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Abstract — Joint communication-caching-computing resource allocation in wireless  inland waterway communica-
tions enables resource-constrained unmanned surface vehicles (USVs) to provision computation-intensive and latency-
sensitive tasks forward beyond fifth-generation (B5G) and sixth-generation (6G) era. The power of such resource allo-
cation cannot be fully studied unless bidirectional data computation is properly managed. A novel intelligent reflecting
surface (IRS)-assisted hybrid UAV-terrestrial network architecture is proposed with bidirectional tasks. The sum of
uplink and downlink bandwidth minimization problem is formulated by jointly considering link quality, task execution
mode selection, UAVs trajectory, and task execution latency constraints. A heuristic algorithm is proposed to solve
the formulated challenging problem. We divide the original challenging problem into two subproblems, i.e., the joint
optimization problem of USVs offloading decision, caching decision and task execution mode selection, and the joint
optimization  problem of  UAVs trajectory  and IRS phase  shift-vector  design.  The  Karush–Kuhn–Tucker  conditions
are utilized to solve the first subproblem and the enhanced differential evolution algorithm is proposed to solve the
latter one. The results show that the proposed solution can significantly decrease bandwidth consumption in comparison
with the selected advanced algorithms. The results also prove that the sum of bandwidth can be remarkably decreased
by implementing a higher number of IRS elements.
Keywords — Intelligent  reflecting  surface, Unmanned  surface  vehicles, Bidirectional  data  computation, Re-
source allocation.
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 I. Introduction
In the  fifth-generation  (5G)  era,  wireless  communi-

cation networks performance enhancement either focuses
on the  mobile  user  side  or  the  mobile  network  operator
(MNO) [1],[2].  From MNOs’ perspective,  one  commonly
used method to satisfy the ever-increasing quality of ser-
vice  (QoS)  requirements  of  mobile  users  is  to  deploy
more multiple-antenna terrestrial base stations (TBSs) [3].
However, in  the  current  paradigm of  wireless  communi-
cation networks, the significantly expanding data traffic,
emerging  big  data  services,  and  ubiquitous  deployments
of mobile devices have brought significant technical chal-

lenges, motivating  academia  and  industry  to  move  for-
ward beyond 5G (B5G) and sixth-generation (6G). With
the popularity of unmanned surface vehicles (USVs), one
of  the  promising  technologies  in  B5G  and  6G,  namely
wireless  inland  waterway  communication,  has  attracted
considerable attention. In particular, USVs are equipped
with  communication  and  computation  capabilities  and
typically  integrated with a  list  of  onboard sensors,  such
as global positioning systems, radar, sonars, altitude and
water-depth  detectors,  and  so  forth.  Although  MNOs
have  made  significant  efforts  regarding  enhancing  the
communication  quality  between  USVs  and  TBSs,  there
are still numerous technical disadvantages that are chal- 
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lenging to be solved to fulfil fully functioning inland water-
way  communications.  First,  USVs  are  generally  capable
of measuring line-of-sight (LoS) range and relative bear-
ing angle, struggling to satisfy the strict ship-shore trans-
mission link quality. The currently used technologies, such
as very high frequency and ultra-high frequency commu-
nications,  have  been proven that  can only  support  data
rates  up  to  9.6  kbit/s,  which  may  result  in  significant
transmission delay and even packet loss [4]. In addition,
MNOs  suffer  significant  profit  reductions  to  deploy  5G
telecommunication infrastructure  such  as  TBSs  and  of-
fer  global  Internet  connectivity  through  low  earth  orbit
satellites.  Although  satellites  can  play  as  intermediate
nodes  directly  communicating  with  USVs  to  offer  real-
time connectivity, the expenditure of satellite-based com-
munications  is  high  and  cannot  be  widely  utilized  to
serve budget-limited USVs [5].

Owing to the fast-growing progress of intelligent re-
flecting surface  (IRS),  academia  and  industry  have  en-
thusiastically envisioned and scheduled the B5G and 6G
wireless communication networks to fulfill the strict QoS
of  wireless  inland  waterway  communications  [6],  [7].  In
particular, IRS is a two-dimensional artificial electromag-
netic surface,  composed  of  a  large  array  of  passive  re-
flecting elements,  which  can  flexibly  adjust  electromag-
netic  functionalities,  such  as  wavefront  shaping,  signal
reflection,  and  frequency  shifting  of  the  incident  signals
via a software-defined manner. In this way, IRS is capa-
ble  of  reconfiguring  wireless  propagation  environments
without deploying  additional  telecommunication  infras-
tructures and consuming almost zero energy. By deploy-
ing the smart radio environment into the current network,
the  wireless  channels  can  be  programmed  to  provision
network performance with a higher channel capacity for
wireless inland waterway communications. In [8], the au-
thors  reported  that  IRS-assisted  wireless  networks  are
envisioned  to  revolutionize  the  current  network  para-
digm and are expected to play an active role,  especially
in  offering  better  quality  links  for  the  network  edge
users.  In  [9],  the  authors  mentioned  that  IRS-assisted
communications provide better signal strength and miti-
gate interference between the transmitter and receiver in
comparison with  relaying  and  backscatter  communica-
tions. The authors in [10] proposed numerous typical IRS-
assisted  transmission  models,  where  IRS  can  be  coated
on walls, building surfaces, or carried by aerial platforms.
The  results  show  that  an  IRS-assisted  transmission
scheme  can  transform  traditional  radio  environments
into  smart  environments  and  enhance  communication,
caching and computing performance.

The  integration  between  IRS  and  UAVs  paves  the
way  for  developing  B5G  and  6G  wireless  networks  to
offer ubiquitous communication services [11]–[13]. In par-
ticular, UAV  communications  have  emerged  as  promis-
ing technologies  to  satisfy  computation  intensive  or  la-
tency sensitive tasks by utilizing as relays, base stations
(BSs),  or  flying  mobile  edge  computing  (MEC)  servers.

