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Abstract — Mobile edge computing (MEC) provides edge services to users in a distributed and on-demand way.
Due  to  the  heterogeneity  of  edge  applications,  deploying  latency  and  resource-intensive  applications  on  resource-
constrained devices is a key challenge for service providers. This is especially true when underlying edge infrastruc-
tures  are  fault  and  error-prone.  In  this  paper,  we  propose  a  fault  tolerance  approach  named  DFGP,  for  enforcing
mobile service fault-tolerance in MEC. It synthesizes a generative optimization network (GON) model for predicting
resource failure and a deep deterministic policy gradient (DDPG) model for yielding preemptive migration decisions.
We show through extensive simulation experiments that DFGP is more effective in fault detection and guaranteeing
quality of service, in terms of fault detection accuracy, migration efficiency, task migration time, task scheduling time,
and energy consumption than other existing methods.
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I. Introduction
Mobile edge computing (MEC) is a proximity-based

paradigm with  many  benefits,  such  as  low  latency,  effi-
cient communication, and high system responsiveness [1],
[2].  Recently,  large-scale federated  edge  architecture  de-
ployments have been achieved by leveraging multiple in-
dependent  edge  computing  providers,  enabling  seamless
interconnection  of  multiple  edge  devices  in  a  federated
setting [3]. In such an environment, edge nodes are with
limited power sources and can be deployed in a compli-
cated  and  volatile  environment  that  may  cause  failures
or faults due to network faults, unexpected device break-
downs, or process faults. Faulty nodes may cause inaccu-

rate  sensing  outcomes,  erroneous  data  processing,  and
incorrect  data  communications.  It  is  thus  a  challenging
task  to  enforce  fault  tolerance  because  of  the  essential
restrictions of MEC, such as unreliable connections, ran-
dom  mobility,  small-bandwidth for  communication,  re-
stricted power,  and fixed storage.  Luckily,  techniques of
proactive  fault-tolerant  can  be  highly  suited  for  those
cases, where it prevents edge node failures from running
applications  by  preemptively  migrating  tasks  out  before
occurrences of faults [4].

However,  it  remains  a  great  challenge  to  enforce
high-quality  fault-tolerance  of  MEC  applications.  In  an
MEC environment, MEC servers manage data transmis- 
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sion and broadcast to neighboring wireless networks. For
enforcing  fault  tolerance,  tasks  keep  being  moved  out
and  migrated  among  MEC  terminals  connected  via  an
edge network. The instability of wireless network can thus
strongly  affect  the  efficacy  of  fault-tolerant  activities.
Moreover, fault tolerance itself  could bring in extra sys-
tem  overhead,  which  usually  refers  to  resource  required
for fault compensation and cost of building/running task
replicas. Such overhead should be taken into account and
properly optimized to avoid a high loss of user-perceived
service quality and system responsiveness. Fall into cate-
gories. The  formers  reallocate  tasks  in  advance.  In  con-
trast, the latter aims to compensate.

In this paper, we propose a deep deterministic poli-
cy  gradient  (DDPG)-based  method  for  enforcing  mobile
service fault-tolerance in MEC. The proposed framework
is comprised of a predictor built upon a generation opti-
mization  network  model  for  predicting  failures  of  edge
nodes  and  a  preemptive  migration  decision  maker  built
with a DDPG for yielding high-quality schedules of fault
tolerance.  The rest  of  the  paper  is  organized as  follows:
Related work is overviewed in Section II. Section III de-
scribes  the  system  model  and  formulates  the  problem.
Section  IV  presents  the  DFGP  fault-tolerant  method
proposed. Section  V  shows  and  discusses  simulation  re-
sults.  Conclusions  and  future  research  suggestions  are
presented in Section VI. 

