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Abstract — Nonnegative CANDECOMP/PARAFAC (NCP) tensor decomposition is a powerful tool for multiway
signal  processing.  The alternating direction method of  multipliers  (ADMM) optimization algorithm has become in-
creasingly  popular  for  solving tensor  decomposition problems in  the  block coordinate  descent  framework.  However,
the ADMM-based NCP algorithm suffers from rank deficiency and slow convergence for some large-scale and highly
sparse tensor data. The proximal algorithm is preferred to enhance optimization algorithms and improve convergence
properties. In this study, we propose a novel NCP algorithm using the alternating direction proximal method of mul-
tipliers (ADPMM) that consists of the proximal algorithm. The proposed NCP algorithm can guarantee convergence
and overcome the rank deficiency. Moreover, we implement the proposed NCP using an inexact scheme that alterna-
tively optimizes the subproblems. Each subproblem is optimized by a finite number of inner iterations yielding fast
computation speed. Our NCP algorithm is a hybrid of alternating optimization and ADPMM and is named A2DPMM.
The experimental results on synthetic and real-world tensors demonstrate the effectiveness and efficiency of our pro-
posed algorithm.
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I. Introduction
Nonnegative CANDECOMP/PARAFAC (NCP) de-

composition  is  an  essential  tool  to  process  nonnegative
tensor  in  signal  processing  and  has  been  widely  applied
to various domains of  multiway data analyses  [1]–[4].  It
can  extract  intrinsic  nonnegative,  sparse  and  low-rank
components from the tensor data. NCP can be represent-
ed as a constrained nonconvex optimization problem and
solved in the block coordinate descent (BCD) framework.
The BCD-based NCP algorithm is favourable for decom-
posing  large-scale tensor  data,  especially  those  contami-
nated by considerable noise. To efficiently solve the con-

strained  tensor  decomposition,  numerous  optimization
methods  have  been  developed,  such  as  the  alternating
proximal  gradient  (APG)  [5]–[7], alternating  nonnega-
tive  quadratic  programming  (ANQP)  [8],  [9] and  alter-
nating  optimization-based  alternating  direction  method
of multipliers (AO-ADMM) [10].

Alternating direction method of multipliers (ADMM)
is  a  conventional  optimization  method  and  has  become
increasingly  popular  in  signal  processing  and  machine
learning [11], [12]. ADMM has been employed and adapt-
ed  for  many  types  of  tensor  decomposition  problems.
Liavas et al. proposed the ADMM-based NCP algorithm
and its parallel implementation [13]. Later, Huang et al. 
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proposed  the  AO-ADMM  algorithm  [10], which  com-
bines the ADMM algorithm and an alternating optimiza-
tion scheme in the BCD framework. AO-ADMM updates
each  subproblem  of  NCP  using  ADMM  with  multiple
inner iterations and shows outstanding performances for
the whole NCP problem. Recently, AO-ADMM has been
extended to solve many other constrained tensor decom-
position problems, such as PARAFAC2 [14] and coupled
matrix and tensor factorizations (CMTF) [15]. Moreover,
the ADMM is flexible in coping with many types of regu-
larization  items  [16],  [17]  in  the  objective  function  and
solving structured low-rank factorization [18], [19].

Although the ADMM method is favourable for tensor
analysis,  it  still  suffers from ill-posed problems. In prac-
tice,  when  tensor  data  are  highly  sparse  and  the  tensor
rank  is  very  small,  the  decomposed  factor  matrices  will
not be of full column rank. In such a case, the ADMM-
based tensor decomposition will suffer from rank deficien-
cy and, therefore, degenerate [8]. From the perspective of
mathematical  optimization,  many  techniques  have  been
proposed  to  enhance  ADMM.  The  combination  of  the
proximal algorithm and method of multipliers is a signifi-
cant enhancement of ADMM, termed the alternating di-
rection  proximal  method  of  multipliers  (ADPMM)  [20].
The advantage of the proximal algorithm in ADPMM is
that it manufactures strongly convex minimization prob-
lems  [20],  [21].  On  the  other  hand,  when  the  objective
function is  nonlinear  or  nonsmooth,  the  linearized  AD-
MM or proximal linearized ADMM is preferred [22]–[25].