The  authors  in  [14]  reported  that  owing  to  outstanding
characteristics  of  UAVs,  such  as  easy  deployment  and
adaptive altitude, UAVs have gained considerable atten-
tion in creating LoS links with ground mobile users lack-
ing ground telecommunication infrastructure. The authors
in [15] proposed that an IRS can offer LoS transmission
links to mobile users by intelligently adjusting its reflec-
tion coefficients rather than deploying multiple antennas
on UAVs. The authors in [7] formulated a network ener-
gy  minimization  problem  by  jointly  considering  UAV
trajectory and IRS phase shift vector design. The results
show that  the  novel  IRS-assisted  UAV  data  transmis-
sion scheme  can  considerably  improve  network  perfor-
mance, such as coverage, energy efficiency, and so forth.
The  authors  in  [16] mounted  IRS  onto  a  UAV  to  en-
hance  the  achievable  data  rate  for  ground  mobile  users
under weak link quality scenarios. In particular, the pas-
sive beamforming controlled by IRS can reflect the dissi-
pated  signals  transmitted  from UAVs  to  ground  mobile
users. The authors in [17] proposed an IRS-assisted UAV
communication network architecture, where IRS is coat-
ed on the building to improve signal transmission quali-
ty  from UAV to ground mobile  devices.  The authors  in
[18] implemented aerial IRS by integrating IRS with bal-
loons or UAVs to realize full reflection and create air-to-
ground LoS channels.  The authors  in  [19]  deployed IRS
in an MEC system,  where  the  computation  tasks  at  re-
source-limited mobile  devices  can  be  offloaded  to  re-
source-rich  MEC  servers.  The  authors  in  [20]  proposed
the energy minimization optimization problem by jointly
designing user  scheduling,  UAV trajectory,  and  IRS  re-
flection  coefficient.  The  results  show  that  the  network
energy consumption can be considerably decreased com-
pared  with  that  without  utilizing  IRS  or  designing  the
UAV  trajectory.  Although  significant  efforts  have  been
made  regarding  the  cooperative  design  for  USV-UAV
systems, the research on the joint utilization of UAV and
IRS in air-ground networks is still at the early stage, es-
pecially in wireless inland waterway environments.

With  the  ever-expanding  intensive  communication
and  computation  requirements  of  USVs,  the  concept  of
bidirectional computation task has emerged as an impor-
tant perspective use case in B5G and 6G era,  originally
derived from  immersive  extended  reality  with  multi-
modal  data,  where they render the live  scene by jointly
computing  user  features,  3D  positions  and  video  data
downloaded  from  the  Internet  [20].  Moreover,  with  the
ever-growing  intensive  communication  and  computation
requirements  of  USVs,  bidirectional  mission  offloading
has  emerged  as  an  effective  perspective  solution  for
transferring  the  majority  of  energy  consumption  from
USVs to  UAVs,  which  also  provides  data  communica-
tion links for USVs consuming additional bandwidth re-
source.  The  authors  in  [21] formulated  the  mobile  de-
vices  execution  latency  minimization  problem consider-
ing a  novel  bidirectional  task  model.  However,  this  re-
search  assumed  input  data  generated  by  mobile  devices
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and  ignored  input  data  generated  by  the  Internet.  The
authors in [22] proposed a novel MEC network architec-
ture with  multimodal  semantic  communication.  The  re-
sults  show  that  the  proposed  bidirectional  computation
task model is more realistic for emerging AI-enabled ap-
plications, where a portion of data is generated from mo-
bile users and the rest is derived from the Internet. The
authors  in  [23]  proposed  a  bidirectional  task  model  and
formulated the network bandwidth minimization problem
by jointly considering computation and caching resource
allocation.  However,  this  work  ignored  the  performance
enhancement from mobile users’ perspective,  which may
lead to  unsatisfactory  user-perceived  quality  of  experi-
ence. The authors in [24] proposed the bidirectional com-
putation  task  model,  where  each  bidirectional  task  can
be executed via three ways, i.e., local computing with lo-
cal  caching,  local  computing  without  local  caching,  and
MEC computing. Note that although the joint communi-
cation,  caching  and  computation  resource  allocation  for
the bidirectional  computation  task  execution  can  en-
hance  bandwidth  efficiency,  the  research  regarding  IRS-
assisted hybrid UAV-terrestrial network bandwidth con-
sumption has not been fully addressed yet.

In  this  paper,  a  novel  IRS-assisted  hybrid  UAV-
terrestrial network architecture of wireless inland water-
way communications to handle bidirectional data compu-
tation is proposed. This paper formulated the sum of up-
link  and  downlink  bandwidth  minimization  problem  by
jointly considering link quality,  task execution mode se-
lection, UAV trajectory and task execution latency con-
straints.  To  solve  the  formulated  challenging  problem,
we first  divide  the  original  problem  into  two  subprob-
lems.  Then,  a  heuristic  solution  is  proposed,  where  the
joint  optimization  problem  of  USVs  offloading  decision,
caching  decision,  and  task  execution  mode  selection  is
solved by using the Karush–Kuhn–Tucker (KKT) condi-
tions; the joint optimization problem of UAVs trajectory
and  IRS  phase  shift-vector  design  is  solved  by  utilizing
the enhanced differential  evolution (DE) algorithm. The
results show that the proposed solution can significantly
reduce the  sum of  uplink and downlink bandwidth con-
sumption in comparison with the two selected advanced
algorithms. Also, the results demonstrate that the sum of
uplink and downlink bandwidth consumption can be sig-
nificantly decreased by implementing a higher number of
IRS elements.

The remainder of this paper is organized as follows.
Section  II  introduces  the  proposed  IRS-assisted  hybrid
UAV-terrestrial network  architecture  and  the  formulat-
ed network bandwidth minimization problem. Section III
presents the proposed heuristic solution in detail. Section
IV  summarizes  the  key  performance  parameters  of  the
proposed solution and compares it with two selected ad-
vanced algorithms. Section V concludes the paper.

