the
hidden layer, as shown in Figure 3. Therefore, the PPO-
RA-LOOP algorithm adopts LSTM as the hidden layer.
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Figure 3  PPO-RA-LOOP (LSTM) indicates that the actor network
uses LSTM as the hidden layer with a parameter amount of 1079156,
and PPO-RA-LOOP (FC) suggests that the hidden layer is the ful-
ly connected layer with a parameter amount of 2860220. The verti-
cal axis represents the cumulative rewards, and the horizontal axis
represents the number of iterations.
 

 IV. Simulation Results
In  this  section,  we  introduce  the  traffic  model  of

satellite users  and  evaluate  the  performance  of  the  pro-
posed PPO-RA-LOOP algorithm.
 1. Simulation settings

λ
µ

There are 324 users in the 27-beam satellite system.
The total frequency is equally divided into 12 sub-chan-
nels  and each beam can use  all  sub-channels.  The main
simulation  parameters  are  given  in Table  1.  The  traffic
arrivals  of  each  user  obey  a  Poisson  distribution  with
mean  and  the  traffic  duration  follows  an  exponential
distribution with mean . Thus, we define the traffic in-
tensity of users as

 

ρ = λ/µ (21)

By setting different traffic intensity of users in (21),
we obtain two traffic distributions: uniform traffic distri-
bution and non-uniform traffic distribution, as shown in
Figures 4(a) and (b).
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 2. Comparison of algorithm performance
To illustrate  the  advantages  of  our  proposed  algo-

rithm, we compared the following three algorithms:
a) SA: The exponential annealing method, a type of

simulated  annealing  (SA),  is  employed  to  calculate  the
suboptimal value of the fusion control problem of trans-
mit power and beam directivity [16].

b) PPO-RA:  A PPO-based  frequency  resource  allo-
cation algorithm for users in MBS system. There are two
PPO-RA algorithms for this: PPO-RA-3 and PPO-RA-5.
The numbers indicate that the number of  hidden layers
of the actor network is 3 and 5, respectively.

c)  PPO-RA-LOOP:  The proposed algorithm with  a
recursive LSTM network structure.

We adopt the complexity of neural network, conver-
gence, average system satisfaction and spectral efficiency

as indicators to evaluate the above algorithms.

N

The complexity of  neural  network can be measured
with the number of  its  parameters. Table 2 summarizes
the number  of  parameters  (actor  network)  in  the  pro-
posed PPO-RA-LOOP algorithm and the PPO-RA algo-
rithm with different hidden layers settings. It can be seen
that  the  number  of  parameters  of  the  PPO-RA-LOOP
algorithm is  reduced  by  an  order  of  magnitude  com-
pared with PPO-RA. To further illustrate the computa-
tional complexity of neural network, we used thop toolk-
it to  get  the  accurate  floating  point  operations  per  sec-
ond  (FLOPS)  result  in Table  2.  The  results  show  that
the  computational  complexity  of  the  neural  network  of
the PPO-RA-LOOP algorithm is higher than that of the
PPO-RA algorithm,  which  is  mainly  due  to  the  recur-
sive output sub-actions of the PPO-RA-LOOP algorithm,
and the computation increases with the number of recur-
sions . The specific computational complexity analysis
is given in Appendix A.

The  convergence  of  the  proposed  PPO-RA-LOOP
algorithm  and  the  PPO-RA-5  algorithm  is  illustrated
in Figure  5.  The  proposed  PPO-RA-LOOP  algorithm
achieves  the  highest  rewards  with  faster  convergence.
This is because the actor network structure of PPO-RA-
LOOP significantly reduces the action space.  That is  to
say,  the  algorithm  performance  is  improved  by  rapidly
exploring  more  optimal  strategies  in  a  smaller  action
space. Additionally, the results show that PPO-RA-5 with
more  hidden  layers  achieves  higher  cumulative  rewards
than PPO-RA-3  in  both  uniform  and  non-uniform  traf-
fic distributions. This is because an appropriate increase
in hidden layers has a better fitting effect and facilitates
action  decisions.  Therefore,  in  the  following  algorithm

 

Table 1  Simulation parameters

Parameter Value

(N)Number of beams 27

(M)Number of channel 12

(K)Number of user 324

(Ptotal)Total transmission power of satellite 2700 W

(Btotal)Bandwidth of each beam 500 MHz

BchChannel bandwidth ( ) 41.66 MHz

(η)Satellite antenna efficiency 0.5

(Gmax
n )Maximum transmission antenna gain 50 dBi

(Gr)Receiver antenna gain 40 dBi

GEO satellite height 35786 km
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Figure 4  Two traffic distributions. The z axis represents the total traffic demand of each beam, which is explained in equation (8b), and its
unit is bits. The x and y axes represent the beam center coordinates in latitude and longitude.