II. Related Work
In an MEC environment, computing offloading is es-

sential as it aims to reduce the latency, save bandwidth,
and improve resource utilization. There is a lot of existing
work  on  computing  offloading  [5]–[7].  Liu et  al.  studied
the joint task offloading and resource allocation problem
in  device-edge-cloud  collaborative  framework  for  minim-
izing the task handling latency [5]. They proposed parti-
tioning tasks  into  subtasks  and  allocating  them propor-
tionally to  device,  edge,  and  cloud,  obtaining  the  opti-
mal  tasks  offloading  and  resource  allocation  policy  by
Lagrangian  dual  method.  Huang et  al. proposed  a  com-
putation offloading and resource allocation (CORA) algo-
rithm based on a deep reinforcement learning method for
obtaining the optimal offloading scheme with the objective
of  minimizing the cost  of  processing tasks  in a dynamic
network  environment  [6].  Chen et  al.  presented  a  game
model  among  terminal  devices  named  quality  of  service
(QoS)-aware computation offloading (QCO) game for ob-
taining  the  Nash  equilibrium  offloading  strategy  with
minimizing  the  total  QoS  cost  for  multiple  IoT  devices
[7].  However,  most  of  the  computation  offloading  works
reckon without the failure of edge equipment during task
offloading transmission  in  harsh  environments.  Current-
ly, proactive fault-tolerant techniques are widely used in
distributed  systems  and  clouds.  For  example,  Liu et  al.
proposed a proactive co-ordinated fault tolerance method
that is capable of predicting physical machine failure and

conducting  a  particle  swarm-based optimization  for  de-
ciding fault compensation times [8]. Rawat et al. proposed
a  threshold-based  adaptive  fault  tolerance  approach.  It
consists  of  a  stochastic  failure  predictor  for  predicting
faulty virtual machines (VMs) and an adaptive manager
for deciding recovery schemes [9].  Ray et al.  proposed a
preference-based fault management algorithm for predict-
ing faulty VMs and employed an integer linear program-
ming  model  for  deciding  VM  reallocation  schemes  for
fault tolerance and maximizing system profit [10].

Recently, machine learning and deep learning meth-
ods and models have shown high potency in dealing with
fault-tolerant optimization problems. For instance, Zhang
et  al.  proposed  an  online  failure  detection  approach  by
using a systematic parameter-search model built  upon a
supporting  vector  machine.  In  addition,  it  leverages  a
prediction  algorithm  that  can  be  updated  round-by-
round with dynamic feedback [11]. Hu et al. provided an
unsupervised  fault  recognition  model  by  using  a  deep
adaptive  fuzzy  clustering  framework  [12].  It  integrates
stacked sparse autoencoder into adaptive weighted Gath-
Geva clustering for detecting faults. He et al. presented a
topology-ware multivariate  time series  anomaly detector
(TopoMAD)  for  detecting  anomalies  in  clouds.  The  de-
tector leverages a long short-term memory (LSTM) model
for judging system status [13]. Tuli et al. proposed a pre-
emptive migration prediction model. It utilizes a genera-
tive adversarial  network  (GAN)  for  detecting  node  fail-
ures in MEC caused by overload [14]. 

III. System Models
 

1. System model

E = {e1,
e2, . . .} B = {b1, b2, . . .}

U = {u1, u2, . . .} eh
hth eh ∈ E

Rh

The MEC environment is illustrated in Figure 1. It
comprises  local  edge  infrastructure  (LEI)  with  a  set  of
heterogeneous edge nodes and a set of  mobile  users.  An
environment  consists  of m edge  nodes,  i.e., 

,  denotes  the  collection  of  edge
brokers, and  denotes the set of user. 
denotes the  edge node and . Each edge node
has its own coverage , and each LEI has its own edge
broker  responsible  for  sensing  the  status  of  contacting
edge nodes. We consider that all edge nodes can commu-
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Figure 1  Mobile edge computing environment.
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nicate with each other by using an edge broker for inter-
connection. An  edge  broker  can  obtain  resource  utiliza-
tion indicators for all edge nodes and is capable of sens-
ing the  status,  i.e.,  CPU  usage,  RAM  usage,  disk  re-
source,  network  bandwidth,  and  failure  records,  of  all
edge  nodes  in  the  LEI  group [15].  The  parameters  used
in this paper are listed in Table 1.
 
 

Table 1  The notaion of term

Notation Description

k The length of sliding window

u The features of edge nodes

n The number of active tasks
ch Real-time bandwidth of the edge node
eh hthThe  edge node in an enumeration of E

bg gthThe  edge broker in an enumeration of B
yt Fault label by prediction
ft Fault score by prediction

ati ith AtThe  task in 

bti atiThe amount of data of task 

dti atiThe number of calculation instructions of task 
ux
j jthThe longitude of the  mobile user

uy
j jthThe latitude of the  mobile user

exh hthThe longitude of the  edge node

eyh hthThe latitude of the  edge node

E E = {e1, e2, . . .}The set of edge nodes, 

B B = {b1, b2, . . .}The set of edge brokers, 

U U = {u1, u2, . . .}The set of edge devices, 

It tth t ∈ (0, T )The  interval time in simulation time T, and 

At ItThe set of active tasks at the interval 

Ct lt−1The set of completed tasks at the interval 
Nt The set of new tasks

Ot It−1The remaining tasks at interval 
Mt The set of migratable tasks at interval time t