 II. System Model and Problem Formulation

l ∈ L
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H

The proposed novel IRS-assisted hybrid UAV-terres-
trial  network  architecture  for  wireless  inland  waterway
communications  considering  joint  communication,  cach-
ing, and computing for bidirectional data computation is
shown in Figure 1. In this system, tethered UAVs are de-
ployed and dynamically form virtual clusters with TBSs
to serve USVs, and each tethered UAV  is connect-
ed with an MEC server via cable and equipped with 
passive  reflecting  elementa  IRS*1.  Moreover,  a  set  of 
marine SATs denoted by  are deployed to offer tempo-
rary  wireless  communication  services  for  USVs,  such  as
path planning, automatic navigation, and so forth. Each
UAV is assumed to fly at the fixed height  and cannot
serve more than one USV simultaneously. Note that the
coordinates of  UAVs  are  determined  once  virtual  clus-
ters are formed.
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Figure 1  The proposed  IRS-assisted  hybrid  UAV-terrestrial  net-
work architecture.
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In this paper, the 3D Cartesian coordinate is consid-
ered. Considering each virtual cluster, the coordinates of
edge server, UAV  and its corresponding hovering coor-
dinate are denoted by ,  and , respectively. Each
bidirectional task generated by USV  during each equal-
length  time  slot  can  be  characterized  by 

, where  and  are task data size (in bits)
generated  by  USV  and  remote  input  data  designated
from SAT , respectively.  is the size of output data.

 and  indicate  the  number  of  required  CPU  cycles
and the maximum allowable time to execute , respec-
tively. Note that each edge server is connected with one

-antenna TBS  via  optic  fiber  and  thus  the  transmis-
sion latency between them can be ignored.
 1. IRS-assisted channel models

l
θl = [θl,1, θl,2, . . . , θl,k, . . . , θl,K ]T θl,k ∈ [0, 2π), k ∈
{1, 2, . . . ,K}

l

The phase  shift-vector  of  each  IRS  is  denoted  by
, where 

.  In  accordance  with  [21],  we  assume  that
each IRS  follows full  reflection.  The corresponding re-
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 For simplification purposes, since each UAV is integrated with IRS, IRS  refers to IRS integrated by UAV .



flection coefficient matrix can be expressed as
 

Θ =


ejθl,1 0 · · · 0
0 ejθl,2 · · · 0
...

...
. . .

...

0 0 · · · ejθl,K

 , l ∈ L (1)

s
i s l, l i

hs,i ∈ RM×1, hs,l ∈ RM×K , hi,l ∈ RK×1,

s ∈ S, i ∈ I, l ∈ L Hs Rs

s

h̃

The  equivalent  baseband  channels  from  SAT  to
USV , SAT  to UAV  and UAV  to USV  can be
denoted by  and 

,  respectively.  Denote  and  as
the height and the distance between the center of SAT 
coverage area and its central beam, respectively. Denote
that  characterizes  the  small-scale  fading of  SAT-USV
link, which can be expressed as

 

h̃ = A exp(jψ) + Z exp(jϕ) (2)

ψ ∈ [0, π] A

Z
ϕ ∈ [0, π] λ

s
i

where  is  the  stationary  random  phase  and 
denotes the  amplitude,  which  obeys  Rayleigh  distribu-
tion.  The amplitude  follows Nakagami-m distribution
and  is  the  deterministic  phase.  Let  be  the
carrier  wavelength.  The  channel  gain  between  SAT 
and USV  can be expressed as

 

hs,i =
√
b(φs,i)h̃λ

/
(4π
√
H2

s +R2
s), s ∈ S, i ∈ I (3)

b(φs,i) s iwhere  is beam gain factor of SAT -UAV  link,
which can be given as

 

b(φs,i) = bmax

(
J1(us,i)

2us,i
+ 36

J3(us,i)

u3s,i

)2

, s ∈ S, i ∈ I

(4)

bmax

φ3dB φs,i = [φ1
s,i,

φ2
s,i, . . . , φ

M
s,i]

T

s i J1(·) J3(·)

us,i = 2.07123sinφs,i/sinφ3dB

s l

where  is the maximum achievable satellite-USV link
beam gain and  denotes the 3 dB angle. 

 is  the  angle  between  the  beam  center  of
SAT  and USV .  and  represent  order  one
and order three of the first-kind Bessel functions, respec-
tively. .  In  this  way,  the
channel  gain  between  SAT  and  UAV  can be  ex-
pressed as

 

hs,l =
√
b (φs,l)h̃λ

/
(4π
√
H2

s + d2s), s ∈ S, l ∈ L (5)

φs,l = [φ1
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M
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T

l s
l i

where  denotes the  angle  be-
tween  UAV  and  beam center  of  SAT .  The  channel
gain  between  UAV  and  USV  via  IRS-assisted  data
transmission can be given as

 

hi,l =
√
d−β
i,l

[
1, e−j 2πd

λ ζi,l , . . . , e−j 2(K−1)πd
λ ζi,l

]T
,

i ∈ I, l ∈ L (6)

di,l
l i β ζi,l

where  denotes  the  transmission  distance  between
UAV  and USV .  and  indicate the link path loss

l i d
(PL) coefficient and the cosine of the angle of arrival of
the incident signal from IRS  to USV , respectively. 
is  the  separation  distance  between  any  two  successive
IRS elements.
 2. Caching, communication and computing models

i
αi αi = 1 i
Dl

i αi = 0

i ci
Ds

i ci = 1
Ds

i i
ci = 0 xi,a ∈ {0, 1}, i ∈ I, a ∈ {1, 2, 3}

xi,a = 1 i a
xi,a = 0

Let the binary offloading decision variable of USV 
be ,  where  indicates  USV  decides  to  offload
data  and  otherwise.  Moreover,  denote  the
caching  decision  variable  of  USV  as  representing
whether  to  cache  remote  input  data ,  where 
means the remote input data  is cached by USV  and

 otherwise.  Define ,
where  means  that  task  is  executed  by -th
mode and  otherwise.  In  this  manner,  each task
can be executed via the following three execution modes.

i Dl
i Ds

i

s αi = 0
ci = 0 xi,1 = 1

Local execution  with  local  caching  mode:  This  exe-
cution mode only requires the downlink bandwidth. Each
USV  computes  locally and caches remote data 
from  SAT .  In  this  way,  one  can  obtain  that ,

, and .
 

