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Abstract — A leaky-wave antenna with horizontal scanning beams and broadside radiation is presented on the peri-
odically modulated microstrip. The horizontal radiation is realized by periodically etching a set of resonant open-ended
slots on the ground plane. Dispersion diagrams and Bloch impedance are first analyzed to investigate the propagation
and radiation characteristics of the periodic structure. Subsequently, shunt matching stubs are installed aiming to obtain
seamless beam scanning property through the broadside.  Finally,  a prototype is  implemented as verification of  the
presented antenna. Results of the simulations and measurements agree well with each other, indicating the elimination
of the open-stop band effect and the horizontal radiation beams. The fabricated antenna exhibits a beam range from
−62° to +34°, and provides a maximum measured gain about 14.6 dBi at 10 GHz.
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I. Introduction
Planar  leaky-wave antennas  (LWAs)  have  been  ex-

tensively  researched  because  of  their  merits  of  broad
bandwidth [1]–[6], low profile, the beam-scanning proper-
ty,  and  high  gain  [7],  [8].  Unfortunately,  gain  of  the
LWA  is  degraded  when  working  around  the  broadside
frequency,  which is  called  the  open-stop band effect  [9],
[10].  To  suppress  this  effect  and  realize  seamless  beam
scanning with stable gain around the broadside direction,
various  methods  have  been  researched  and  conducted
[11]–[20],  including  adding  extra  matching  stubs  [11],
pins [15], or slots [20], using the phase-reversal method [12],
and  introducing  additional  transversal  asymmetry  [13],
[14].  The composite right/left  handed (CRLH) structure
is  also  effective  candidate  for  open-stop band  suppres-
sion [21]–[25].

Most of  the  reported  periodic  LWAs  provide  verti-
cal  radiation  beams  [26]–[31]. Compared  with  the  con-
ventional vertical beams, the horizontal beams are more
attractive  because  of  the  narrower  radiation  aperture.
The  radiation  aperture  of  vertically  radiating  LWA  is

usually  along  the  upper  surface  of  the  circuit  board,
while  the aperture of  the horizontally radiating LWA is
along  the  side  wall  of  the  circuit  board.  Therefore,  the
horizontally radiating antenna has the merit of a smaller
radiation  aperture  and  can  be  used  in  narrower  spaces.
Meanwhile,  the  vertically  radiating  antenna must  be  on
the outermost layer of the multilayer circuit board, while
the horizontally  radiating antenna can be located inside
the  multilayer  circuit  board,  and then the  circuit  board
can be shielded on both sides to prevent electromagnetic
interference.  However,  LWAs  with  horizontal  radiation
beams  have  been  rarely  investigated  during  the  last
decades  [32]–[35].  An  LWA  with  horizontal  beams  was
presented  in  [32] based  on  an  asymmetric  CRLH copla-
nar  strips  (CPS)  structure.  References  [33]  and  [34]
present horizontally radiating LWAs by loading a pair of
branches  on  both  surfaces  of  the  substrate  integrated
waveguide  (SIW).  In  [35],  the  horizontal  radiation  can
also  be  realized  by  introducing  asymmetric  periodical
modulation  on  the  spoof  surface  plasmon  polariton
(SSPP) structure. However, the reported horizontally ra- 
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diating LWAs still suffer from the complicated structure,
the limited gain, or the narrow scanning range.