In  this  study,  we  first  extend  the  ADPMM  to  the
NCP problem. In the BCD framework [8], NCP is  opti-
mized  by  alternatively  solving  each  subproblem  in  the
outer  loop.  We  employ  the  proximal  algorithm  to  the
subproblem by adding a proximal regularization item to
the  objective  function.  In  this  way,  a  strongly  convex
surrogate  function  is  constructed  for  the  subproblem.
Afterwards, the subproblem is  optimized by alternative-
ly updating the primal variable and dual variable in the
inner loop.  The  ADPMM  in  the  subproblem  can  over-
come the rank deficiency that NCP may encounter when
the tensor data are highly sparse. Second, we implement
the ADPMM-based NCP using an inexact scheme. Specif-
ically,  the subproblem is  updated by a finite  number of
inner iterations. The inner iteration will stop when a pre-
defined  maximum  number  of  iterations  or  tolerance  is
satisfied.  The  inexact  scheme  can  significantly  improve
the efficiency of NCP [7], [8].

The rest  of  this  paper  is  organized  as  follows.  Sec-
tion II introduces the basic ideas of ADPMM and NCP.
In  Section  III,  we  present  the  proposed  NCP algorithm
and  its  extension  to  sparse  NCP.  Section  IV  describes
the  experiments  on  synthetic  and  real-world  tensors.
Finally, we conclude the paper in Section V. 

II. Preliminaries
In this paper, we use normal lowercase letters (e.g.,

x x

X X

◦
⊙ ∗

⟨ ⟩ [[ ]]

∥ ∥F
∥ ∥1 l1

X X ≥ 0 u ∈ Rd

M ∈ Sd+ := {M :

M = MT,M ≥ 0} M

∥u∥M = ⟨u,Mu⟩1/2
F

),  boldface  lowercase  letters  (e.g., ), boldface  upper-
case letters (e.g., ) and boldface script letters (e.g., )
to denote  scalars,  vectors,  matrices  and  tensors,  respec-
tively.  The  operator  represents  the  outer  product  of
vectors,  represents  the  Khatri-Rao  product,  repre-
sents the Hadamard product that is the elementwise ma-
trix  product,  represents  the  inner  product,  and 
represents  Kruskal  operator.  denotes  Frobenius
norm,  and  denotes -norm.  A  nonnegative  matrix

 is  expressed  by .  For  a  vector  and  a
symmetric positive semidefinite matrix 

,  the seminorm induced by  is de-
fined by .  The objective function of
tensor decomposition is denoted by the script letter .

N X X ∈
RI1×I2×···×IN

Given a nonnegative th-order tensor , i.e., 
, the  NCP  can  be  represented  by  the  fol-

lowing minimization problem:
 

min
A(1),A(2),...,A(N)

{
1

2

∥∥∥X −
[[
A(1),A(2), . . . ,A(N)

]] ∥∥∥2
F

+

N∑
n=1

r
(
A(n)

)}
s.t. A(n) ≥ 0 for n = 1, 2, . . . , N (1)

A(n) ∈ RIn×R n = 1, 2, . . . , N
r
(
A(n)

)
In n R

where  for  are the estimat-
ed factor matrices in different modes,  is the reg-
ularization item,  is the size in mode- , and  is the
predefined  number  of  components  that  can  be  seen  as
the selected rank.

X(n) n

X n JA(1),A(2), . . . ,A(N)K
A(n)

(
B(n)

)T
B(n)=

(
A(N) ⊙ · · ·

⊙A(n+1) ⊙A(n−1) ⊙ · · · ⊙A(1)
)

A(n)

Let  represent the mode-  unfolding of original
tensor . The mode-  unfolding of 
can be written as , where 

. In the BCD framework
[5], [8], each factor matrix  is updated alternatively
by the following subproblem:

 

min
A(n)

1

2

∥∥∥X(n) −A(n)
(
B(n)

)T∥∥∥2
F
+ r
(
A(n)

)
s.t. A(n) ≥ 0 (2)

 

III. Novel NCP Algorithms
In this  section,  we  introduce  our  novel  NCP  algo-

rithm. In the BCD framework, we alternatively optimize
the  subproblem  (2)  with  respect  to  each  factor  matrix
using the  ADPMM.  The  full  name  of  our  NCP  algo-
rithm  is  alternating  optimization-based  alternating  dir-
ection  proximal  method  of  multipliers,  abbreviated  to
A2DPMM,  in  which  the  first “alternating” means  that
the factor matrices are updated alternatively as subprob-
lems  in  the  outer  loop  of  NCP;  In  contrast,  the  second
“alternating” means that  the  primal,  auxiliary  and dual
variables  are  updated  alternatively  in  the  inner  loop  of
each subproblem. 
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1. A2DPMM for NCP