C1 :
∑
i

Ds
i ci ≤ Ci, i ∈ I (7)

Since  task  execution  time  cost  cannot  exceed  the
maximum time allowance, one has

 

C2 :
(Dl

i +Ds
i )Fi

fi
(1− αi)ci ≤ τi, i ∈ I (8)

fi iwhere  is the computation capability of USV .

i Dl
i

Ds
i s

αi = 0 ci = 0 xi,2 = 1 BD
i

Oi

Local execution with remote caching mode: This ex-
ecution  mode  only  requires  the  downlink  bandwidth.
Each USV  computes  locally and caches remote da-
ta  from  SAT .  In  this  way,  one  can  obtain  that

, ,  and .  Let  be  the  allocated
downlink bandwidth to transmit output data , one has

 

C3 :
Oi(

τi −
(Dl

i +Ds
i )Fi

fi

)
log
(
1 +

psh
2

N0

) ≤ BD
i , i ∈ I

(9)

ps s h
N0

where  is  the  transmission  power  of  SAT ,  is  the
channel  coefficient,  and  is the  average  power  spec-
tral density of noise.

i Dl
i Ds

i

i s Oi

i
αi = 1 ci = 0

xi,3 = 1 s i

IRS-assisted MEC  mode:  This  execution  mode  re-
quires uplink and downlink bandwidth. Considering each
USV  in the first stage,  and  are transmitted to
edge server by USV  and SAT , respectively. Then, 
is transmitted to USV  after executed by edge server. In
this  way,  one  can  obtain  that , ,  and

. The signal received by SAT  from USV  via
IRS-assisted offloading method can be given as

 

yi =wH
s,i

√
ptri (hs,i+hs,lΘhi,l)si+n, s ∈ S, i ∈ I, l ∈ L

(10)

  1096 Chinese Journal of Electronics, vol. 33, no. 4



si
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s n
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where  is  the  transmitted  data  symbol  with  average
unity  power,  i.e., .  represents
the  beamforming  vector  of  SAT ,  and  denotes  the
noise. The corresponding signal to interference plus noise
ratio  (SINR)  between  USV  and  SAT ,  denoted  by

, which can be expressed as
 

γs,i(θ, q)

=
ptri ∥wH

s,i(hs,i+hs,lΘhi,l)∥2∑I

m=1,m̸=i
ptrm∥wH

s,i(hs,m+hs,lΘhi,l)∥2+σ2∥wH
s,i∥2

,

i,m ∈ I, i ̸= m, l ∈ L (11)

ptri ptrm
i m

where  and  indicate  the  transmission  power  of
USV  and , respectively.  The  corresponding  offload-
ing time cost can be expressed as

 

toi =
αiD

l
i

BU
i log(1 + γs,i(θ, q))

, i ∈ I (12)

BU
i iwhere  is  the  allocated  uplink  bandwidth  of  USV .

The corresponding latency constraint should satisfy
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i log

(
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αi ≤ τi,
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fwhere  is the computation capability of MEC server.
 3. UAV trajectory model

l
vmax
l

Denote the maximum flying speed of each UAV  by
, one has
 

C5 : ∥q′
l∥ ≤ vmax

l , l ∈ L (14)

l i
dmax
i,l

To promise  the  channel  link  quality,  the  transmis-
sion distance between UAV  and USV  cannot exceed
the  maximum  available  communication  distance ,
one has

 

C6 : di,l = ∥ql − qi∥ ≤ dmax
i,l , i ∈ I, l ∈ L (15)

Lmax

Let  the  maximum  tether  length  of  each  UAV  be
. One has

 

C7 : ∥ql − q0∥2 +H2 ≤ L2
max, l ∈ L (16)

 4. Problem formulation
γths,i

i s

Denote  as  the  predetermined  acceptable  SINR
threshold between USV  and SAT  link. In this paper,
we  aim  to  minimize  the  sum  of  uplink  and  downlink
bandwidth by  jointly  considering  link  quality,  task  exe-
cution mode selection, UAVs trajectory, and task execu-
tion latency constraints, which can be formulated as 

P1 : min
q,θ,a,c,x

∑
t∈T

∑
i∈I

(BU
i +BD

i )

s.t. C1−C7,
C8 : γs,i ≥ γths,i, i ∈ I, s ∈ S,
C9 : αi ∈ {0, 1}, i ∈ I,
C10 : ci ∈ {0, 1}, i ∈ I,
C11 : xi,a ∈ {0, 1}, i ∈ I, a ∈ {1, 2, 3} (17)

C
i Ci

C
C C

i

C C
C

i s

γths,i C C

i

where 1  indicates  that  the  local  cached  data  size  of
USV  cannot exceed the maximum caching capacity .

2  demonstrates  that  local  task  execution  time  cost
should  satisfy  the  latency  constraint. 3  and 4  reveal
the  minimal  required  downlink  bandwidth  and  the  task
execution latency constraint when USV  selects local ex-
ecution with remote caching mode and IRS-assisted edge
computing mode, respectively. 5– 7 demonstrates teth-
ered  UAVs  trajectory  constraints. 8  illustrates  that
SINR of each USV -SAT  link cannot be less than the
predetermined threshold . 9– 11 specify the offload-
ing  decision  variable,  caching  variable,  and  execution
mode  selection  variable  of  USV  are 0-1  binary  vari-
ables, respectively.