 

Table 2  The comparison of complexity of action network

Algorithm Hidden layer Actor network parameters FLOPS

PPO-RA-LOOP FC (56) +LSTM (56,56) 1.079156× 106 9.19296× 107

PPO-RA-3 FC (128,256,128) 1.5433044× 107 3.0654464× 107

PPO-RA-5 FC (128,256,512,256,128) 1.5695956× 107 3.1178752× 107
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comparisons in terms of system satisfaction and spectral
efficiency, we only recorded the algorithm performance of
PPO-RA-5. Table 3 gives the running time per epoch of
the  two  algorithms  and  the  number  of  epochs  required
for convergence.  The  PPO-RA-LOOP  algorithm  recur-
sively  outputs  sub-actions,  so  the  time  per  epoch  is

slightly  higher  than  that  of  the  PPO-RA-5  algorithm.
However, the number of epochs required for convergence
is significantly less than that of the PPO-RA algorithm.
Overall, the total convergence time of PPO-RA-LOOP is
smaller  than  that  of  PPO-RA-5,  so  we  consider  that
PPO-RA-LOOP is less time costly.

 
 

Table 3  The comparison of time cost of algorithms

ρ

PPO-RA-LOOP PPO-RA-5

Time per epoch (s) Convergence epochs
(approx) Total time (s) Time per epoch (s) Convergence epochs

(approx) Total time (s)

0.1 6.98 600 4188 6.20 700 4340

0.2 12.92 650 8398 12.14 1000 12140

0.3 21.59 400 8636 21.22 900 19098

0.4 37.00 400 14800 34.70 800 27760

0.5 48.58 650 31577 48.39 1200 58068

0.6 62.93 600 37758 60.50 900 54450

0.7 70.40 400 28160 68.76 700 48132

0.8 79.11 500 39555 77.55 800 62064

0.9 84.80 500 42400 83.41 800 66728
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Figure  6 shows  the  average  system  satisfaction  of
the three algorithms, which has been defined in as F in
(10).  When  traffic  intensity  is  light ,  the
beam  requested  capacity  is  lower  than  the  upper
limit of the beam capacity . The beam satisfaction,
according  to  (9),  is  calculated  by .  As
traffic  intensity  increases,  the  growth  rate  of  the  beam
offered capacity  is lower than that of the beam re-
quested capacity . As a result, the beam satisfaction
decreases  and  so  does  the  average  system  satisfaction.
When traffic intensity is heavy , the beam
requested capacity is  higher than the upper limit of  the
beam capacity. At this time, the beam satisfaction is cal-
culated by . With the increase of beam
offer  capacity,  the  beam satisfaction  gradually  increases
and  system  satisfaction  rises  as  well.  In  addition,  the
PPO-RA-LOOP algorithm outperforms the PPO-RA al-
gorithm by 2.7%–6.9% in uniform traffic distribution and

3.1%–4.7%  in  non-uniform  traffic  distribution.  In  the
case  of  heavy  traffic  intensity  for  the  two  distributions,
the system satisfaction achieved by the PPO-RA-LOOP
algorithm is slightly higher than that of the PPO-RA al-
gorithm.  Then,  we  compare  two  DRL-based  algorithms
with  the  traditional  SA  scheduling  method.  Compared
with the SA, the PPO-RA and the PPO-RA-LOOP algo-
rithms  have  obvious  advantages  in  system  satisfaction.
This is because the DRL-based algorithms have the abili-
ty  to  efficiently  adjust  the  scheduling  scheme  according
to different distributions of traffic requests.

Table 4 shows the spectral efficiency of the three al-
gorithms. With the advantages of efficient scheduling for
available  subchannels,  the  PPO-RA-LOOP  algorithm
achieves  a  significant  advantage  in  spectral  efficiency
compared  to  the  SA  algorithm.  In  the  case  of  uniform
traffic distribution,  the  PPO-RA-LOOP  algorithm  im-
proves the spectral efficiency by 0.6%–4% at light traffic
intensity  and  7.9%–8.9% at  heavy  traffic  intensity.  Un-
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Figure 5  The comparison of algorithm convergence.
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der non-uniform traffic distribution, the spectral efficien-
cy  of  the  PPO-RA-LOOP  algorithm  is  improved  by
2.7%–5.9%  at  light  traffic  intensity  and 5.7%–8.9%  at
heavy traffic intensity. In addition, under uniform traffic
distribution,  compared  with  the  PPO-RA  algorithm,
PPO-RA-LOOP  improves  the  spectral  efficiency  by
0.17%–1.49% at light traffic  intensity,  and 0.26%–5.91%
at heavy traffic  intensity.  From Table  4,  it  can be seen

that  under  non-uniform  traffic  distribution,  the  PPO-
RA-LOOP improves 0.36%–1.29% at light traffic intensi-
ty  and  0.49%–4.26%  at  heavy  traffic  intensity.  This  is
because  that  PPO-RA-LOOP  can  better  avoid  CCI
through recursive actor network structure with LSTM as
hidden  layer.  In  a  word,  the  PPO-RA-LOOP algorithm
achieves better performance with lower network complex-
ity compared to PPO-RA.