The  Vivaldi  antenna,  as  shown in Figure  1(a), fea-
tures the end-fire radiation beam parallel to the antenna
plane [36],  [37]. By combining the theory of  Vivaldi  an-
tenna  and  the  design  method  of  traditional  periodic
LWA,  a  horizontally  radiating  LWA  is  proposed  based
on  a  microstrip-fed  periodic  structure.  Inspired  by  the
physical  mechanism  of  Vivaldi  antenna,  two  different
LWA unit  cells  are  first  analyzed and discussed.  To in-
terpret  the  propagation  and  radiation  characteristics  of
the  proposed  periodic  structure,  propagation  constants
and Bloch impedance are studied based on the full-wave
simulation software.  Then, open-ended stubs are further
amounted along the microstrip line (MSL) to balance the
Bloch impedance, thus suppressing the gain degradation
at  the  broadside  frequency.  Finally,  a  design  prototype
with 20 cells is developed and implemented. The simulated
broadside radiation and horizontal beam scanning perfor-
mance are experimentally validated by measured results.
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Figure 1  Structures of (a) The conventional Vivaldi antenna, (b) CPS-
fed  Vivaldi-like  unit,  (c)  CPS-fed  rectangular-slot  unit,  (d)  MSL-
fed Vivaldi-like unit, and (e) MSL-fed rectangular-slot unit.
  

II. Working Principle and Unit Analysis
 

1. Radiation mechanism
Figures 1(b) and (d) show the structures of the pre-

sented  Vivaldi-like  LWA  periodic  unit  fed  by  the  CPS
and  MSL,  respectively.  In  the  unit,  the  tapered  open-
ended  slot  is  excited  by  the  transmission  line  and  leaks
energy to the horizontal direction through the slot. A cir-
cular area is etched on the other end of the slot to bal-
ance the mode conversation impedance of the slot excita-
tion.  Therefore,  the  radiation  direction  of  the  designed
unit  is  along  the z-axis,  i.e.,  the  horizontal  direction
along the circuit board plane. However, the exponential-
ly tapered slot  causes  large  attenuation constant  at  fre-
quencies far away from the broadside frequency, which is
detrimental to the wide-angle scanning range. Thus, the
improved  units  are  presented  as  shown  in Figures  1(c)
and (e),  in  which  the  exponentially  tapered  slot  is  re-
placed by the rectangular open-ended slot.

In  this  design,  the  MSL-fed  rectangular-slot  unit  is
adopted  for  the  realization  of  horizontal  radiation.  The
transmission mode of the MSL is the EH0-mode, and the
etched  rectangular-slot  is  equivalent  to  a  slot-line  and

uses  the  slot-line-mode  for  radiation. Figures  2(a)  and
(b) show  the  geometry  and  its  equivalent  model.  Com-
pared with the CPS-fed unit, the MSL-fed unit has sev-
eral advantages. Firstly, the CPS-fed unit needs a mode
converter  to  excite  the  CPS  mode  while  the  MSL-fed
unit can be easily fed by the microstrip transmission line.
Secondly,  the  MSL-fed  unit  is  easier  to  realize  a  Bloch
impedance of 50 Ω than the CPS-fed unit. Thus, there is
no need of additional impedance transformer. Thirdly, a
strong CPS mode will  be excited in the rectangular slot
of  the  CPS-fed  unit,  which  causes  undesired  radiation
beams in the vertical direction. In the transversal direc-
tion of the MSL-fed unit, the microstrip mode is the pri-
mary  mode  near  the  host  transmission  line.  Therefore,
the  CPS mode  on  the  rectangular  slot  is  weakened  and
the vertical  radiation  component  can be  effectively  sup-
pressed.
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Figure 2  (a) Configuration of the initial LWA unit. (b) Equivalent
circuit.
  

2. LWA unit design and open-stop band
suppression

According to the frequency balanced condition [10],
the open-ended slot is utilized and designed for the elimi-
nation of the open-stop band at first. Figure 3 shows the
Bloch  impedance  based  on  different  MSL  characteristic
impedance.  Similar  to  [20],  the  resultant  Bloch  imped-
ance ZB becomes  higher  than  the  characteristic  imped-
ance Z0.  Meanwhile,  it  is  shown that  Bloch  impedances
reach  extremum values  at  10  GHz,  revealing  the  severe
open-stop band effect.
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Figure 3  Investigations of the Bloch impedance.
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As  shown  in Figure  2(b),  at  the  right  side  of  AA′
plane,  the  impedance  is  assumed  as . Then,  the  in-
put impedances before and after the rectangular slot are

 and ,  respectively.  represents  the  input
impedance  after  whole  periodic  unit.  At  the  broadside
frequency,  the  unit  length p is  about  a  guided-wave-