P1

P1

P1

q θ P1

θ

P1

P1

Note  that  is a  non-linear  non-convex  optimiza-
tion  problem and is  extremely  challenging  to  be  solved.
First,  due  to  the  existence  of  0-1  binary  variables,  the
widely utilized highly efficient algorithms, such as genet-
ic algorithm, DE, and particle swarm optimization, can-
not be directly utilized to solve  [25]. Although a list
of advanced non-convex optimization methods and AI al-
gorithms, such as accelerated gradient method and rein-
forcement  learning  and  so  forth,  have  been  expected  to
solve non-convex  optimization  efficiently,  the  computa-
tional complexity to solve  becomes extremely compli-
cated  and may not  be  solved  even  suffering  remarkably
computation resource  and  time  cost  since  the  optimiza-
tion  variables  and  in  are closely  coupled.  In-
spired  by  DE  algorithm,  note  that  since  not  all  UAVs
participating  in  bidirectional  data  computation  are  able
to serve USVs in this paper, encoding the coordinates of
each UAV may bring the redundant search space and de-
crease  the  network  performance.  Moreover,  due  to  the
existence of optimization variable , it is extremely chal-
lenging to solve  directly by using the traditional opti-
mization methods. As a result, aiming to efficiently solve

, a heuristic solution can be proposed by jointly con-
sidering  convergence  speed  and  optimizing  each  phase
shift-vector of IRS.

 III. The Proposed Solution

 1. The joint optimization of USVs offloading
decision, caching decision, and task
execution mode selection

q θ, P1Given any feasible  and   can be reduced as 
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P1.1 : min
α,c,x

∑
i∈I

(BU
i +BD

i )

s.t. C9− C11 (18)

αi = 0 ci = 0 xi,3 = 1

P1.1

In this paper, we focus on IRS-assisted edge comput-
ing  mode,  i.e., , ,  and .  One  should
note  that  the  performance  analysis  of  local  execution
with local caching mode and local execution with remote
caching mode can be extended based on the solution ob-
tained  in  this  section.  In  this  way,  can be  trans-
formed into

 

P̂1.1 : min
BU

i ,BD
i

∑
i∈I

(BU
i +BD

i )

s.t. C̃4 :
Dl

i

BU
i log(1 + γb,i(θ, q))

+
Oi

BD
i log

(
1 +

psh
2

N0

)
≤ τi −

(Dl
i +Ds

i )Fi

f
, i ∈ I,

BU
i > 0, i ∈ I,

BD
i > 0, i ∈ I (19)

P̂1.1 BU∗
i +BD∗

i =

Dl
i

log(1+γb,i(θ,q))
+

Oi

log(1+ psh2

N0
)
+2

√√√√ Dl
i

log(1+γb,i(θ,q))

Oi

log(1+ psh2

N0
)

(τi−
(Dl

i
+Ds

i
)Fi

f )

Proposition  1  The  optimal  value  to  the  objective
function  of  can  be  given  as 

.

A1(θ, q)=
Dl

i

log(1+γb,i(θ,q))
A2=

Oi

log(1+ psh2

N0
)
,

A3 = τi − (Dl
i+Ds

i )Fi

f A1 A2, A3

A1 A2, A3 P̂1.1

Proof  Let , 

and , where ,  and  are con-
stants.  After  introducing ,  and ,  can  be
rewritten as

 

P̃1.1 : min
BU

i ,BD
i

∑
t∈T

∑
i∈I

(BU
i +BD

i )

s.t.
A1

BU
i

+
A2

BD
i

≤ A3,

BU
i > 0, i ∈ I,

BD
i > 0, i ∈ I (20)

P̃1.1One can observe that  is a convex optimization
problem  and  can  be  directly  solved  by  utilizing  KKT
conditions [26].  As a result,  the optimal solution can be
given as

 

BU∗
i =

A1 +
√
A1A2

A3

(21)

 

BD∗
i =

A2 +
√
A1A2

A3

(22)

BU∗
i > 0 BD∗

i > 0

P̃1.1
A1(θ,q)+A2+2

√
A1(θ,q)A2

A3

Note that  and . As such, the opti-
mal value to the objective function of  can be given
as .

This completes the proof.

 2. The joint optimization of UAVs trajectory and
IRS phase shift-vector

α c,
x P1
According to Section III.1,  given any feasible , 

and ,  can be reduced as
 

P1.2 : min
q,θ

∑
i∈I

A1(θ, q) +A2 + 2
√
A1(θ, q)A2

A3

s.t. C5− C8 (23)

P1.2
A1(θ, q) P1.2

Transform  into the problem of minimizing the
value of . In this way,  can be rewritten as

 

P̃1.2 : min
q,θ

∑
t∈T

∑
i∈I

Dl
i

log2(1 + γb,i(θ, q))

s.t. C5− C8 (24)

P̃1.2

P̃1.2

Note that  is still  an non-deterministic polyno-
mial hard problem and challenging to be solved. In this
paper,  the  enhanced  DE  algorithm  is  proposed  to  solve

. The main process of the proposed algorithm is in-
troduced in detail.

l g gmax, qg
l

g
Qg

t = {qg
1 ,�, qq

l ,�, qg
L}, g ∈ {1, 2, . . . , gmax} qg

l

Initialization  Denote  the  current  iteration,  the
maximum number  of  iterations,  and the  current  coordi-
nate of UAV  by ,  and ,  respectively. At the
network  initialization  stage,  the  coordinates  of  UAV
swarm  at  the -th  generation  can  be  encoded  into

,  where 
can be expressed as

 

qg
l = (qgl,1, q

g
l,2, . . . , q

g
l,N , . . . , q

g
l,2N ), l ∈ L (25)

Nwhere  represents the length of encoding.
g

qg
r1 qg

r2, qg
r3

vg
l

Mutation  During the -th generation, one can ran-
domly select three individuals, e.g., ,  and , to
generate  mutation  operator ,  which  can  be  expressed
as

