
 

RESEARCH ARTICLE

An Efficient and Fast Area Optimization
Approach for Mixed Polarity Reed-Muller
Logic Circuits

Yuhao ZHOU1, Zhenxue HE2, Jianhui JIANG1, Xiaojun ZHAO2, Fan ZHANG2,
Limin XIAO3, and Xiang WANG4

1. School of Software Engineering, Tongji University, Shanghai 201804, China
2. Key Laboratory of Agricultural Big Data of Hebei Province, Hebei Agricultural University, Baoding 071001, China
3. School of Computer Science and Engineering, Beihang University, Beijing 100191, China
4. School of Electronic and Information Engineering, Beihang University, Beijing 100191, China 

Corresponding author: Zhenxue HE, Email: hezhenxue@buaa.edu.cn
Manuscript Received November 29, 2022; Accepted March 22, 2023
Copyright © 2024 Chinese Institute of Electronics

Abstract — Area has become one of the main bottlenecks restricting the development of integrated circuits. The
area optimization approaches of existing XNOR/OR-based mixed polarity Reed-Muller (MPRM) circuits have poor
optimization effect and efficiency. Given that the area optimization of MPRM logic circuits is a combinatorial opti-
mization problem, we propose a whole annealing adaptive bacterial foraging algorithm (WAA-BFA), which includes
individual  evolution  based  on Markov chain  and Metropolis  acceptance  criteria,  and individual  mutation  based  on
adaptive probability. To address the issue of low conversion efficiency in existing polarity conversion approaches, we
introduce a fast polarity conversion algorithm (FPCA). Moreover, we present an MPRM circuits area optimization
approach that uses the FPCA and WAA-BFA to search for the best polarity corresponding to the minimum circuits
area. Experimental results demonstrate that the proposed MPRM circuits area optimization approach is effective and
can be used as a promising EDA tool.
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 I. Introduction
At present,  integrated circuits  have entered the de-

velopment  stage  of  ultra-large-scale  integrated  circuits
and  system-on-chips.  The  integration  of  chips  continues
to increase, the speed is also accelerating, and the area is
getting  larger  and  larger.  However,  the  ever-increasing
area  has  caused  various  portable  devices  to  encounter
power supply difficulties, chip overheating and increased
power  consumption  [1],  [2].  These  problems  will  lead  to
more and more expensive cooling costs [3]. Modern EDA
technology  conducts  logic  synthesis  and  optimization,
testing and  design,  and  database  management  and  sup-
port  by  customizing  various  standards.  The  technology

takes hardware description language (HDL) as the core,
adopts  concept-driven  and  rule-driven,  and  starts  from
high-level  system-level  design,  including  scheme  design
and verification, logic circuit design, and even the under-
lying  ASIC  layout  design,  all  completed  by  automated
means, so as to realize the integration of design, testing
and process.  Therefore,  polarity  optimization  techniques
can be introduced in higher levels of circuit design (such
as logic or behavior levels) to optimize the area of inte-
grated circuits [4]–[8]. Previous research on area optimiz-
ation focused  on  Boolean  logic  circuits.  For  some  arith-
metic  circuits  and  communication  circuits,  XNOR/OR-
based Reed-Muller (RM) logic circuits have more advan-
tages in terms of power consumption, area and testabili- 
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ty [9], [10]. Polarity is the key factor of Reed-Muller log-
ic, which  directly  determines  the  simplification  of  func-
tion,  and  then  affects  the  power  consumption  and  area
performance of the circuit. Reed-Muller logic circuits op-
timization is to search for a certain polarity in a specific
polarity  space  to  optimize  some  performance  indicators
of  the  corresponding  circuit,  usually  called  the  optimal
polarity.

The mixed  polarity  Reed-Muller  (MPRM)  expres-
sion is an important criterion to measure the complexity
of the Reed-Muller circuits, and the MPRM logic circuit
with n input variables has 3n different polarities, that is,
the optimization space is 3n. So, it is necessary and vital
to find a novel optimization theory and approach to min-
imize MPRM logic expressions.  The current research on
Reed-Muller  logic  circuits  optimization  is  mainly  aimed
at fixed polarity Reed-Muller (FPRM) logic circuits, and
its polarity search space is a proper subset of MPRM log-
ic  circuit.  Related  research  has  shown  that  the  power
and area performance of MPRM logic circuits are better
than those of  FPRM logic  circuits  [11],  [12].  But at the
same time, the time and space complexity of MPRM log-
ic  circuit  is  higher  than  that  of  FPRM  logic  circuit,
which  makes  the  optimization  of  MPRM  logic  circuit
much  more  complex  than  that  of  FPRM  logic  circuit.
Therefore, new breakthroughs are urgently needed in the
optimization  theory  and  solution  approach  of  MPRM
logic circuits.

The area optimization for XNOR-based MPRM cir-
cuits is more difficult than that for FPRM circuits. First-
ly, most of the researches focused on XOR/AND circuits
[13]–[15].  However,  after  benchmark  tests,  it  has  been
verified that XNOR/OR-based circuits have a more con-
cise  expression  [16]–[18],  which  will  further  reduce  the
area.  Although  some  logic  minimization  algorithms  for
MPRM  have  been  proposed  above,  they  cannot  handle
multiple input variables, and they are less efficient when
polarity conversion. Secondly, previous researches focused
on  FPRM  circuits  and  XOR-based  EXOR-sum-of-prod-
ucts (ESOP) circuits [19]–[21]. The approaches proposed
in the  above  works  can be  used for  circuits  with  multi-
ple input variables, but most of them use traditional al-
gorithms and do not  consider  time constraints.  In  addi-
tion,  translating  to  XNOR  logic  via  De  Morgan’s  law
would be  further  time consuming.  Finally,  polarity  con-
version is a prerequisite for measuring circuit complexity.
The above works are mostly converted from Boolean log-
ic to specified polarity [17], [18], [22]. As far as we know,
there  is  no  approaches  of  conversion  between  polarities
currently. Therefore,  there  is  an  urgent  need  for  a  con-
version approach  between  polarities  to  improve  efficien-
cy.  The  change  of  true  form  and  complement  form  of
various polarities is analyzed, and we propose a fast po-
larity  conversion  algorithm  (FPCA)  between  polarities.
It  is  necessary to introduce a search algorithm that can
handle multiple inputs and higher efficiency to optimize
the MPRM circuits area based on XNOR/OR.