Ã(n) ∈ RIn×R

A(n)

In this part, we present the details of the A2DPMM
algorithm  to  realize  NCP.  The  computation  steps  of
A2DPMM  are  similar  to  that  of  ADMM  for  NCP  [26].
However, it  outperforms  ADMM  because  of  the  proxi-
mal regularization items in ADPMM. We explain how to
use ADPMM to solve the subproblem of NCP as follows.
Introducing  an  auxiliary  variable  for  the
primal variable , we reform the subproblem (2) as

 

min
A(n)

1

2

∥∥∥X(n) −A(n)
(
B(n)

)T∥∥∥2
F
+ r
(
Ã(n)

)
s.t. A(n) = Ã(n), Ã(n) ≥ 0

(3)

Next, we construct two functions for (3):
 

F
(
A(n)

)
=

1
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∥∥∥X(n) −A(n)
(
B(n)

)T∥∥∥2
F

G
(
Ã(n)

)
= r

(
Ã(n)

)
Λ(n) ∈ RIn×R (

A
(n)
k , Ã

(n)
k ,Λ

(n)
k

)
(k + 1)

We employ  as the Lagrange multipli-
er  (dual  variable).  Given  a  point  in
the th iteration, we define the proximal augment-
ed Lagrangian function of (3) by

 

Pk

(
A(n), Ã(n),Λ(n)

)
= F

(
A(n)

)
+ G

(
Ã(n)

)
+
⟨
Λ(n),A(n) − Ã(n)

⟩
+

ρn
2

∥∥A(n) − Ã(n)
∥∥2
F

+
1

2

∥∥A(n) −A
(n)
k

∥∥2
M1

+
1

2

∥∥Ã(n) − Ã
(n)
k

∥∥2
M2

(4)

ρn = tr
[(
B(n)

)T
B(n)

]
/RWe select  according to the

empirical setting in [10].
A

(n)
k Ã

(n)
k

Λ
(n)
k

Afterwards, we update the sequence ,  and
 for the subproblem (3) as follows:

A(n)1) Updating the primal variable 
 

A
(n)
k+1 = argmin

A(n)

Pk

(
A(n), Ã

(n)
k ,Λ

(n)
k

)
= argmin

A(n)
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F
(
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+
⟨
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(n)
k

⟩
+

ρn
2

∥∥A(n) − Ã
(n)
k

∥∥2
F +

1

2

∥∥A(n) −A
(n)
k

∥∥2
M1

}
(5)

M1 = αnIR IR ∈ RR×R

αn ∈ α = [α1, . . . , αN ]T

Φ(n) = 1
ρn

Λ(n)

∂Pk

∂A(n) = 0

We  select ,  where  is  an
identity matrix, and  can be seen
as  the  regularization  parameter  of  the  proximal  item.
Supposing  and  computing  the  partial
derivative , we obtain the solution

 

A
(n)
k+1 =

[
X(n)B

(n) + αnA
(n)
k + ρn

(
Ã

(n)
k −Φ

(n)
k

)]
·
[(
B(n)

)T
B(n) + αnIR + ρnIR

]−1

(6)

Ã(n)2) Updating the auxiliary variable  

Ã
(n)
k+1 = argmin

Ã(n)≥0

Pk

(
A

(n)
k+1, Ã

(n),Λ
(n)
k

)
= argmin

Ã(n)≥0

{
G
(
Ã(n)

)
+
⟨
Λ

(n)
k ,A

(n)
k+1 − Ã(n)

⟩
+

ρn
2

∥∥A(n)
k+1 − Ã(n)

∥∥2
F

+
1

2

∥∥Ã(n) − Ã
(n)
k

∥∥2
M2

}
(7)

M2 = 0We select . Using the proximal operator, we
obtain the following closed form solution

 

Ã
(n)
k+1 = prox G

ρn

(
A

(n)
k+1 +

1
ρn

Λ
(n)
k

)
(8)

G
(
Ã(n)

)
= βn

∑R
r=1

∥∥∥ã(n)
r

∥∥∥
1

ã
(n)
r r Ã(n) βn

β ∈ RN×1

Ã(n)

For example, if sparsity is expected to impose on the
factors,  we  can  set ,  where

 is  the th  column  of  and  is  the  positive
regularization parameter in vector . With both
nonnegative constraint and sparse regularization, the up-
dating of  becomes

 

Ã
(n)
k+1 = max

{
0, A

(n)
k+1 +

1
ρn

Λ
(n)
k − βn

ρn
E
}

(9)

E ∈ RIn×Rwhere all the elements in  equal to one.