St Scheduling decision at interval time t

Gt Undirected topology graph of environment

Wt Time-series window
Rh ehThe coverage of edge node 
M∗

t Migration decision at interval time t

Et
j uj ItThe set of edge nodes for user  at 

Wt+1 It+1The time-series window at interval 

W̌t+1 It+1The reconstruction window at interval 
  

2. Workload model
The  computing  and  bandwidth  requirements  for

tasks vary over time due to changing user demands and
mobility IoT  devices.  We  thus  assume  that  task  execu-
tion  timeline  can  be  divided  into  fixed-sized  scheduling

It tth
s(I0) = 0

I0 s(It) = s(It−1) +∆

At = {at0, at1,
. . . , atn}

It n = |At|
uj Et

j

dist(uj , eh) < Rh dist(uj , eh)

uj eh
λt,up
i λt,do

i

λt,ex
i λt,mi

hv

eh ev

intervals [16], where  denotes the  scheduling inter-
val (t ranging from 0 to T),  denotes the start-
ing  time  of ,  and ,  where Δ indi-
cates scheduling intervals of equal durations. 

 represents  active  tasks  being  performed  on  the
edge  nodes  in  each  scheduling  interval  and .
Mobile device  will select an edge node from  for of-
floading  and ,  where  de-
notes the distance between  and . The delay is  de-
cided by the uplink delay , the download delay ,
the  executed  delay ,  and  the  migration  delay 
from edge node  to edge node  [17].

 

delayti(eh) = λt,up
i + λt,do

i + λt,ex
i + λt,mi

h,v

=
bti

chηhi
+ ξ +

dti
fh

+ ϕdist(eh, ev) (1)

ch ηhi
ξ

fh eh
dti ati

ϕ

uj(t) = (ux
j , u

y
j )

eh
uj

where  is  the  average  bandwidth,  is  a  parameter
that depends on distance,  is a constant value, and the
value is 0.1 in [18],  is average computing power of ,

 is  the  number  of  calculation  instructions  of  task ,
and  is  the  distance  coefficient  and  the  value  is  0.01.

 denotes  the  user  movement  trajectory
and the distance between the edge node  and the user

 is
 

dist(uj , eh) =
√
(ux

j − exh)
2 + (uy

j − eyh)
2 (2)

ux
j uy

j

uj exh eyh
eh Ct

It
Ot = At−1 \ Ct Nt

It
Mt ⊆ Ot

At =

Ot ∪Nt Gt

St

Nt Ot

It

where  and  represent the longtitude and latitude of
user , respectively,  and  represent the longtitude
and latitude of edge node , respectively.  is the set
of completed tasks before . Hence, the set of tasks for
the next interval can be expressed as . 
represents  the  set  of  newly  arrived  tasks  in .  Let

 be the set of migratable tasks due to the edge
node  failure.  Therefore,  the  set  of  active  tasks  is  the
union  of Ot and Nt at  scheduling  interval It,  i.e., 

.  denotes undirected topology graph of MEC
environment. Here, we consider only individual tasks and
each task has an associated service level objectives (SLO)
deadline. Apart from this,  denotes the scheduling de-
cisions for new tasks  and active tasks  at the start
of the interval . 

3. Fault model
There are  multiple  fault  types  in  an MEC environ-

ment, i.e.,  hardware  failure,  software  failure,  and  re-
source overflow, all of which lead to task failures and bad
user-perceived service quality [19]. In our work, we con-
sider four fault types in an MEC environment, including
CPU overload, RAM contention, Disk attack, and DDoS
attack. The  fault  data  for  each  edge  server  can  be  col-
lected by using fault injection model [20]. Then the fail-
ure  of  edge  server  is  simulated  through  discrete  events
with random fault injection. 
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4. Problem formulation

Lt

It Statet
Ot Nt

Actiont
{Ei} ati At

In  this  work,  our  goal  is  to  prevent  task  failure
caused by the  failure  of  edge  node  through a  predictive
method. Due to the fact that edge brokers manage both
the  resource  and schedule  tasks  in  LEI,  the  objective  is
thus  to  optimize  the  performance  of  the  scheduler  with
proactive fault-tolerance implemented.  The capability of
scheduler in each scheduling interval  is L and  is  the
loss  of  the  interval .  The  state  is , residual  ac-
tive  tasks, ,  and  new  tasks  are .  The  action  is

,  which  refers  to  selecting  the  appropriate  edge
node  for task  in .