The area optimization and polarity conversion algo-
rithm optimization for MPRM logic circuit is a computa-
tionally hard problem. In addition, we also need to solve
the  double  nested  combinatorial  optimization  problem.
Compared with  the  existing  work,  our  main  contribu-
tions are as follows:

1) We propose a whole annealing adaptive bacterial
foraging algorithm  (WAA-BFA).  In  the  chemotaxis  be-
havior  of  the  algorithm,  the  non-directional  random
search of  bacteria  will  affect  the  convergence  perfor-
mance of  the algorithm. In other words,  the chemotaxis
behavior is equivalent to the traveling salesman problem
(TSP), and we need to consider the overall search effect.
So  MPRM  circuits  optimization  considering  individual
chemotaxis is  a  double  nested  combinatorial  optimiza-
tion problem.  So,  we  nested  the  whole  annealing  opti-
mization  (WAO)  on  the  basis  of  BFA  optimization  for
in-depth  exploration  and  optimization.  In  the  migration
behavior of the algorithm, we use an adaptive migration
optimization (AMO) strategy to improve the global con-
vergence accuracy and speed up the convergence speed at
the same time.

2)  We propose  a  fast  polarity  conversion  algorithm
(FPCA). The conversion from 0 polarity to any polarity
can  be  completed  by  the  algorithm.  This  algorithm  is
more efficient than the Boolean conversion. As far as we
know,  this  is  the  first  time  that  an  XNOR/OR-based
MPRM  circuits  fast  polarity  conversion  algorithm  has
been proposed.

3) We propose an MPRM circuits area optimization
approach (MAOA) to search MPRM circuits with mini-
mum area based on WAA-BFA and FPCA. As far as we
know, this  is  the first  time to apply the BFA optimiza-
tion to RM circuits area optimization.

4) The validity of each algorithm was verified by ex-
periments using a set of benchmarks from the Microelec-
tronics Center  of  North  Carolina  (MCNC).  The  experi-
ment results show that compared with the three existing
area  optimization  approaches  for  XNOR/OR-based
MPRM circuits, the maximum area optimization rate ob-
tained  by  MAOA  reaches  84.07%;  compared  with  the
current conversion  approaches,  the  maximum  time  sav-
ing rate obtained by FPCA reaches 99%.

The paper is structured as follows. In Section II, we
introduce preliminary  preparations.  Section  III  intro-
duces a fast polarity conversion algorithm. Section IV in-
troduces  the  WAA-BFA.  Section  V  introduces  the  area
optimization  algorithm  for  MPRM.  Section  VI  reports
experimental results.  Conclusions  are  presented  in  Sec-
tion VII.

 II. Preliminary Preparations

 1. MPRM expression
Any n-variable  Boolean  function  can  be  expressed

canonically by the product of sums (POS) form based on
AND/OR, as shown below:
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f(xn−1, xn−2, . . . , x0) =

2n−1∏
i=0

(ai +Mi) (1)

· · · 0 ≤ k < n
i ∈

i

where  the  binary  form  of  the  subscript i can be  ex-
pressed as (in–1 in–2  i0), ; Mi represents the
th maxterms, the + represents the logical sum, and ai

{0,  1},  which corresponds to  the  presence  or  absence  of
the th maxterms, respectively.

The  logical  function f can  also  be  expressed  as
MPRM based on XNOR/OR operations as follows:

 

f(xn−1, xn−2, · · · , x0) = ⊙
2n−1∏
i=0

(di + si) (2)

⊙
∏

∈

si= x̂n−1+
x̂n−2 + · · ·+ x̂0

mi=
∑n−1

k=0 ik−1

λ=
∑2n−1

i=0 (di · (
n−1∑
k=0

ik−1))

η =
∑2n−1

i=0 (di − 1) d̄i īk

where represents the XNOR operations;  the + rep-
resents the logical sum, and di {0, 1} indicates whether
the si items  appear  in  the  expression,  respectively. si is
based on OR operations and is represented as 

.  Multi-input si can  be  decomposed  into
mi two-input OR operations, then . For-
mula  (2)  is  decomposed  into  two-input  OR  operations
and two-input  XNOR  operations,  and  their  term  num-

ber calculation formula is  and

,  respectively.  Here  and  repre-
sent the  complement  form.  So,  the  area  of  the  MPRM
logic circuits can be presented as

 

AreaCost = λ+ η

=
2n−1∑
i=0

(
di ·

(
n−1∑
k=0

ik − 1

))
+

2n−1∑
i=0

(di − 1)

=

2n−1∑
i=0

di

n−1

·
∑
k=0

ik − 1 (3)

xk x̄k

x̂k

· · ·

λ

As  shown  in  (4),  in  RM  expression,  each  variable
has  three  modes  (i.e.,  true  ( ),  complement  ( ),
mixed-mode ( )), and the ternary form of polarity P is
(pn–1 pn–2  p0). If mixed-mode exists in the RM expres-
sion,  the  circuit  is  called  an  MPRM  circuit.  MPRM  is
represented by the ternary 0, 1, or 2, that is, there are 3n

polarities  for  a  function  of n variables. Thus,  the  num-
ber of maxterms  (OR gates) and η (XNOR gates) ex-
isted can be expressed as the area. Due to limited space,
a detailed description of  logic  synthesis  can be found in
[11], [12], and [17].

 

pk =


0, if xk appears in true form

1, if xk appears in complement form

2, if xk appears in mixed form

(4)

 2. Traditional polarity conversion approach
Nowadays,  the  approaches  of  XNOR/OR-based

MPRM polarity conversion are only from Boolean to any
polarity. At present, the recognized convenient and effec-
tive conversion algorithm was proposed by in 2020 [18].
The conversion algorithm from Boolean to MPRM polar-
ity is described as Algorithm 1.

Algorithm  1  The  conversion  algorithm  from  Boolean  to
MPRM polarity

· · ·
· · ·

Input: Polarity p = (p n−1 p n−2 p0), the OR term coeffi-
cient i= (in–1 in–2 i0), initialize count = n.

Output: The OR term i.
 1:　for j = count–1 to 0 do
 2:　　　if pj == 1 then
 3:　　　　Each ij⊕pj// (i.e., ij and pj exclusive-OR opera-

tion);
 4:　　　end if
 5:　end for
 6:　for j = 0 to count do

. . . . . . i
 7:　　if pj == 0|| pj == 1 and the coefficient of the term

is (in–1  ij+1 1 ij–1 0) then
. . .