 

vg
l = qg

r1 + F0(q
g
r2 − qg

r3),

l, r1, r2, r3 ∈ L, l ̸= r1 ̸= r2 ̸= r3 (26)

F0where  is the scaling factor.

vg
l qg

l

ug
l = (ugl,1, u

g
l,2, ..., u

g
l,l′ , ...,

ugl,N , ..., u
g
l,2N ), l ∈ L

Crossover  To enhance the potential diversity of the
population,  and  are  utilized  to  generate  the
crossover operator denoted by 

.  In  accordance  with  [27], the  com-
monly used binomial crossover method is utilized, which
can be formulated as

 

ugl,l′ =

{
vgl,l′ , if randl′ ≤ CR or l′ = l′rand

qgl,l′ , otherwise
(27)

randl′
l′ CR

l′rand

where  denotes  a  uniformly  distributed  number
ranging  from  [0,  1]  for  each  and  denotes  the
crossover control parameter.  is a randomly selected
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[1, 2N ] ug
l qg

linteger from  to promise  is different from  in
at least one dimension.

θl l

ug
l q P̃1.2

Fitness  function  design  The  corresponding  phase
shift-vector  of IRS  is considered to evaluate the fit-
ness value of . Given any feasible , the problem 
can be transformed into

 

P̂1.2 : max
θl

γb,i(θl)

s.t. C8 (28)

P̂1.2

U = hs,ldiag(hi,l) ∈ RM×K

Φ = [ejθl,1 , ejθl,2 , . . . , ejθl,K ]T, V = ΦHΦ Q

Q = hH
s,iws,iw

H
s,ihs,i

P̂1.2

One can observe that  is still a non-convex op-
timization problem and  cannot  be  efficiently  solved.  In-
spired  by  the  traditional  majorization-minimization
(MM)  algorithm,  denote ,

 and .  Define  is
a constant value which can be given .
As such, the numerator of the objective function of 
can be rewritten as

 

ptri ∥wH
i (hs,i +UΦ)∥2

= ptri [(h
H
s,i +ΦHUH)ws,i][w

H
s,i(hs,i +UΦ)]

= ptri (Q+ hH
s,iws,iw

H
s,iUΦ

+ΦHUHws,iw
H
s,ihs,i +ΦHUHws,iw

H
s,iUΦ)

= ptri

[
ΦH
(
Q

V
IK +UHws,iw

H
s,iU

)
Φ

+ 2Re{ΦHUHws,iw
H
s,ihs,i}

]
(a)
= ΦHY Φ+ 2Re{ΦHX} (29)

X = ptri U
Hws,iw

H
s,ihs,i ∈ RK×1

Y = ptri (
Q
V IK +UHws,iw

H
s,iU) ∈ RK×K A =∑I

m=1,m ̸=i Ym + σ2

V IK B =
∑I

m=1,m̸=i Xm

P̂1.2∑I
m=1,m ̸=i p

tr
m∥wH

s,i(hs,m + hs,lΘhi,l)∥2+
σ2∥wH

s,i∥2 = ΦHAΦ+ 2Re{ΦHB} P̂1.2

where  step  (a)  holds  for 
and .  Let 

 and .  In  this
way,  the  denominator  of  the  objective  function  of 
is  rewritten  as 

.  Thus,  can  be
rewritten as

 

P1.2 : max
Φ

ΦHY Φ+ 2Re{ΦHX}
ΦHAΦ+ 2Re{ΦHB}

s.t. C8 (30)

Λ = ΦHY Φ+ 2Re{ΦHX} Σ = ΦHAΦ+

2Re{ΦHB}
E = Λ0

Σ2
0
A− 1

Σ0
Y F = Λ0

Σ2
0
B − 1

Σ0
X

f(Λ,Σ) = Λ
Σ

f(Λ,Σ)

Let  and 
 as  the  intermediate  variables.  And  let

 and .  Define  the
function ,  where  the  lower  bound  of

 can be obtained by taking its first-order Taylor
expansion, one has

 

f(Λ,Σ) ≥ f(Λ0,Σ0) +
1

Σ0
(Λ−Λ0)−

Λ0

Σ2
0

(Σ −Σ0)

= f(Λ0,Σ0) +
1

Σ0
Λ− Λ0

Σ2
0

Σ

= f(Λ0,Σ0) +ΦH
(

1

Σ0
Y − Λ0

Σ2
0

A

)
Φ

+ 2Re
{
ΦH
(

1

Σ0
X − Λ0

Σ2
0

B

)}
= f(Λ0,Σ0)−ΦHEΦ− 2Re{ΦHF } (31)

P1.2As such,  can be transformed into
 

Ṗ1.2 : min
Φ

ΦHEΦ+ 2Re{ΦHF }

s.t. C8 (32)

λmax(E) E
ΦHλmax(E)IKΦ = V λmax(E)

Define  as  the  maximum  eigenvalue  of .
Since , one has

 

ΦHEΦ+ 2Re{ΦHF }
≤ ΦHλmax(E)IKΦ+ΦH

0 (λmax(E)IK −E)Φ0

− 2Re{ΦH(λmax(E)IK −E)Φ0}+ 2Re{ΦHF } (33)

Φg Φ g
Φg Φ0

Ṗ1.2

Define  as the value of  obtained in the -th it-
eration. To this respect, one can utilize  to replace 
by generating a series of feasible vectors.  As such, 
can be reformulated as

 

P̈1.2 : max
Φ

Re{ΦH[(λmax(E)IK −E)Φg − F ]}

s.t. C8 (34)