A Microstrip Leaky-Wave Antenna with Scanning Beams Horizontal to the Antenna Plane 1219  



Zin2 Zin4length. Thus,  and  can be expressed as follows:
 

Zin2 = Zin1 (1)
 

Zin4 = Zin3 (2)

Zin3

Meanwhile,  the  loaded  slot  can  be  equivalent  to  a
series  radiation  resistance  at  this  frequency.  Assuming
the radiation resistance as Rs,  is obtained as

 

Zin3 = Zin2 +Rs (3)

Substitute (1) and (2) into (3), the input impedance
after one periodic unit is expressed as

 

Zin4 = Zin1 +Rs (4)

Notice  that  the  input  impedance  increases  by Rs
after each periodic unit. Therefore, the input impedance
of the periodic structure keeps increasing as the number
of cascaded units increases, which is corresponding to the
drastic  variation  on  the  Bloch  impedance.  Therefore,  a
pair  of  shunt open-ended stubs are installed to the unit
cell to  balance  the  Bloch  impedance,  as  the  configura-
tion and equivalent circuit model are shown in Figure 4.
The shunt  stubs  introduce  the  shunt  capacitive  admit-
tance Ym and  compensate  the  inductive  effect  of  the
input admittance.  Hence,  the  resultant  reflection  coeffi-
cient becomes smaller and the Bloch impedance can thus
be effectively matched.
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Figure 4  (a) Configuration of the matched LWA unit.  (b) Equiva-
lent circuit.
 

Based  on  the  ABCD  matrix  extracted  by  the  full-
wave  method  of  the  unit,  the  propagation  constant γu
and Bloch impedance ZB are calculated as follows:

 

γu = αu + jβu =
1

p
arccosh

(
A+D

2

)
(5)

 

Z±
B =

−2B

2A−A−D ∓
√
(A+D)

2 − 4
(6)

αu βuwhere  is  the  leakage  constant  and  is  the  phase
constant.

Details  of  the  dispersion  behavior  and  the  Bloch
impedance  are  shown  in Figure  5.  Due  to  the  loaded
matching stubs, the normalized attenuation constant and
the Bloch  impedance  are  balanced,  revealing  the  elimi-
nated open-stop band effect.

To  further  reduce  the  backlobe  of  the  LWA,  the
ground plane is widened on the opposite side of the rect-
angular open-ended slot. By considering the coupling ef-

fect of the series units, the final dimensions of the fabri-
cated LWA are tabulated in Table 1.
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Figure 5  (a)  Dispersion  diagrams  and  (b)  Bloch  impedance  of  the
periodic units.
  
Table 1  Dimensional parameter of the fabricated LWA (unit: mm)

Parameters Value Parameters Value Parameters Value

p 13.7 w 1.5 d 1.75

r 1.0 ws 0.2 wm 0.3

l1 0.75 ls 3.6 lm 0.32
  

III. LWA Design and Measurement
To verify the performance of the presented antenna,

an LWA containing 20 units is designed and fabricated.
The substrate is Rogers 3006 and thickness is 0.635 mm
(εr =  6.15,  tan δ = 0.0025).  To  avoid  the  additional
impedance transformer at the two ends of the LWA, the
Bloch impedance is designed as about 50 Ω, and the cor-
responding  transmission  line  characteristic  impedance  is
about 37 Ω. The photograph of the antenna is shown in
Figure 6, which is fed by End Launch connecters through
a pair of MSL with characteristic impedance of 50 Ω.
  

Figure 6  Antenna photograph.
 