. . . i
 8:　　　Generate new OR term coefficient (in–1  ij+1 0 ij–1

0);
 9:　　else if pj == 2
10:　　　continue
11:　　end if
12:　　for all newly generated OR terms do
13:　　　if the newly generated OR term coefficient is same

as the original OR term coefficient then
14:　　　　　Delete the  newly  generated  OR  term  coeffi-

cient and the original OR term coefficient;
15:　　　else
16:　　　　　Add the newly generated OR term coefficient

to the original OR term coefficient;
17:　　　end if
18:　　end for
19:　end for

 III. Fast Polarity Conversion Algorithm
To evaluate each polarity of logic function and find

the best polarity, the corresponding logic expansion of each
polarity must be obtained by the polarity conversion al-
gorithm [23]. However, the transformation of multi-valued
logic functions is  not applicable to MPRM logic.  There-
fore, efficient polarity conversion algorithm is the prereq-
uisite  for  area  optimization  of  all  MPRM logic  circuits.
There are two types of polarity conversion: polarity con-
version between Boolean logic and RM logic, and polari-
ty  conversion  between  logic  expansions  under  different
polarities of RM. Currently, most of the polarity conver-
sion  uses  Algorithm  1  mentioned  in  Section  II.  Since
there are  many  max-terms  in  Boolean  functions,  Algo-
rithm  1  takes  a  lot  of  time.  Therefore,  we  propose  the
FPCA based on the principle of graph folding approach.
The graph folding approach was first applied to Boolean
conversion.  The  following  uses  a  three-variable  function
as  an  example  to  introduce  the  transformation  between
two logical  expansions  implemented  by  the  graph  fold-
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ing approach.
 

f1 (x1, x2, x3) = (x1 + x2 + x3) (x1 + x̄2 + x3)

· (x̄1 + x2 + x̄3) (x̄1 + x̄2 + x3) (5)

As shown in Figure 1, according to (5), the product
term  is  first  converted  into  the  form  of  the  maxterms,
and the “0” and “1” in the logic function are folded and
transformed,  and  the  two  parts  are  subjected  to  the
XNOR operation  (i.e.,  four  steps  of  A→B→C→D).  Fi-
nally, all inverse variables are eliminated and the RM ex-
pression is obtained. The graph folding approach is con-
venient to operate, but the graph folding approach based
on serial or parallel operation needs to expand the origi-
nal  term  to  the  minimum  term/maximum  term.  When
the input variable N of the circuit increases, the amount
of computation  increases  exponentially.  We  have  ab-
sorbed the advantages of the convenient operation of the
graph folding approach and adopted the parallel process-
ing approach of data, and for the first time proposed an
algorithm  that  can  realize  the  conversion  between
MPRM polarities (that is, the conversion of 0 polarity to
any polarity). The FPCA is showed as Algorithm 2.

Algorithm 2  The FPCA from 0 polarity to MPRM polarity
. . . 0 . . . p0

. . . i
Input: Polarity 0 = (0 0 ), polarity p = (pn−1 pn−2 ),

the  OR  term  coefficient i= (in–1 in–2 0),  initialize
count = n.

Output: All OR term coefficients.
 1:　 for j = count–1 to 0 do

. . . . . . i
 2:　　 if pj ==  1  and  the  coefficient  of  the  term  is

(in–1 ij+1 0 ij–1 0) then
. . .

. . . i
 3.:　　　 Generate  new  OR  term  coefficient  (in–1 ij+1 1

ij–1 0);

. . . . . . i
 4:　　 else if pj == 2 and the coefficient of the term is (in–1

ij+1 1 ij–1 0) then
. . .

. . . i
 5:　　　 Generate new OR term coefficient (in–1 ij+1 0 ij–1

0);
 6:　　 else if pj ==0
 7:　　　 continue
 8:　　 end if
 9:　　 for all newly generated OR terms do
10:　　　 if the  newly  generated  OR  term  coefficient  is

same as the original OR term coefficient then
11:　　　　 Delete the  newly  generated  OR  term  coeffi-

cient and the original OR term coefficient;
12:　　　 else
13:　　　　 Add  the  newly  generated  OR  term  coefficient

to the original OR term coefficient;
14:　　　 end if
15:　　 end for
16: 　end for

f0(x2, x1, x0)
⊙
∏

(0, 3, 4, 5, 6, 7)
Example 1  Suppose that 0 polarity  =

,  find  the  mixed  polarity  XNOR/OR
expression  with  polarity  19  (the  ternary  form  is  201).
First, the 0 polarity maxterms are displayed in the first
column. We generate new terms for x0 and x2. According
to  Algorithm  2,  we  can  derive  the  MPRM  expression

with required polarity. As shown in Figure 2, we have
 

f19(x2, x1, x0) = ⊙
∏

(1, 2, 3, 4, 6)

= (x2 + x1)⊙ (x2 + x0)⊙ x2

⊙ (x2 + x1 + x0)⊙ (x2 + x0) (6)

And  the  logical  decomposition  diagram  of  (6)  is
shown in Figure 3.
 
 

x1
x2

x2

x2

x0

f19 (x2, x1, x0)

x2

x0

x1

x0

Figure 3  Logical decomposition diagram.
 

 IV. Whole Annealing Adaptive Bacterial
Foraging Algorithm

Searching  for  the  best  polarity  corresponding  to  an
MPRM circuit with a minimum area from the huge po-
larity optimization space is a computationally hard prob-
lem.  In  recent  years,  the  bacterial  foraging  algorithm
(BFA) has been widely used in the field of optimization
due to its strong global search capabilities [24]–[26]. The
BFA  mainly  searches  for  the  optimal  solution  of  the
problem  through  the  iterative  calculation  of  chemotaxis
operation, replications  operation  and  migrations  opera-
tion. Chemotaxis operation is the core idea of the BFA,
and literature [27] introduced the Lyapunov stability the-
orem in control theory to prove and analyze the stabili-
ty in the chemotaxis operation. In chemotaxis operation,
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Figure 1  Graph folding approach for Boolean conversion.
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Figure 2  Mixed polarity conversion using FPCA.
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P (j, k, l)=
{
θi(j, k, l),

i = 1, 2, . . . , S}

the individual swims through the quorum sensing mecha-
nism to transmit signal values. Let 

 represent the current position of each in-
dividual i in  the  population,  and  the  influence  value  of
signal transmission between bacteria in the population as

 

Jcc(θ, P (j, k, l))

=

s∑
i=1

Jcc
(
θ, θi(j, k, l)

)
=

s∑
i=1

[
−dattractantexp

(
−wattractant

D∑
m=1

(
θm − θim

)2)]

+

s∑
i=1

[
−hrepellantexp

(
−wrepellant

D∑
m=1

(θm − θ′m)
2

)]
(7)

where dattractant, wattractant, hrepellant and wrepellant are re-
spectively the  depth  of  attraction,  the  width  of  attrac-
tion,  the  height  of  repulsion  and the  width  of  repulsion
force.