Λ(n)
3) Updating the Lagrange multiplier (dual variable)

 

Λ
(n)
k+1 = argmin

Λ(n)

{
− Pk

(
A

(n)
k+1, Ã

(n)
k+1,Λ

(n)
)

+
1

2ρn

∥∥∥Λ(n) −Λ
(n)
k

∥∥∥2
F

}
= argmin

Λ(n)

{
−
⟨
Λ(n),A

(n)
k+1 − Ã

(n)
k+1

⟩
+

1

2ρn

∥∥∥Λ(n) −Λ
(n)
k

∥∥∥2
F
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(10)

Afterwards, we obtain the solution
 

Λ
(n)
k+1 = Λ

(n)
k + ρn

(
A

(n)
k+1 − Ã

(n)
k+1

)
(11)

Equation (11) can be represented equivalently in the
scaled form as follows:

 

Φ
(n)
k+1 = Φ

(n)
k +A

(n)
k+1 − Ã

(n)
k+1

(12)

The  implementation  of  A2DPMM is  summarized  in
Algorithm 1.

X(n)B
(n)

(
B(n)

)T
B(n)

O
(
R
∏N

ñ=1,ñ̸=n Iñ +R
∏N

ñ=1 Iñ
)

O
(
R2
∑N

ñ=1,ñ ̸=n Iñ
)

O
(
K̄ × (InR

2 +R3)
)

K̄

Based on Algorithm 1, we analyze the computation
complexity  of  A2DPMM.  In  an  outer  iteration  of  the
A2DPMM algorithm, the computation mainly focuses on

,  and the inner loop. The compu-
tational complexities of  these three parts are respective-
ly , 
and ,  where  is  the  predefined
inner iteration number.
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A2DPMMAlgorithm 1    for NCP
X R α βInput: , , , .
A(n) n = 1, 2, . . . , NOutput: , .

A(n) ∈ RIn×R n = 1, 2, . . . , N
Φ(n) ∈ RIn×R

 1: Initialize , , using nonneg-
ative random numbers, and initialize  us-
ing zeros;

　 // The outer loop starts here
 2: repeat

n = 1 N 3:　　for  to  do

n X X(n)

X(n)B
(n)

 4:　　　　Make mode-  unfolding of  as  and com-
pute ;(

B(n)
)T

B(n) 5:　　　　Compute ;

ρn = tr
[(
B(n)

)T
B(n)

]
/R 6:　　　　 ;

　　　　　 // The inner loop starts here
 7:　　　　repeat

A(n) 8:　　　　　　Update the primal variable  using (6);
Ã(n) 9:　　　　　　 Update the auxiliary variable  using (8);

Φ(n)10:　　　　　　Update the dual variable  using (12);
11:　　　　until inner termination criterion is reached
　　　　　 // The inner loop ends here

A(n) = Ã(n)12:　　　　 ;
13:　　　end
14: until outer termination criterion is reached
　 // The outer loop ends here

A(n) n = 1, 2, . . . , N15: return , .
 

2. Convergence analysis

M1 = αnIR > 0 M2 = 0
Pk

The proximal  augmented  Lagrangian  in  (4)  manu-
factures strong convexity for the subproblem of NCP and
sparse NCP. We set  and . The
proximal  augmented  Lagrangian  function  in  (4)  can
be represented as

 

Pk =
1

2

∥∥∥∥∥
(

XT
(n)

√
αn

(
A

(n)
k

)T )−
(

B(n)

√
αnIR

)(
A(n)

)T∥∥∥∥∥
2

F

+
⟨
Λ(n),A(n) − Ã(n)

⟩
+

ρn
2

∥∥A(n) − Ã(n)
∥∥2
F

(13)(
B(n)

√
αnIR

)
M1 = αnIR > 0

The  concatenated  matrix  must  be  of
full column rank. Hence, the selection of 
will introduce  a  full  column  rank  variable  in  the  proxi-
mal  augmented  Lagrangian  function  of  the  subproblem.
According to Theorem 5.6 in [20], the ADPMM can sta-
bly  decrease  the  objective  function  of  the  subproblem
and guarantee  that  the  subproblem converges  to  a  sad-
dle point.  Furthermore,  in  the  BCDframework,  accord-
ing to Proposition 3.7.1 in [27], the A2DPMM can guar-
antee that the NCP converges to a stationary point.