P̈1.2 Φ∗ = ejarg{(λmax(E)IK−E)Φg−F }

θ∗
l = arg{(λmax(E)IK −E)Φg−F }

According to Proposition 2,  the optimal  solution to
 can be given as  with

the corresponding .
Φ P̈1.2

Φ∗ = ejarg{(λmax(E)IK−E)Φg−F }
Proposition 2  The optimal solution  to  can

be given as .
G = [g1, g2, . . . , gK ]T

G = {[λmax(E)IK −E]Φg − F } ∈ RK×1

a ≥ 0 and b ≥ 0
a2 + b2 2ab ≤ a2 + b2

a = b

Proof  Denote . One  can  ob-
tain  that . Re-
call  that  when ,  the  minimal  value  of

 can be obtained via  if  and only if
. In this way, one has

 

Re{ΦHG} = g1cosθl,1 + g2cosθl,2 + · · ·+ gKcosθl,K

≤ 1

2
(g21 + cos2θl,1) +

1

2
(g22 + cos2θl,2)

+ · · ·+ 1

2
(g2K + cos2θl,K) (35)

Re{ΦHG}
gk = cosθl,k, k ∈ {1, 2,

. . . ,K} θl,k

One can observe that the optimal value of 
can  be  obtained  if  and  only  if 

. As such, the corresponding optimal value of 
can be given as

 

θ∗l,k = arccos(gk) (36)

Φ
P̈1.2 Φ∗ = ejarg{(λmax(E)IK−E)Φg−F }

As a result, the corresponding optimal solution  to
 can be given as .
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This completes the proof.
ug
l

qg
l P̃1.2

In  this  paper,  to  evaluate  the  fitness  values  of 
and , which can measure the solution quality to ,
the fitness function can be defined as

 

f(ug
l ) =

Dl
i

log2(1 + γb,i(θ∗
l ,u

g
l ))

(37)

ug
l qg

l

Selection  The selection operator is performed to se-
lect  the offspring between  and  to the next itera-
tion based  on  their  fitness  values,  which  can  be  ex-
pressed as

 

qg+1
l =

{
ug
l , if f(ug

l ) ≤ f(qg
l )

qg
l , otherwise

(38)

q∗
l l

θ∗
l l

gmax

Bsum

O(I + Igmaxlog( 1
ϵth
)) ϵth

Note  that  the  optimized  coordinate  of  UAV 
and phase shift-vector  of IRS  can be obtained when
the  enhanced  DE  algorithm  reaches  convergence  or
reaches  the  maximum  number  of  iterations .  The
framework of the proposed solution is given in Section IV
(see Algorithm 1).  Note  that  indicates  the  sum of
uplink and  downlink  bandwidth.  The  complexity  analy-
sis  of  the  proposed  algorithm  can  be  roughly  given  as

, where  is the predetermined con-
vergence accuracy parameter.

 IV. Numerical Results

H [30, 100]

i ptri = 2

σ2 Dl
i

i Ds
i

s [1, 20]× 104

Ui

10
1× 105 1× 107

10−5

In this section, numerous selected significant results
are demonstrated  to  verify  the  effectiveness  of  the  pro-
posed solution. The significant simulation parameters are
given as follows. USVs are assumed to be randomly dis-
tributed in an area of 250 m × 250 m. The range of each
UAV hovering  height  is  set  to  m  [28].  The
maximum  flight  speed  of  each  UAV  is  set  to  30  m/s.
SAT-USV  link  is  assumed  as  a  controllable  non-line-of-
sight channel when utilizing IRS technique. In this same
manner with [29], SAT-UAV link and UAV-USV link are
both  assumed  as  LOS  channel.  The  PL  exponents  of
SAT-USV link,  SAT-UAV link,  and UAV-USV link  are
set  as  3.5,  2.2,  and  2.2,  respectively.  The  transmission
power of  each USV  is  set  as  W and the noise
power  is −70 dBm. The task data size  generated
by  USV  and  remote  input  data  size  designated
from SAT  and output data size are set to 
bits.  The  maximum allowable  time  to  execute  is  set
as  s.  The  computation  capability  of  each  USV  and
edge server are set to  CPU cycles/s and 
CPU cycles/s, respectively. The convergence accuracy of
the proposed solution is . Two advanced algorithms,
e.g., RandPhase algorithm and MM algorithm, are select-
ed to  compare with the proposed solution.  The detailed
information is summarized in Algorithm 1.

Algorithm 1  The framework of the proposed solution

I L K S ϵth ws,i hs,i hs,l ptr gmax 1: Input: , , , , , , , , , ;

α∗ c∗ x∗ q∗ θ∗ BU
i BD

i 2: Output: , , , , , , and ;
q0 θ0 3: Initialize: , ;

g = 1 qg = qo θg = θ0 4: Set , , ;
P1 P1.1 P1.2 5: Divide  into subproblems  and ;

α c x 6: //The Joint Optimization of , , and 
P1.1 P̂1.1 7: Transform  into ;

P̂1.1 α∗ c∗ x∗ 8: Solve , and obtain the optimized ,  and ;
q θ 9: //The Joint Optimization of  and 

g <= gmax ϵgDE >= ϵth10  while  or  do
α∗ c∗ x∗ P1.211:　　  Substitute , , and  into ;
P1.2 P̃1.212: 　 　Transform  into ;

13:　　  Perform mutation according to (26);
14:　　  Perform crossover according to (27);

q P̃1.2 P̂1.215:　　  Given any feasible , transform  into ;
P̂1.2 P1.216:　　  Transform  into  according to (30);
P1.2 Ṗ1.217: 　 　Transform  into  according to (32);
Ṗ1.2 P̈1.218:　　  Transform  into  according to (34);

P̈1.2 θg+119: 　 　Solve  and obtain ;

θg+1 f(qg)
f(ug)

20:　　  Substitute  into  (35)  and  obtain  and
;

f(ug) f(qg)21:　 　 if  <  then

qg+1 = ug22:　　　 　 ;
23:　 　 else

qg+1 = qg24:　　　 　 ;
25:　 　 end

ϵg+1
DE = Bsum(q

g+1,θg+1)−Bsum(q
g,θg)

Bsum(qg,θg)26:　 　 Compute ;

g = g + 127:  　　 ;
28:  end

α∗ c∗ x∗ q∗ θ∗ BU
i BD

i29:  Update , , , , , , and .