The algorithm flow is shown in Figure 4. BFA main-
ly uses chemotaxis operation to update the position of in-
dividual bacteria for optimization, accelerates the conver-
gence speed  through replication  operation,  and uses  mi-
gration  operation  to  prevent  the  algorithm  from  falling
into a local optimum.

The above works are to solve the problems of conti-

nuity optimization. The area optimization of MPRM log-
ic circuits  is  a  high-dimension  combinatorial  optimiza-
tion problem. Therefore, we propose WAA-BFA for area
optimization of MPRM logic circuits. This section starts
with  the  optimization  mechanism  of  BFA,  analyzes  the
role  of  each  step  in  the  algorithm  and  the  influence  of
parameter design  on  the  algorithm  in  detail,  and  com-
bines the WAO deep exploration and AMO strategy with
the chemotaxis behavior and migrations behavior respec-
tively. The details of WAA-BFA are as follows.
 1. WAO deep exploration

The chemotaxis  operation  in  BFA  only  moves  ac-
cording  to  the  fitness  of  the  current  direction,  which
makes the role of random search seem minimal [28]–[31].
As  shown in Figure  5,  when the  bacteria  are  swimming
in one of the directions, if their fitness is not good, they
will  immediately  stop  swimming  and  the  bacteria  will
search for the direction again. In chemotaxis operation, it
is difficult to decide whether the bacteria will accept the
current solution after  choosing the direction.  This  prob-
lem  is  similar  to  the  TSP  (i.e.,  whether  to  choose  the
point  closest  to  the  current  city).  The  continuous  and
blind searches of bacteria will  interfere with the conver-
gence of  the  algorithm,  and  will  fall  into  a  local  ex-
tremum,  reducing  the  performance  of  converging  to  the
global optimal solution. Therefore, in the study of BFA,
we  need  to  optimize  the  acceptance  mechanism  of
chemotaxis behavior.
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Whether reach the
maximum number
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Yes
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End
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Figure 4  BFA flow chart.
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The stochastic optimization idea based on the itera-
tive  solution  strategy  has  achieved  good  results  in  the
simulated annealing algorithm (SA) [32], [33]. The SA es-
tablishes a mathematical model based on the cooling pro-
cess of the solid material, which can be extended to gen-
eral combinatorial optimization problems. The iterations
of  the  SA  are  divided  into  the  cooling  down  iterations
and  the  same  temperature  iterations  (Markov  chain
length L) [34]–[36]. The Markov chain represents the op-
timization degree  of  the  optimal  state  at  each  tempera-
ture.  That  is  the  number  of  new solutions  produced  by
bacteria in  the  same direction.  In  the  SA,  the  tempera-
ture is reduced according to the set function, the new so-
lution is accepted with a certain probability, the optimal
local solution can be randomly jumped out, and the opti-
mal global solution is randomly searched in the solution
space. We hope that the chemotaxis behavior of bacteria
is not limited to the current local extremum, and the in-
dividual  bacteria  can  fully  consider  all  the  excellent
schemes  in  the  solution  space.  Therefore,  we  introduce
the  equilibrium  probabilistic  acceptance  strategy  of  SA
into BFA to solve such combinatorial optimization prob-
lems (i.e., chemotaxis behavior of bacteria), and propose
the WAO deep exploration.

The WAO compares the algorithm’s evolution to an
annealing  process  and  adds  the  Metropolis  acceptance
criteria and the Markov chain to  the chemotaxis  opera-
tion.  The  new  fitness  function  value  of  individual i is
shown in (8) after the completion of a chemotaxis opera-
tion. WAO is a new type of bacteria foraging algorithm
that allows the parent to participate in the competition.
It  has  a  more  efficient  local  search  performance.  The
state sequence of the whole annealing algorithm is deter-
mined by (9) and (10). Metropolis acceptance criterion is
also called the equilibrium probability equation.

 

J i(j+1, k, l) = J i(j+1, k, l)+JCC
(
θi(j + 1, k, l), P (j, k, l)

)
(8)

 

p =

{
1, fj < fi
exp(−(fj − fi/t)), fj ≥ fi

(9)

 

tk+1 = λ× tk, k = 0, 1, . . . (10)

λ
where tk is  the  current  solid  temperature  (i.e.,  current
number  of  iterations), t0 is  set  to  100,  and ∈(0,  1)  is
the temperature cooling rate. P(j, k, l) represents the po-
sition  information  of  individual i in  the  optimization

space after the jth chemotaxis operation, the kth replica-
tions operation, and the lth migrations operation. When
set to state j, the energy of the solid is fj. Let i represent
the equilibrium state of the previous iteration. In state i,
the solid energy is fi. Compare the internal energy of two
state objects, if the energy in state j is less than that in
state i, that is, fj < fi, then state j is an acceptable ideal
state. If the energy at state j is greater than the energy
at state i, (i.e., fj > fi), then state j is irrational state. At
this point, the probability of accepting the non-ideal so-
lution is  calculated  according  to  the  equilibrium  proba-
bility (9).  After a series  of  cooling optimization process,
the particles in the solid state gradually tend to be sta-
ble.  That  is,  the  probability  of  equilibrium  acceptance
decreases gradually.

Boltzmann distribution function is shown in (11). It
is worth noting that the probability value F conforms to
the  distribution  of  the  function.  In  the  whole  annealing
algorithm in  this  section,  each  state  of  the  particle  in-
side the solid is  equivalent to a solution in the problem
model,  and  the  movement  of  this  state  in  the  large
search  space Ω forms  a  Markov  chain  of  finite  length,
and its probability distribution p is shown in (12).