M1 M2

Furthermore,  according  to  [20],  there  are  many
choices  of  and  that  guarantee  the  convergence
of diverse optimization applications. 

3. Inexact scheme
A(n) Ã(n)

Φ(n)
The  primal  variable ,  auxiliary  variable 

and dual  variable  are  updated  alternatively  in  the
inner loop  of  the  subproblem.  If  the  inner  loop  termi-
nates based on a unique stopping criterion tolerance, the
subproblem may iterate  tens  or  hundreds  of  times.  Too
many inner  iterations  will  make  the  tensor  decomposi-
tion  algorithm  inefficient.  Therefore,  we  employ  an  in-
exact scheme for the subproblem. Specifically, we update
the variables in the subproblem by a finite number of in-
ner iterations,  e.g.,  10  or  20.  The inner  loop will  termi-
nate when the predefined number is reached, yielding an
inexact subproblem solution. The inexact scheme will re-
duce the computational complexity of the inner loop and
speed up the tensor decomposition significantly [7], [8]. 

IV. Experiments and Results
We evaluated the proposed A2DPMM algorithm on

both synthetic and real-world tensors. We compared the
A2DPMM with three NCP algorithms: PROX-ANQP [8],
AO-ADMM [10] and Fast-HALS [28].

For  A2DPMM,  AO-ADMM and  PROX-ANQP,  the
algorithms  were  implemented  using  the  outer  loop  that
optimizes the NCP problem and the inner loop that opti-
mizes  each  subproblem.  The  outer  loop  was  terminated
based  on  the  change  of  the  relative  error  (see  Section
4.3.1  in  [8]).  In  contrast,  the  termination  of  the  inner
loop  was  based  on  the  relative  residual  of  each  factor
matrix with a dynamically adjustable threshold (see Sec-
tion 4.3.2 in [8]). Furthermore, using the inexact scheme,
the  inner  loop  will  also  terminate  when  the  predefined
maximum number of inner iterations is reached.

The  experiments  were  conducted  on  a  computer
with an Intel Core i7-9750H 2.6 GHz CPU, 32 GB mem-
ory,  a  64-bit  Windows  system  and  MATLAB  R2022a.
The  fundamental  tensor  computation  was  based  on
Tensor Toolbox v3.2.1 [29]. 

1. Synthetic tensor data

X SYN =
[[
A(1),A(2),A(3)

]]
× ×

In  the  first  experiment,  we  constructed  a  synthetic
third-order sparse tensor  sim-
ilar  to  that  in  Section  5.1.2  in  [8].  The  tensor  size  is
500  500  500, and the actual number of components
is  100  (rank  =  100).  Nonnegative  noise  with  signal-to-
noise ratio (SNR) of 10 dB was added.

1× 10−6

αn

1× 10−4 βn = 0, 0.5, 1, 3, 5 and 7

βn

We  set  the  outer  stopping  tolerance  by ,
the maximum  running  time  by  600  seconds,  the  maxi-
mum  number  of  inner  iterations  by  50  and  the  initial
number of components by 200. The true sparsity levels of
three factor matrices are 0.95, 0.75 and 0.5 respectively,
where  the  maximum of  1  means  a  zero  matrix  and  the
minimum of 0 means a fully dense matrix [8]. We set 
in (6) by . The values of 
were selected for all algorithms to evaluate their abilities
to impose sparsity. The selection of  was based on try-
ing and testing for each tensor. We record the values of
the objective function (Obj), relative error (RelErr), run-
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ning time in seconds (in wall-clock time), outer iteration
number  (Iter),  number  of  nonzero  components  (NNC),
sparsity  level  (Spars)  and  peak-signal-to-noise  ratio

(PSNR)  of  all  estimated  factor  matrices.  All  algorithms
were run 30 times. The average values of all criteria are
computed and shown in Table 1.