 
 

Table 4  Spectral efficiency of the three algorithms

ρ
Spectral efficiency of algos. in uniform distrib. (bps/Hz) Spectral efficiency of algos. in non-uniform distrib. (bps/Hz)

SA PPO-RA-5 PPO-RA-LOOP SA PPO-RA-5 PPO-RA-LOOP

0.1 0.6298 0.6326 0.6337 0.6262 0.6407 0.6430

0.2 1.2756 1.2867 1.3059 1.2710 1.2789 1.2926

0.3 1.8548 1.9115 1.9281 1.7028 1.7796 1.8026

0.4 2.1451 2.1896 2.3189 2.0104 2.0511 2.1259

0.5 2.2898 2.3974 2.4944 2.1737 2.2700 2.3667

0.6 2.3715 2.5300 2.5744 2.2883 2.4033 2.4659

0.7 2.4425 2.5900 2.6356 2.3841 2.5211 2.5607

0.8 2.4779 2.6667 2.6737 2.4479 2.6007 2.6311

0.9 2.5011 2.7019 2.7089 2.4833 2.6626 2.6756
 

 V. Conclusion
This paper  extends  the  frequency  resource  alloca-

tion scheme for satellite user terminals in the MBS sys-
tem.  On the  basis  of  PPO-RA,  we  propose  a  PPO-RA-
LOOP algorithm  by  adopting  a  recursive  neural  net-
work structure with LSTM. With the aid of LSTM lay-
ers,  the proposed algorithm is  able  to  reduce the action
space and the complexity of neural network significantly
compared with  PPO-RA,  thus  speeding  up  the  conver-
gence of the algorithm. Simulation results demonstrate the
applicability of DRL to the resource allocation problem.
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 Appendix A

 1. Parameter setting of algorithms

This  paper  compares  three  DRL-based  algorithms,  namely  PPO-
RA-LOOP,  PPO-RA-3,  and  PPO-RA-5.  The  hidden  layer  parameters
of  the  actor  network  used  by  these  algorithms  are  given  in Table  2.
The remaining parameters are shown in Table A-1.

 2. Computational complexity analysis
of PPO-RA-LOOP

d

d2 d

Considering  that  resource  allocation  is  a  sequential  decision-mak-
ing problem, for convenience, we only analyze the complexity of differ-
ent algorithms when making a decision at one time slot. As stated by
Hu et al. [17], we assume that multiplication or division between two -
bits needs  basic operations and addition or subtraction needs  ba-
sic operations.

The  actor  network  of  the  PPO  algorithm  is  composed  of  a  fully
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connected  network,  so  its  computational  complexity  is  equal  to
 where  denotes the input size of the th layer and

 denotes the output size of the th layer [17].
The proposed algorithm uses LSTM network as the hidden layer.

As  shown  in Figure  A-1,  the  LSTM  network  includes  four  nonlinear
transformation modules, each of which can be roughly considered as a
fully connected network. In addition, to simplify the analysis, we omit
the computational complexity of the activation function.
  

tanh

tanh

tanh

σ σ σ

σ

ht

Ot

ht−1

zt

ft it Ct
~

Sigmoid activation function

tanh activation function

Figure A-1  The network structure of LSTM.
 

The computational complexity of the LSTM layer of the proposed
algorithm can be expressed as

 

I∑
i=1

4Nd2(hi
t−1 + zit)h
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where  4  denotes  the  four  nonlinear  transformation  modules  (roughly
considered  as  fully  connected  layers),  denotes the  number  of  algo-
rithm recursions.  represents the number of layers of the LSTM; 
and  are shown in Figure A-1, which denote the hidden state dimen-
sion and word vector dimension of the th layer LSTM, respectively.

The total computational complexity of the proposed algorithm can
be expressed approximately as
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Table A-1  Parameters of DRL-based algorithms

Parameter Value

Training epochs 1500

Steps per episode 50

Buffer size 100

Discount factor 0.99

Clip ratio 0.2

Target KL 0.015

Activation function tanh

Training iterations per epoch 80

Learning rate of actor 0.0003

Learning rate of critic 0.0001

Optimizer Adam
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