 

f(v) =

√( m

2πkT

)3
4πv2exp(−mv2

/
2kT ) (11)

 

p = exp(f(i)/tk)

/∑
j∈Ω

exp(f(j)/tk) (12)

As shown in Figure 6, WAO search is a process (1→
2→3→4)  of  temperature  jump  to  the  poorer  solution,
that is  to  say,  by  giving  the  bacteria  individual  a  sud-
den  change  in  the  search  process  that  is  time-varying
and  eventually  tends  to  zero.  WAO  is  an  optimization
strategy  that  effectively  prevents  individual  bacteria
from falling  into  a  local  minimum and  eventually  tend-
ing  to  a  global  optimal  serial  structure. Algorithm  3
shows the WAO.

Algorithm 3  The WAO
. . . p0

λ
Input: A  polarity fj = (pn−1 pn−2 ),  the  temperature

cooling rate , paratmeter tk, tmin.
. . . p0Output: A new polarity fi = (pn−1 pn−2 ).

 1:　 while tk > tmin do
 2:　　 for count = 0 to L (Markov chain length) do
 3:　　　 Search fnew around polarity fj according to (8);
 4:　　　 Compute fnew according to (3);

∈ ∈ 5:　　　 At least one (pn  fnew)! = (pn  fj);
 6:　　　 if fnew > fj then
 7:　　　 fi = fnew;
 8:　　　 else
 9:　　　 Compute P according to (9);
10:　　　 if rand > P then
11:　　　　 fi = fnew;
12:　　　 end if

 

— Bacteria

—
Bacteria

flagella 

Figure 5  Swimming and turning of bacteria.
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13:　　　 end if
14:　　 end for

λ×15:　　 tk+1= tk;
16:　end while

. . . p017: return fi = (pn−1 pn−2 ).
 

1

2

A

B

C
A

B

C
3

4

Figure 6  WAO search behavior.
 

 2. AMO strategy
The migrations operation is to allow bacteria to mu-

tate  and  jump  out  of  local  extremes.  Traditional  BFA
uses  fixed  migration  probability,  and  the  bacteria  with
the best and worst fitness values can be eliminated with
equal  probability,  which  limits  the  optimization  ability
and efficiency of the algorithm [37]–[39]. Therefore, bac-
teria close  to  the  optimal  solution  location  may  be  re-
placed by bacteria far away from the optimal solution lo-
cation [40], [41], thus affecting the performance of the al-
gorithm. To overcome the above problems, we make the
migration probability of individuals change linearly with
fitness values and realize the tradeoff between search and
randomness in different ways. Therefore, it is a complex
problem  for  individuals  to  adapt  to  change  migrations
rate during evolution. According to the characteristics of
migrations probability,  formal  description is  an effective
way to conform to dynamic change [42]–[44].

According to the relationship between the iterations
g and fitness f, we change the adaptive migration proba-
bility  curve.  The adaptive  formula  is  described by (13).
Equation (13)  satisfies  the  two  requirements.  First,  un-
der  this  probability  distribution,  the  best  bacteria fmax
have  the  lowest  probability,  and the  worst  bacteria fmin
will definitely be eliminated. Second, at the beginning of
the search,  it  is  recommended  that  the  individuals  ex-
plore the entire search space. Therefore, a larger value is
given. Instead, it is recommended that individuals dig at
the end of the search, which can be achieved by assign-
ing small values.

 

pm =

 k1 +
k2 × g

G
× k3 × (fmax − f)

fmax − favg
, f ≥ favg

k1 + k2 × k3, f < favg

(13)

where G is the maximum iterations; k2 is the weight coef-
ficients  of  iteration; k3 is the  weight  coefficients  of  fit-
ness value. In this paper, a small correction constant k1 is
added to pm, which can avoid the pm of the optimal solu-
tion of each generation being zero and solve the problem
that the  algorithm  is  prone  to  fall  into  local  optimiza-

tion. On the other hand, pm is appropriately increased, so
that new individuals can be generated faster in the early
iteration and search speed is accelerated.

Figure  7 shows the  probability  distributions  of  dif-
ferent angles of the proposed AMO. Since the fitness val-
ue  of  each  individual  changes  with  the  evolution  of  the
algorithm,  we  define  a  three-dimensional  probability
function graph for the three weights in order to explain
the  role  of  the  three  weights  in  AMO more  clearly.  As
shown in Figure 7, AMO can be adjusted at both ends of
the  mean  fitness  value  according  to  probability.  In  the
optimization problem of minimum value, the direction of
adjustment of probability pm is opposite to that of maxi-
mum value optimization.
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Figure 7  Linear probability distribution.
 

From different  angles  of  probability  distribution,  it
can be  seen  that  this  is  a  strategy  with  linear  adjust-
ment  at  both  ends,  which  has  a  higher  possibility  of
jumping out of local optimal value than that of linear ad-
justment at one end. In addition, we will get three opti-
mal  weight  coefficients.  Then,  the  probability  of  the
high-order bacteria  gradually  decreases,  and  the  proba-
bility  of  the  low-order  bacteria  gradually  increases.  The
improved  AMO  strategy  adjusts  dynamically  according
to  the  number  of  evolutionary  iterations  and  search
space,  meets  the  changing  rule  of  step  size  in  actual
search, and achieves the balance between individual glob-
al search and local search. Especially for high-dimension-
al combinatorial optimization problems, the linear proba-
bility  distribution  of  AMO strategy  is  more  effective  in
global convergence because the search space explodes ex-
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ponentially  with  the  dimension. Algorithm  4 shows  the
AMO.

Algorithm 4  The AMO
. . . ,Input: Polarity fi, Population P={f1 fn }, maximum iter-

ations G.
Output: Migration rate pm.

. . . , 1:　 for i={1,2, n} do
 2:　　 Compute fi according to (3);
 3:　 end for
 4:　 Compute fmax, fmin and favg;
 5:　 if fi >= favg then
 6:　　 Compute pm according to (13);
 7:　 else

× 8:　　 pm = k1+k2 k3;
 9:　 end if
10: return pm.

 3. Algorithm description
WAA-BFA  is  described  in Algorithm  5, which  in-

cludes individual evolution based WAO deep exploration,
and individual mutation based on AMO strategy.