 
 

X SYN ∈ R500×500×500Table 1  Comparison of NCP algorithms on 

Method βn Obj RelErr Time (s) Iter NNC Spars1 Spars2 Spars3 PSNR1 PSNR2 PSNR3

A2DPMM

0 2.46×106 0.2207 64.6 41.5 200.00 0.260 0.279 0.041 49.26 46.92 46.72

0.5 2.54×106 0.2208 64.2 41.1 190.77 0.679 0.404 0.089 49.22 48.18 48.10

1 2.62×106 0.2209 51.3 33.2 138.37 0.811 0.511 0.097 58.91 48.93 49.72

3 2.83×106 0.2209 54.0 35.2 103.10 0.915 0.683 0.354 69.66 50.90 49.33

5 2.99×106 0.2210 56.9 37.2 101.63 0.930 0.712 0.477 69.03 63.06 56.78

7 3.11×106 0.2210 66.2 43.7 101.27 0.929 0.718 0.499 68.43 66.47 64.66

AO-ADMM

0 2.46×106 0.2207 65.0 41.7 200.00 0.257 0.277 0.041 49.16 47.01 46.66

0.5 2.54×106 0.2208 62.6 40.5 189.70 0.681 0.405 0.088 49.46 48.20 48.07

1 2.62×106 0.2209 50.1 32.4 137.87 0.805 0.507 0.091 58.99 48.91 49.80

3 2.83×106 0.2209 53.9 35.0 103.43 0.914 0.679 0.355 69.56 50.35 49.40

5 3.00×106 0.2210 56.0 36.5 101.53 0.928 0.712 0.475 69.14 62.54 56.28

7 3.08×106 0.2210 88.1 59.2 100.97 0.840 0.666 0.499 65.78 63.71 63.56

PROX-ANQP

0 2.46×106 0.2207 74.7 33.6 200.00 0.230 0.277 0.065 49.33 47.70 45.79

0.5 2.54×106 0.2208 74.1 35.1 199.27 0.624 0.439 0.203 49.17 47.14 46.13

1 2.62×106 0.2209 57.1 29.1 160.77 0.803 0.623 0.367 54.47 51.85 51.25

3 2.82×106 0.2209 64.3 38.0 101.87 0.915 0.713 0.498 70.01 67.64 66.46

5 2.95×106 0.2209 78.6 48.5 101.47 0.928 0.717 0.500 69.83 67.92 66.50

7 3.06×106 0.2210 81.8 51.1 101.37 0.922 0.716 0.500 68.83 67.52 66.24

Fast-HALS

0 2.46×106 0.2208 87.6 66.6 200.00 0.772 0.450 0.013 41.26 52.68 57.60

0.5 2.94×106 0.2212 55.9 42.5 200.00 0.613 0.507 0.109 44.74 48.67 48.44

1 3.38×106 0.2225 88.2 66.8 200.00 0.395 0.475 0.162 47.63 50.85 42.15

3 5.02×106 0.2323 123.3 93.0 200.00 0.206 0.409 0.376 43.54 48.99 36.74

5 6.45×106 0.2468 100.4 76.1 200.00 0.119 0.369 0.462 40.16 47.32 34.74

7 7.71×106 0.2639 88.1 66.9 200.00 0.089 0.332 0.510 38.16 45.87 33.39
Note: Ground truth levels: Spars1=0.95, Spars2=0.75 and Spars3=0.5.
　　  Sparsn: Sparsity level of the mode-n estimated factor.
　　  NNC: Number of nonzero components.
 

βn

βn

βn = 5 or 7

From the perspective of running time, it can be seen
in Table 1 that the A2DPMM is very fast in comparison
with  AO-ADMM,  PROX-ANQP  and  Fast-HALS.  The
Fast-HALS  is  the  slowest  among  four  algorithms  with
different values of , because Fast-HALS does not em-
ploy the inexact scheme. From the perspective of sparsi-
ty  recovering,  when  the  sparse  regularization  parameter

 is  set by 5 or 7,  the NNC values of  A2DPMM, AO-
ADMM and PROX-ANQP are close to the true number
of  components  of  100.  Moreover,  when ,  the
PSNR values of A2DPMM and PROX-ANQP are higher
than those of  AO-ADMM and Fast-HALS, and the fac-
tor  sparsity  levels  of  A2DPMM  and  PROX-ANQP  are
very close to the true values of 0.95, 0.75 and 0.5 respec-
tively.  The  reason  is  that  the  proximal  algorithm  in
A2DPMM and PROX-ANQP can overcome the rank de-

βn > 0

ficiency that  may  occur  in  tensor  decomposition  for  re-
covering  sparse  components  [8].  Fast-HALS fails  in  re-
covering the true sparse components and it has high rela-
tive  error  with .  The  reason  is  that  Fast-HALS
does  not  use  the  proximal  algorithm  and  is  prone  to
sparse regularization.