Actiont = {eh ∈ E for task ati|ati ∈Mt ∪Nt}

Mt Nt

Thus, ,
which  indicates  the  preemptive  migration  decision  for
tasks in  and scheduling decision for tasks in . The
problem can be formulated as

 

min
S

T∑
t

Lt

Lt = α×AECt + φ×ARTt + δ ×AMTt + η × SLAVt

s.t. a) ∀t, Actiont = S(Statet)
b) ∀t ∀ati ∈Mt ∪Nt, {Ei} ← Actiont(ati)

(3)

≥ 0

α+ φ+ δ + η = 1 Lt

Lt AECt ARTt AMTt

SLAV(ati) It AECt

It ARTt

Ct AMTt

At

SLAV(ati)

where S is  scheduler  model, α, φ, δ, and η ,  and
.  In  order  to  optimize ,  we consider

 as a convex combination of , , , and
 for  interval .  is  the  average  energy

consumption for interval  in (4).  is the average
response time for tasks in  in (5).  is the aver-
age  migration  time  for  active  tasks  in  in  (6).  And

 is the  average  count  of  optimal  online  deter-
ministic  algorithms  and  adaptive  heuristics  for  energy
and performance efficient dynamic consolidation of virtu-
al  machines  in  cloud  data  centers  (SLA)  violations  for
completed tasks [21] in (7).

 

AECt =

∑
eh∈E

ˆ s(It+1)

z=s(It)

Peh(z)dz

n×
∑

eh∈E
Pmax
eh

(zh+1 − zh)
(4)

 

ARTt =

∑
at
i∈Ct+1

R(ati)

|Ct+1|maxtmaxat
i∈Ct

R(ati)
(5)

 

AMTt =

∑
at
i∈At

M(ati)

n×maxtmaxat
i∈Ct

R(ati)
(6)

 

SLAVt =

∑
at
i∈Ct+1

SLA(ati)

|Ct+1|
(7)

Peh(t) eh
Pmax
eh

eh R(ati)

ati M(ati)

ati SLA(ati)
ati

where  is the power function of edge node  at t
and  the  maximum possible  power  of .  is
the response time function of  task ,  is the mi-
gration time function of task , and  is the SLA
for tasks  [21]. 

IV. Proposed Fault-Tolerant Method

Gt Wt St

In  this  section,  we  present  the  generative  optimal
network  (GON)-based  fault  prediction  model  and  the
DDPG one, and the proposed fault-tolerant (DFGP) one
shown in Figure 2. Here, GON takes the graph topology

,  time  series  window ,  and  task  scheduling  as
the inputs for being aware of MEC status and predicting
future faults, and DDPG yields migration schedules. 

1. Generative optimization networks

{x0, x1, . . . , xt}
xt+1

GON is a kind of  unsupervised model  [22].  It  takes
multivariate  time-series  of  states  as in-
puts  and  aims  to  predict  the  future  state  of .  For
the  replication  padding  mechanism  [23],  we  consider  a
sliding window of length k for capturing:

 

Wt = {xt−k+1, xt−k+2, . . . , xt} (8)

 

Workload

DDPG
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Figure 2  The DFGP model.
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k = 3 Gt

St yt
ft

Wt+1 W̌t+1

ft

Wt+1 W̌t+1

Figure  3 shows  an  example  of  a  window  with  size
.  GON  takes  graph  topology  and the  schedul-

ing  decision  in Figure  2 as  inputs  as  well.  repre-
sents  the  predicting  fault  label,  is  the  fault  score,

 is  the  next  window,  and  is  the  predicted
reconstruction of the next window. The fault score  is
obtained through  computing  reconstruction  error  be-
tween the true window  and its reconstruction :

 

ft = ||Wt+1 − W̌t+1|| (9)
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k = 3Figure 3  The example of sliding window when .
 