Algorithm 5  The WAA-BFA
Input: Evolutionary parameters.
Output: The best solution.
 1: Randomly generate initial population;
 2: for i=1:n do
 3: 　　　Calculate the fitness values;
 4: end for
 5: for mi=0:mimax (Maximum number of migrations) do
 6: 　　if tk> tmin then
 7: 　　　 for re=0:remax (Maximum number  of  replica-

tions) do
 8: 　　　　　　for count=0 to L (Markov chain length) do
 9: 　　　　　　　Perform WAO deep exploration;
10: 　　　　　　end for
11: 　　　　　　Bacterial replication operations;
12: 　　　　　　re ←re+1；
13:　　　　end for

λ×14:　　　　tk+1= tk;
15:　　　　Compute pm based on AMO strategy;
16: 　　else
17:　　　　break
18: 　　end if
19: end for
20: Output the best solution.

 V. Area Optimization for MPRM Logic
Circuits
Since the area optimization of MPRM logic circuits

is an NP-hard problem, we propose an MAOA based on
the WAA-BFA and FPCA to search for the optimal po-
larity corresponding  to  MPRM logic  circuits  with  mini-
mum area. Chromosome encoding, WAA-BFA for MPRM

and MAOA are discussed in detail as follows.
 1. Chromosome encoding

As shown in  Section  II,  the  polarity  of  the  MPRM
expression can be displayed by substituting 0, 1, or 2, so
the polarity of the MPRM expression will be encoded in
ternary form.

Example  2  The  MPRM  expression  of  7  variables
“2222011” is encoded as shown in Figure 8.
 
 

2 2 2 0 1 12

Polarity

Ternary

 Bit 0

Chromosome (7-bits)

Bit 6

Figure 8  Chromosome encoding.
 

Therefore, the fitness function of MAOA can be de-
fined as follows:

 

fitness(ci) = 1.0/objective() (14)

where fitness(ci) denotes fitness function of the ith chro-
mosome, objective()  denotes  objective  function  corre-
sponding to circuit performance.
 2. WAA-BFA for MPRM

WAA-BFA  mainly  uses  WAO  deep  exploration  to
update the  position  of  individual  bacteria  for  optimiza-
tion  and  uses  AMO  strategy  to  prevent  the  algorithm
from falling into a local optimum. Figure 9 shows exam-
ples of two operations.
 
 

fi (0121)

2 1 1 0 0 x2 x3 x4

x2 x3 x4

x2 x3 x4

0 1 2 1

2 1 0 2

0 1 1 0 1

1 1 1 0 2

(a)

(b)

fnew (2102)

Figure 9  Overview  of  operations.  (a)  WAO  deep  exploration  for
chemotaxis operation; (b) AMO strategy for migrations operation.
 

Example  3  WAO  deep  exploration  for  MPRM.
Suppose a polarity with four variables is (0, 1, 2, 1). As
shown in Figure 9(a), the values of x1, x2, x3, and x4 are
updated according to  (8).  Suppose  the  updated value  is
fnew = (2, 1, 0, 2), and compute fnew and P according to
(3) and (9), respectively. If rand > P, fi = fnew.

Example  4  AMO  strategy  for  MPRM.  Suppose  a
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polarity with four variables is (x1, x2, x3, x4), and the po-
larity  bit  that  needs  to  be  migrated  is x1.  As  shown  in
Figure  9(b), the  migration  probability  is  calculated  ac-
cording to the proposed AMO strategy. If the migration
condition is met, then 2→0, or 0→1, or 1→2.
 3. MAOA process

The flow chart of the MAOA is shown in Figure 10.
The concrete implementation steps for the MAOA are as
follows:

Step  1: N bacteria  individuals  were  initialized,  and
fitness function was constructed.

Step 2: Use FPCA for polarity conversion and calcu-

late the fitness value of individual bacteria according to
(3).

Step 3:  Whether  the  minimum  temperature  condi-
tion is met. If the condition is not met, go to step 4; oth-
erwise, the optimal polarity value is outputted and end.

Step 4:  Whether  the  maximum  number  of  replica-
tions condition is met. If the condition is not met, go to
step 5; otherwise, skip to step 8.

Step 5:  Whether  the  maximum  number  of  chemo-
taxis condition is met. If the condition is not met, go to
step 6; otherwise, skip to step 7.

Step 6:  The bacteria  randomly choose the direction
and perform the Markov chain forward operation in each
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Calculate the fitness value of a polarity

—The maximum term of MPRM is calculated by

FPCA 
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Figure 10  MAOA flow chart.
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θi= [θ
i
1, θ

i
2, . . . , θ

i
D]

i = 1, 2, . . . , S, P i(j, k, l)

j k

direction according to WAO. The current information of
individual i is expressed as  in the D-
dimensional  vector,  represents
the location information of  individual i in the optimiza-
tion  space  after  the th  convergence  operation,  the th
replication  operation  and  the l migrations  operation.
Then skip to step 5.

Step  7:  Copy n/2  individual  bacteria  for  the  next
initial population. The number of chemotaxis operations
goes to zero, and the temperature is cooled. Then skip to
step 4.

Step 8:  The  temperature  is  cooled,  and  the  migra-
tion  probability  of  bacteria  is  calculated  according  to
WAO and  AMO strategies.  The  number  of  replications
operations goes to zero, then skip to step 2.

 VI. Experiments
All  the  algorithms  we  proposed  will  be  verified  in

this section.  The experimental  algorithms all  use C lan-
guage  and  run  on  an  Intel  Core  i7-8750H  CPU  8  GB
RAM system. In addition, the experiments were conduct-
ed  using  a  set  of  MCNC  benchmarks.  All  test  circuits
have unique logical expression. The criterion for the end
of  the  experiment  is  to  fix  the  maximum  running  time
and the tenth best solution has not been improved. Each
circuit  is  randomly  selected,  and  the  characteristics  of
the circuit can be found in [45]. The scale of the test cir-
cuits  represents  the  scale  of  the  polarity  search  space,
which is based on the input variable n. The experiments
are listed as follows:

1) Experiment 1: Parameters verification
2) Experiment 2: MAOA verification
3) Experiment 3: FPCA verification
4) Experiment 4: Convergence verification

 1. Experiment 1: Parameters verification
For the proposed MAOA, five major parameters (k1,

k2, k3, L and P)  were  calibrated  by experiments  design.
Firstly, three key parameters k1, k2 and k3 were designed
by orthogonal experiment. We chose the three-level test,
and the test  levels  are shown in Table 1.  Secondly,  due
to  the  extensibility  characteristics  of P and L,  we  used
the control variable approach to conduct repeated experi-
ments to  determine  the  variables.  The  purpose  of  con-
trol variable experiment is to select a set of excellent pa-
rameters and converge to the optimal solution in an ac-
ceptable  time.  Finally,  all  the  suggested  parameters  are
listed.
 