The  synthetic  experimental  results  prove  that
A2DPMM is  efficient  for  NCP decomposition  and  effec-
tive for recovering more accurate sparse components. 

2. Real-world video tensor
In the second experiment, we generated a real-world

third-order  dense  tensor  using  surveillance  video  data
from  the  UCSD  Anomaly  Detection  Dataset*1.  The
dataset contains 70 video samples, each sample contains
200  video  images,  and  each  image  has  a  height  of  158
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 http://www.svcl.ucsd.edu/projects/anomaly/dataset.html



× × × ×
pixels  and  a  width  of  238  pixels.  Hence,  the  size  of  the
video tensor is pixel  pixel  images = 158  238  14000.

1× 10−6

βn = 0

We  set  the  outer  stopping  tolerance  by ,
the  maximum running  time  by 1200 seconds, the  maxi-
mum  number  of  inner  iterations  by  20  and  the  initial
number of components by 20. We recorded only the val-
ues  of  the  objective  function  (Obj),  relative  error  (Rel-
Err),  running  time  in  seconds  (in  wall-clock  time)  and
outer iteration number (Iter). We do not consider sparse
regularization  for  this  dense  video  tensor  ( ).  All
algorithms were run 30 times, and the average values are
shown in Table 2.
 
 

βnTable 2  Comparison of NCP algorithms on video tensor ( =0)

Method Obj RelErr Time (s) Iter

A2DPMM 1.49×106 0.1756 236.4 268.2

AO-ADMM 1.49×106 0.1755 271.6 295.6

PROX-ANQP 1.49×106 0.1754 245.3 286.3

Fast-HALS 1.49×106 0.1758 600.0 749.1
 

The  results  in Table  2 show  that  A2DPMM con-
verges very fast and terminates in much less time for the
large-scale  dense  tensor  compared  with  PROX-ANQP,
AO-ADMM and Fast-HALS. We plot the objective func-
tion value curves of all four NCP algorithms in Figure 1.
It is clear in Figure 1 that the A2DPMM converges faster
than the other three algorithms.
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Figure 1  The objective function value curves of NCPs on the third-
order video tensor ( =0).
  

3. Real-world fMRI tensor
In  the  third  experiment,  we  employ  a  brain  signal

tensor  of  resting-state  functional  magnetic  resonance
imaging (fMRI) data. The data come from the Tao Wu
dataset*2, which consists of 20 patients with Parkinson’s
disease (PD) and 20 age-matched controls (healthy sub-
jects) [30]. Two hundred and thirty-nine temporal points
were originally recorded in each subject’s data. The first
ten  temporal  points  were  removed  after  standard  fMRI

× × ×
× × ×

data  preprocessing  with  229  temporal  points  left.  Next,
the  average  blood  oxygenation  level  dependent  (BOLD)
signal time series were computed using a published brain
parcellation comprising 129 regions of interest (ROIs) [31],
[32]. Afterwards, these time series were transformed into
the  time-frequency  domain  using  continuous  wavelet
transform (CWT),  which  has  50  spectral  points  repre-
senting  the  frequency  information  between  0  and  0.25
Hz. Finally, a fourth-order nonnegative fMRI tensor was
generated, whose size was space  frequency  time 
subject = 129  50  229  40. The fMRI data collec-
tion and preprocessing details are described in [33].

The  settings  of  the  algorithm  parameters  are  the
same  as  those  for  the  video  tensor  in  Section  IV.2.  We
also  evaluate  the  performances  using  the  values  of  Obj,
RelErr, Time and Iter. The average values of 30 runs for
each algorithm are shown in Table 3. The objective func-
tion  value  curves  of  all  four  algorithms  on  the  fourth-
order  fMRI  tensor  are  shown  in Figure  2. Table  3 and
Figure 2 demonstrate that the proposed A2DPMM algo-
rithm  has  faster  convergence  compared  with  the  other
three algorithms.
  