MM  algorithm  The majorization-minimization  al-
gorithm (refer  to  MM  in  the  following)  aims  to  maxi-
mize the SINR by replacing the upper bound minimiza-
tion step with a lower bound maximization step. The de-
tailed information regarding MM algorithm can be found
in [30].

RandPhase  algorithm  The random  phase  algo-
rithm (refer to RandPhase in the following) aims to max-
imize the SINR by randomly generating the phase shift-
vector of IRS and the hovering coordinate of each UAV
[31]. The joint optimization of USVs offloading decision,
caching  decision,  and  task  execution  mode  selection  is
identical to the proposed solution.

The  relationship  between  the  sum  of  uplink  and
downlink  bandwidth and the  number  of  USVs is  shown
in Figure  2.  One  can  observe  that  as  the  number  of
USVs increases,  the  sum  of  uplink  and  downlink  band-
width correspondingly  increases.  Moreover,  one  can  ob-
serve that the proposed solution is capable of decreasing
the sum of uplink and downlink bandwidth consumption
in comparison  with  the  MM  algorithm  and  the  Rand-
Phase algorithm. In particular, the proposed solution re-
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alizes  the  lowest  bandwidth  consumption  at  nearly
 Hz  and  Hz  when  and ,

respectively, followed by the MM algorithm with the cor-
responding values at around  Hz and 
Hz. The RandPhase algorithm realizes the worst perfor-
mance,  where  the  required  total  bandwidth  is  around

 Hz and  Hz  when  and ,
respectively.
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Figure 2  The relationship between the sum of uplink and downlink
bandwidth and the number of USVs when  and  m.
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Figure 3 demonstrates the sum of uplink and down-
link bandwidth versus the number of IRS elements. One
can observe that as the number of IRS elements increas-
es, the  sum  of  uplink  and  downlink  bandwidth  corre-
spondingly  decreases.  Moreover,  the  proposed  solution
outperforms the MM algorithm and the RandPhase algo-
rithm under the same number of IRS elements. In partic-
ular, the  proposed  solution  demands  the  total  band-
width  at  nearly  Hz  and  Hz  when

 and , respectively, followed by the MM
algorithm  with  the  corresponding  values  at  around

 Hz  and  Hz. The  RandPhase  algo-
rithm achieves the worst performance; the required total
bandwidth  is  around  Hz  and  Hz

K = 150 K = 50when  and , respectively.
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Figure 4 illustrates the relationship between the sum
of  uplink  and  downlink  bandwidth  and  the  height  of
UAVs. One can observe that as the height of UAVs in-
creases, the sum of uplink and downlink bandwidth cor-
respondingly  increases.  Moreover,  the  proposed  solution
realizes the  lowest  bandwidth  consumption  in  compari-
son with  the  RandPhase  algorithm  and  the  MM  algo-
rithm. In particular, the proposed solution consumes the
bandwidth at nearly  Hz and  Hz when

 m and  m, respectively, followed by the
MM algorithm with the  corresponding values  at  around

 Hz  and  Hz. The  RandPhase  algo-
rithm  realizes  the  worst  performance;  the  bandwidth  is
around  Hz and  Hz when  m
and  m, respectively.
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Figure 4  The relationship between the sum of uplink and downlink
bandwidth and the height of UAVs when  and .
 

One can observe that the proposed solution can sig-
nificantly decrease the required sum of uplink and down-
link bandwidth consumption and bring several  technical
advantages in comparison with two selected advanced al-
gorithms.  First,  the  proposed  solution  promises  each
UAV can adaptively adjust IRS phase shift-vector when
serving each USV, which can decrease  UAVs flying dis-
tance and  flying  time  cost  compared  with  the  Rand-
Phase  algorithm  as  mentioned  in  [32].  In  addition,  the
proposed solution is  capable of  jointly optimizing UAVs
trajectory  and  IRS  phase  shift-vector,  which  results  in
less bandwidth consumption in comparison with the MM
algorithm under the same number of IRS elements. One
should note that very few thorough studies are focusing
on  network  bandwidth  optimization  for  the  proposed
novel IRS-assisted  hybrid  UAV-terrestrial  network  con-
sidering bidirectional data computation, which can be se-
lected for  further  network performance enhancement  re-
search [33].

 V. Conclusion
In this paper, a novel IRS-assisted hybrid UAV-ter-

restrial network architecture of wireless inland waterway
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Figure 3  The relationship between the sum of uplink and downlink
bandwidth  and  the  number  of  IRS  elements  when  and

 m.
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communications considering  bidirectional  tasks  is  pro-
posed.  The  sum  of  the  uplink  and  downlink  bandwidth
minimization problem is  formulated  by  jointly  consider-
ing  link  quality,  task  execution  mode  selection,  UAVs
trajectory,  and  task  execution  latency  constraints.  To
solve the formulated challenging problem, we first decou-
ple  the  original  problem into  two subproblems.  Then,  a
heuristic algorithm  is  proposed,  where  the  KKT  condi-
tions are utilized to solve the joint optimization problem
of  USVs  offloading  decision,  caching  decision,  and  task
execution mode  selection  and  the  enhanced  DE  algo-
rithm is  proposed  to  solve  the  joint  optimization  prob-
lem of  UAVs  trajectory  and  IRS  phase  shift-vector  de-
sign.  Numerical  results  show that  the  proposed  solution
can significantly  decrease  the  sum  of  uplink  and  down-
link  bandwidth  consumption  in  comparison  with  the
RandPhase algorithm and MM algorithm. The results al-
so illustrate that the sum of uplink and downlink band-
width consumption can be remarkably decreased by uti-
lizing the higher number of IRS elements.
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