 

Table 1  Orthogonal test levels

Factor level k1 k2 k3

A1 0.001 0.1 0.1

A2 0.003 0.3 0.3

A3 0.005 0.5 0.5
 

According  to  the  number  of  parameters  and  the

number of factor levels of each parameter, orthogonal ar-
ray L9 (33) was selected and the experiment was repeat-
ed for 5 times to get the average value. In addition, the
values of A1, A2 and A3 are given in Table 1. Figure 11
shows the convergence curves of five runs, where B-C-D-
E-F represent the results of five runs, respectively.

It can be seen from Table 2 that the influence of pa-
rameters  on  the  performance  of  the  algorithm  changes
greatly.  The  AVERAGE  represents  the  average  of  the
area obtained  from  5  runs,  which  reflects  the  optimiza-
tion accuracy  of  the  test  scheme  and  is  the  main  pur-
pose of the algorithm parameter optimization. The small-
er  the  AVERAGE,  the  higher  the  fitness  value  of  the
level test.  In  order  to  express  the  influence  of  parame-
ters  on  MAOA  performance  more  clearly,  we  carefully
draw the convergence curve, so as to observe the stabili-
ty  of  parameters  on  the  optimization  of  test  function
more intuitively.

It  can  be  seen  that  level  test Figure  11(a)  has  the
smallest  average  and  that  test  No.  2  has  the  strongest
stability in the convergence diagram. We expect that the
algorithm can be closed to a minimum extreme point in
each run. The stability of trial No. 2 has played an im-
portant  role  in  improving  the  optimization  performance
of the  algorithm.  In  addition,  we  use  the  maximum ac-
ceptable  run  time  as  a  termination  condition.  Finally,
the parameter settings of MAOA are drawn in Table 3.
 2. Experiment 2: MAOA verification

Three recently proposed algorithms are compared to
demonstrate  the validity of  MAOA in finding minimum
area  MPRM logic  circuits.  It  includes  genetic  algorithm
(GA)-based AOA [18],  discrete  particle  swarm (DPSO)-
based  AOA  [17],  and  metaheuristic  algorithm  (MA)-
based  AOA  [24], were  chosen.  In  consideration  of  ran-
domness  and  fairness,  each  approach  was  repeated  10
times under  the  MCNC  reference  circuits  and  the  ap-
proach parameters being compared were set according to
the original publication.

As shown in Table 4, we perform tests on circuits of
various scales,  including  large-scale  circuits  with  multi-
ple  input  variables.  The  benchmark  in  all  experiments
represents  the  name  of  the  circuit  being  tested.  The
BEST  and  AVERAGE  represent  the  minimum  area  of
the search and the average of  the minimum area of  ten
searches. For example, the third column and the seventh
row represents the minimum area searched by the BFA,
and  the  third  column and  the  ninth  row represents the
minimum  area  searched  by  the  MAOA.  Then  Save1  in
ARR_best  represents  the  area  reduction  rate  (ARR)  of
MAOA  on  the  best  value  compared  with  the  GA.  The
circuit  area  is  calculated  as  described  in  Section  II  and
can be  referred  to  (3).  The  ARR can  be  defined  as  fol-
lows:

 

ARR =
Areaβ −Areaα

Areaβ
× 100% (15)
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where  Areaβ and  Areaα represent  the  area  searched  by
each method, respectively.

From the  above  experiments,  we can conclude  that
MAOA is  superior  to  the  present  algorithm.  Compared
with GA, the maximum ARR of  MAOA was 80.20% in
ARR_best;  compared  with  DPSO,  the  maximum  ARR
of  MAOA  was  84.07%  in  ARR_best;  compared  with
BFA, MAOA has a maximum area saving rate of 65.00%
in ARR_best. The above results can be explained by the
following reasons:

1) The mutation probability of GA and the choice of
crossing  point  affect  the  convergence  of  the  algorithm,
which is particularly sensitive to the control parameters.
The flying  speed  of  DPSO  particles  affects  the  conver-
gence of the algorithm, and the particles often fly out of
the boundary value.

2)  The proposed MAOA introduces  the WAO deep
exploration  into  the  chemotaxis  behavior  of  bacteria,
which can  effectively  avoid  falling  into  the  local  opti-
mum and  eventually  reach  the  global  optimum  by  giv-
ing  the  search  process  a  time-variant  probability  jump
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Figure 11  Convergence curves of different parameters (see Table 2 and Table 1 for the details).

 

Table 2  Orthogonal experiment

Level test
Column

k1 k2 k3 AVERAGE

Figure 11(a) A1 A1 A1 397.8

Figure 11(b) A1 A2 A2 361.8

Figure 11(c) A1 A3 A3 419.7

Figure 11(d) A2 A1 A3 442.1

Figure 11(e) A2 A2 A1 410.7

Figure 11(f) A2 A3 A2 443.4

Figure 11(g) A3 A1 A2 395.3

Figure 11(h) A3 A2 A3 423.9

Figure 11(i) A3 A3 A1 415.1

 

Table 3  Parameters settings

Parameter Value

Variable k1 0.001

Variable k2 0.3

Variable k3 0.3

Population size P 30

Initial temperature t0 100

λCooling rate 0.95

Markov chain length L 5

Chemotaxis number 5

Acceptable time (s) 60
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that eventually approaches zero. MAOA is a serial struc-
ture optimization algorithm that avoids the blind search
of  individual  bacteria.  In  addition,  MAOA  will  develop
the effective information carried by the optimal solution
generated in  each  iteration,  which  ensures  the  conver-
gence direction of the algorithm.

3) The proposed AMO strategy adopts adaptive mi-
grations probability based on various weight coefficients
to avoid the destruction of good solutions in the process
of evolution. In addition, MAOA conducts multiple oper-
ations from extensive search to meticulous search in the
optimization process. Using AMO strategy, the algorithm
can not only ensure the comprehensiveness and accuracy
of the search, but also quickly jump out of the local opti-
mum. Experiments  show  that  excellent  adaptive  strate-
gies  can  improve  the  convergence  speed  and  accuracy
greatly, especially for multi-peak functions.