βnTable 3  Comparison of NCP algorithms on fMRI tensor ( =0)

Method Obj RelErr Time (s) Iter

A2DPMM 1.05×106 0.4629 41.9 136.4

AO-ADMM 1.05×106 0.4629 44.7 145.6

PROX-ANQP 1.05×106 0.4628 43.9 143.5

Fast-HALS 1.05×106 0.4630 75.7 262.8
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Figure 2  The  objective  function  value  curves  of  NCPs  on  the
fourth-order fMRI tensor ( =0).
 

βn = 0, 10, 50, 100, 150 and 200

Furthermore, we tested the ability of the A2DPMM
algorithm  to  impose  sparsity  on  the  factor  matrices  of
the fMRI  tensor  decomposition.  The  sparse  regulariza-
tion parameters  were test-
ed for A2DPMM. We recorded the average values of the
NNC and the Spars of  all  the estimated factor matrices
after  30  runs  in Table  4.  The  results  demonstrate  that

Efficient Nonnegative Tensor Decomposition Using Alternating Direction Proximal Method of Multipliers 1313  

 

*2
 https://fcon_1000.projects.nitrc.org/indi/retro/parkinsons.html



βn

our  A2DPMM algorithm can  successfully  impose  sparsi-
ty  on  the  factor  matrices  and  reduce  the  number  of
nonzero components by increasing the value of the spar-
sity regularization parameter .

βn = 200
We also selected four groups of components extract-

ed by the A2DPMM algorithm with , as shown
in Figure 3. Groups (a), (b) and (c) contain many sparse
components. By visual observation of the subject compo-
nents in  the first  three  groups,  there  are  significant  dif-
ferences between  the  patients  and  controls.  The  differ-
ences mean that the corresponding sparse brain features
in  these  groups  may  often  appear  in  healthy  controls,
and the  highlighted  positions  of  the  brain  shown in  the
spatial  components*3 might indicate  illnesses  in  the  pa-
tients.  On  the  other  hand,  group  (d)  shows  a  group  of
dense  components,  which  are  common for  both  controls
and  patients.  The  results  in Figure  3 prove  that  our

NCP algorithm of A2DPMM is an efficient and effective
tool for analysing fMRI tensor data. Furthermore, statis-
tical  analysis  of  the  extracted  components  is  necessary
for a  rigorous  analysis  of  brain  functions  from a  neuro-

 

Table 4  Sparse  regularization  performances  of  A2DPMM  on  fMRI
tensor

βn NNC Spars1 Spars2 Spars3 Spars4

0 20.00 0.001 0.223 0.110 0.137

10 18.57 0.072 0.290 0.183 0.193

50 15.73 0.215 0.437 0.360 0.341

100 13.13 0.350 0.587 0.555 0.540

150 9.50 0.532 0.681 0.688 0.687

200 5.77 0.712 0.773 0.792 0.788

Note: Sparsn = Sparsity level of the mode-n estimated factor.
NNC = Number of nonzero components.
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Figure 3  Selected groups of components from the fMRI tensor using the A2DPMM algorithm.
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*3
 The spatial components were plotted using the software REST [34]. REST can be downloaded from http://www.rfmri.org/REST.



science viewpoint. 

V. Conclusion
In  this  study,  we  proposed  a  novel  NCP algorithm

using alternating optimization in the BCDframework and
the alternating direction proximal method of multipliers,
abbreviated to A2DPMM. Our proposed NCP can over-
come the rank deficiency problem in conventional ADMM-
based  methods.  We  evaluated  the  performances  of  the
new algorithm on both synthetic and real-world tensors.
The  experimental  results  proved  that  our  proposed
method  has  better  convergence  properties  and  faster
computation  speed  than  the  latest  NCP  methods.  The
proposed  algorithm  is  suitable  for  processing  large-scale
dense  and sparse  tensor  data.  It  can be  a  powerful  tool
for various areas,  such as neuroscience, fluorescence and
hyperspectral  data  processing.  The  A2DPMM algorithm
can naturally be extended to other tensor decomposition
and  fusion  models  in  BCD  framework,  such  as  Tucker
decomposition,  PARAFAC2  and  CMTF.  Moreover,  the
proposed  A2DPMM  algorithm  can  be  further  improved
using  the  latest  linearization  techniques  to  cope  with
many other nonlinear and nonsmooth problems in tensor
decomposition. 
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