The simulated |S11| and |S21| together with the mea-
surements are shown in Figure 7. A small frequency shift
exists mainly due to the tolerance of the relative permit-
tivity εr.  By  correcting  the  relative  permittivity  as  6.7,
the  simulations  and  the  measurements  agree  with  each
other. Notice that due to the modified relative permittiv-
ity, a slight degradation on |S11| at the measured broad-
side frequency 9.65 GHz is observed. The measured |S21|
is lower than –10 dB in the whole working band, reveal-
ing that at least 90% of the input power is consumed by
the LWA. Figure 8 shows the realized gain and the cor-
responding radiation  directions,  and  the  radiation  effi-
ciency  is  shown  in Figure  9. The  measurements  are  ac-
cordant  with  the  modified  simulations,  showing  a  gain
variation of 9.6 dBi to 14.6 dBi. In the working frequen-
cy  band  of  7.5  GHz  to  11.6  GHz,  the  amplitude  of  the
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transmission coefficient decreases with the decreasing fre-
quency, meaning that the lower working frequency radi-
ates more  energy.  Therefore,  the  radiation  efficiency  in-
creases as the frequency decreases. When the frequency is
greater  than 11.6 GHz,  there  is  a  significant increase  in
radiation efficiency. However, this frequency band is the
stopband, and the directivity of the LWA is very small,
so the antenna gain decreases obviously when frequency
exceeds 11.6 GHz. Due to the conductor loss and the di-
electric loss,  the final  average radiation efficiency in the
working band is about 75%.
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The simulated 3-D pattern at the broadside frequen-
cy is depicted in Figure 10 with the horizontally radiat-
ing main beam. Result of the H-plane pattern are given
in Figure 11, showing agreement with the simulated result.

Figure  12 shows  E-plane  patterns  at  several  beam

angles.  The  beam  angle  of  the  LWA  is  related  to  the
working  frequency,  and  therefore,  the  frequency  shift
causes  that  the  measured  frequency  is  slightly  smaller
than  the  simulated  at  the  same  beam  angle.  The  main
beam scans from −62° to +34° in the simulated band of
7.6  GHz  to  12.1  GHz  and  in  the  measured  band  of  7.5
GHz to 11.6 GHz. The antenna scans from −35° to +34°
when the gain variation is lower than 3 dB. Due to the
reduction  of  the  radiation  aperture  with  the  decreased
frequency,  the  beamwidth  of  the  radiation  patterns  get
broad at low frequencies.
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Comparison between the presented LWA and several
reported LWAs is tabulated in Table 2. The configuration
of the proposed LWA is simplified compared with [32]–[34],
and the designed LWA exhibits the excellent performance
of  horizontal  radiation  and  wide-angle  beam  scanning
property  through  broadside.  Compared  with  [32],  the
normalized attenuation constant of the proposed antenna
is  reduced,  and  therefore,  gain  of  the  proposed  LWA is

 

Figure 10  Simulated 3-D pattern at 10 GHz.
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Figure 11  H-plane radiation patterns at the broadside frequency.
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greatly improved by increasing the antenna length.
  
Table 2  Comparison between designed antenna and reported litera-
ture

Structure Radiation
direction

Maximum gain
(dBi) ×

Total length
( λ0)

Scanning
range (°)

MSL [16] Vertical 14 7.2 −48 to 35

CPS [12] Vertical 16 15 −76 to 40

CPS [32] Horizontal 7.4 1.3 −79 to 56

SIW [33] Horizontal 12.0 8.1 −43 to 43

SIW [34] Horizontal 10.5 6.5 −49 to 58

SSPP [35] Horizontal 13.7 16.9 −10 to 8

This work
MSL Horizontal 14.6 9.8 −62 to 34

  

IV. Conclusion
A horizontally radiating LWA with broadside radia-

tion has been analyzed and designed in this work. Rect-
angular open-ended slots are etched on the ground plane
of the  microstrip  structure  to  provide  horizontal  radia-
tions. The LWA can be  applied  in  wireless  communica-
tion systems under narrow space, with the 10-dB reflec-
tion coefficient bandwidth covering the X-band. The de-
signed antenna scans from −62° to +34° with measured
gain variation of 9.6 dBi to 14.6 dBi. Results of both the
simulations  and  the  measurements  confirm  the  antenna
merit of seamless horizontal scanning beams. 
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