 3. Experiment 3: FPCA verification
In  this  section,  we  compare  Algorithm  2  with  the

currently  recognized  valid  conversion  algorithm  (Algo-
rithm 1) proposed in 2020 to prove the superiority of FP-
CA (Algorithm 2).  To ensure the fairness of  the experi-
ment, we used circuits with different input sizes and dif-
ferent population sizes. The conversion time for each al-
gorithm on different circuits is shown as experimental re-
sults in Table 5. In addition, the time saving rate (TSR)
can be defined as follows:

 

TSR =
A1_time−A2_time

A1_time
× 100% (16)

where  A1_time  and  A2_time  represent  the  conversion
time used by each algorithm, respectively.

 
 

Table 5  The conversion algorithm comparison results

Benchmark Value alu3 b2 misex2

Scale – 35 316 325

N = 10
A1_time (s) 0.026 25 1439.1

A2_time (s) 0.023 8.201 50.908

N = 50
A1_time (s) 0.116 317.788 >6000

A2_time (s) 0.097 18.508 55.1

N = 100
A1_time (s) 0.184 766.3 >12000

A2_time (s) 0.166 22.828 59.171

TSR

N = 10 12% 67% 96%

N = 50 16% 94% >99%

N = 100 10% 97% >99%
 

In Table 5, benchmark is the circuits name, and N is
the  population  scale.  A1_time  and  A2_time  represent
the conversion time used by each algorithm, respectively.
For example,  12% is  the TSR of Algorithm 1 compared

to Algorithm 2 in alu3 circuits where N is 10. It can be
seen that Algorithm 2 can show greater advantages, and
the maximum TSR can reach more than 99%. The exper-
imental results can be explained by the following reasons:

 

Table 4  Area comparison results

Benchmark Value rd53 con1 5xp1 rd84 sao2 br1 br2 table3 amd alu4 table5 bcd e64

Scale – 35 37 37 38 310 312 312 314 314 314 317 326 365

GA
BEST 19 21 37 55 179 149 88 1826 346 485 64 86 886

AVERAGE 21.2 26.4 41.9 57.9 212.5 179.9 104 2788.2 393.9 519.6 116.3 129.3 1929.3

DPSO
BEST 19 28 37 57 175 140 105 1807 403 567 85 99 1099

AVERAGE 23 35.5 41.4 58.7 183.2 178.5 148.1 3381.9 505.1 691.1 197.6 274.1 2033

MA
BEST 21 21 37 55 175 159 84 1917 363 505 92 106 500

AVERAGE 21.8 31.9 43.8 56.5 202.9 188.3 105.3 2990.9 426.1 676.5 138.3 263.6 1200.5

MAOA
BEST 19 21 37 55 175 126 78 1584 311 479 50 58 175

AVERAGE 20.4 23.5 37 56.5 183 150.3 80.2 1790.5 343.4 484.8 63.8 100.8 421.2

ARR_best

Save1 0.00 0.00 0.00 0.00 2.23 15.44 11.36 13.25 10.12 1.24 21.88 32.56 80.20

Save2 0.00 25.00 0.00 3.51 0.00 10.00 25.71 12.34 22.83 15.52 41.18 41.41 84.07

Save3 9.52 0.00 0.00 0.00 0.00 20.75 7.14 17.37 14.33 5.15 45.65 45.28 65.00

ARR_average

Save1 3.77 10.98 11.69 2.42 13.88 16.45 22.88 35.78 12.82 6.70 45.14 22.04 78.17

Save2 11.30 33.80 10.63 3.75 0.11 15.80 45.85 47.06 32.01 29.85 67.71 63.23 79.28

Save3 6.40 26.33 15.53 0.00 9.81 20.18 23.84 40.14 19.41 28.34 53.87 61.76 64.91
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1) To detect the merits and demerits of a certain po-
larity,  the  expansion  formula  under  the  polarity  to  be
evaluated should be obtained first through polarity con-
version.  As  we  all  know,  Boolean  function  has  a  large
number  of  maximum terms,  and  each  variable  needs  to
be processed  in  turn  during  conversion.  Only  one  vari-
able  can  be  operated  in  each  cycle,  so  the  efficiency  of
polarity conversion is low.

2) The proposed FPCA eliminates the effect of nega-
tive  deflection  by inverting  the  list  bar  and realizes  the
conversion between  polarities.  The  FPCA  performs  po-
larity switching in a natural order from zero to any po-
larity, with fewer bits between adjacent polarities requir-
ing fewer base operands and faster polarity switching.
 4. Experiment 4: Convergence verification

In  order  to  show the  search  capabilities  of  MAOA,
GA,  DPSO and  MA more  intuitively,  the  smallest  area
searched during the iterative process of circuits of differ-
ent scales is accumulated and averaged to draw area con-
vergence curve. The abscissa is the number of iterations,
and  the  ordinate  is  the  average  area  of  the  test  circuit
running  10  times.  As  shown  in Figures  12–17,  MAOA
can search the smallest area with the least number of it-
erations.  The  main  reason  for  this  is  that  the  proposed
WAO deep exploration and AMO strategy accelerate the
convergence speed of the algorithm.
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Figure 12  5xp1 convergence graph.
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Figure 13  con1 convergence graph.

 VII. Conclusion
We  propose  a  WAA-BFA  that  applies  WAO  deep

exploration and  AMO  strategies  to  chemotaxis  opera-
tion and migration operation to deal with nested combi-
natorial optimization problems. Then, we propose an FP-
CA, which can quickly and effectively complete the con-
version from 0 polarity to any polarity.

In addition, we propose an MAOA for MPRM logic
circuits based on WAA-BFA and FPCA, which searches
the  best  polarity  corresponding  to  an  MPRM  circuit.
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Figure 14  br2 convergence graph.
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Figure 15  amd convergence graph.
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Figure 16  table5 convergence graph.
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The experiment mainly includes four parts, namely, com-
parison  of  experimental  algorithms  on  the  parameters,
comparison of experimental algorithms on the area, FP-
CA time verification, and comparison of experimental al-
gorithms  on  the  convergence.  The  experimental  results
confirm  that  MAOA  is  effective  and  can  be  used  as  a
promising EDA tool.

There  are  several  possible  directions  to  extend  this
work in the future. Firstly, WAA-BFA can be studied to
deal with  the  benchmark  functions,  so  that  our  algo-
rithm can have better performance. Secondly, delay opti-
mization has entered our field of vision, and it is also an
interesting  work  to  study  the  delay  optimization  of
MPRM  logic  circuits.  Finally,  we  can  further  consider
applying our  proposed  algorithm  to  sequential  bench-
mark circuits.
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