D(·; θ)

D(Gt,Wt,St; θ)

Z∗
t Zt

D(Gt, Z
∗
t ,St; θ)

Figure 2 shows the GON framework. Unlike GAN [24],
it incorporates only one neural network as discriminator
model , which is a differentiable multilayer percep-
tron  with  parameters θ.  It  includes  three  steps,  namely
training  with  real  samples ,  generating
fake samples  with through a random noise sample ,
and  training  model  with  fake  samples.
The discriminator aims at both generating fake samples,
as close to the real datas as possible, and identifying fake
samples  as  much  as  possible.  Equations  (10)  and  (12)
train  real  samples  and  fake  ones  with  the  cross-entropy
loss by descending the stochastic gradient, and (11) gen-
erates fake samples by using random noise samples. Here,
γ denotes a step parameter.

 

−∇θ log(D(Gt,Wt,St; θ)) (10)
 

Zt ← Zt + γ∇Zt
log(D(Gt, Zt,St; θ)) (11)

 

−∇θ log(1−D(Gt, Z
∗
t ,St; θ)) (12)

W̌t+1

St

n×m
St

Wt

n+m u× k
Gt

Equation (12) implements an AdaHessian optimizer
[25]  for  improving  convergence  speed.  Discriminator D
captures the temporal trends in the time-series data and
efficiently  discriminates  of  the  next  window.  In
this work, the scheduling decision  is encoded as one-
hot  matrix  of  size .  The  neural  network  operates
on  as a batch of n vectors, each of which is with a di-
mension  of m,  and  is  operated  as  a  batch  with  the
size  and  tensors  with  the  size  of . In  addi-
tion,  is  obtained by conducting  a  graph convolution
network  [26]  for  capturing  the  inter-edge nodes  depen-
dencies. 

2. Deep deterministic policy learning
DDPG is a strategy gradient algorithm for continu-

ous action space, which combines strategy gradients and
a  deep  Q-learning network.  It  yields  a  deterministic  ac-
tion  rather  than  an  action  probability  distribution  [27]
and the algorithm is described as Algorithm 1.
Algorithm 1  Deep deterministic policy gradient algorithm

V E
t V Nt

t V Mt
tInput: , , , M, γ, τ, β.

ActiontOutput: .

Q(s, a|θQ)
µ(s|θµ) θQ θµ

 1: Randomly  initialize  the  critic  network  and
actor network  with weights  and ;

Q′ µ′

θQ
′
← θQ θµ

′
← θµ

 2: Initialize  target  network  and  with  weights
, ;

 3: Initialize replay memory buffer R;
episode = 1 4: for , M do

N 5: 　　Initialize  a random process  for  action explorati-
on;

s1 6: 　　Receive initial observation state ;
 7: 　　for t=1, T do

at = µ(st|θµ) +Nt 8: 　　　 Select action  according to the
current policy and exploration noise;

at rt
st+1

 9: 　　　 Execute  action  and  observe  reward  and
observe new state ;

(st, at, rt, st+1)10: 　　　 Store transition  in R;

(si, ai, ri, si+1)
11: 　　　 Sample  a  random  minibatch  of N transitions

 from R;
yi = ri + γQ′

(si+1, µ
′(si+1|θµ

′
)|θQ

′
)

12: 　　　 Calculate Q reference value, called, 
;

θQ

L = 1
N

∑N
i (yi −Q(si, ai|θQ))2

13: 　　　 Update  critic  network  parameter  by mini-
mizing the loss: ;

∇θµJ ≈ 1
N

∑N
i ∇aQ(s, a|θQ)|s=si,a=µ(si)

∇θµµ(s|θµ)|si

14: 　　　 Update  actor  network  using  the  sampled  policy
gradient: 

;

θQ
′
← τθQ + (1−

τ)θQ
′

θµ
′
← τθµ + (1− τ)θµ

′
15: 　　　 Update  the  target  networks: 

, ;
16: 　  end
17: end

Actiont ← µ(st|θµ)18: .

θµ

at = µ(st|θµ) st
s
′

t

a
′

t θµ
′

θQ

DDPG is essentially an actor-critic framework being
able to  select  an  action  value  for  a  given  state.  It  in-
cludes four networks, i.e., a policy network, a target poli-
cy network, an evaluation network, and a target evalua-
tion network. The policy network iteratively updates the
policy  network  with  parameters ,  selects  the  current
action  according to state  for interacting
with  the  environment,  and  generates  next  state ,  as
well  as the current reward r.  The target policy network
selects  the next action  and updates . The evalua-
tion network iteratively updates parameter . The tar-
get evaluation network calculates the target Q value. The
objective function of DDPG is in (13). The Q function is
expressed  as  the  expectation  of  the  reward value  of  the
selected action with the deterministic scheme μ in (14).

 

J(θµ) = Eθµ [r1 + γr2 + γ2r3 + · · · ] (13)
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Qµ(st, at) = E[r(st, at) + γQµ(st+1, µ(st+1))] (14)

Jβ(µ)

where γ is the discount factor. Equation (15) is used for
evaluating  the  quality  of  the  strategy  and  the  optimal
behavior strategy μ is defined as the strategy with maxi-
mal  in (16).

 

Jβ(µ) =

ˆ
S
ρβQµ(s, µ(s))ds = Es∼ρβ [Qµ(s, µ(s))] (15)

 

µ = argmaxµJ(µ) (16)

Qµ(s, µ(s))

Jβ(µ) Qµ(s, µ(s))

ρβ

where  represents the  expected  return  ob-
tained by selecting actions in s state with strategy μ. β is
an  Uhlenbeck-Orntein  random  process  (UO  process).

 is  the  expectation  of  when s is dis-
tributed hinge on .  The network update process is  as
follows:

 

policy network :

{
online : µ(s|θµ) gradient update θµ

target : µ′(s|θµ′
) soft update θµ

′

(17)
 

Q network :

{
online : Q(s, a|θQ) gradient update θQ

target : Q′(s, a|θQ) soft update θQ
′

(18)
 

soft update :
{

θµ
′ ← τθµ + (1− τ)θµ

′

θQ
′ ← τθQ + (1− τ)θQ

′ (19)

τ = 0.001where the soft update parameter .

St

S A
p(st+1|st, at) r(st, at)

Rt =
∑T

i=t γ
i−tr(si, ai)

γ ∈ [0, 1] S

St

It
V E
t

V E
t m× (u+ 1)

u = 4
V Nt
t |Nt| × u V Mt

t |Mt| × (u+ 1)

V Mt
t

It−1

st=(V E
t ,V Nt

t ,

V Mt
t ) st ∈ S A

st at

rt

In this  paper,  we model  the fault-tolerance decision
process of the scheduler  as a Markov decision process
with a state space , an action space , a transition dy-
namics ,  and a reward function of .
The return from state refers to the sum of discounted fu-
ture  reward  with  a  discounting
factor .  corresponds to the tasks in each LEI.
The  edge  broker  in  each  LEI  determines  the  scheduling
policy  based on the observed information. Specifical-
ly, at the beginning of the interval , the observation is
described  by  a  vectors  of  each  edge  node  which
refers  to  the  usage  of  its  CPU,  RAM,  bandwidth,  disk,
etc. The size of  is  and the last feature is
fault label of edge server, .  The size of the feature
vector  is . The size of  is 
and the last feature in  indicates the edge node in-
dex number selected by the previous interval  task.
A single state is thus described by a tuple 

,  where .  For  the  action  space , the  cur-
rent  state  of  the  system  is  observed  by  each  LEI  edge
broker  and  an  action ,  i.e.,  an  appropriate  edge
node  is  selected  for  each  task  for  each  time  interval t.
For  the  reward  function R,  the  behavior  of  each  LEI
edge broker is reward-driven, and thus the reward func-
tion  received by each agent after the time t step is (3). 

3. Proposed method
The pseudo codes of the proposed DFGP algorithm

is illustrated in Algorithm 2. Each edge broker executes

Actiont
Actiont

St Wt

Gt W̌t+1

Wt

V E
t

DFGP  algorithm  and  the  neural  network  is  fine-tuned
periodically  to  adapt  to  changing  circumstances  and
workload traits. We firstly training discriminator D with
dataset to obtain performance and initialize the network
parameters (line 1 and line 2). Then obtain the schedul-
ing  decision  through Algorithm  1 (lines  3–7).
The new task is assigned based on , and migrat-
ing  tasks  on  potentially  faulty  edge  nodes  (lines  8–11).
The  input  of  GON  for  unsupervised  fault  detection
method is multivariate time-series data, such as , ,

,  and . The simulation setting is in line 12, and
the  AdaHessian  optimizer  is  used  to  accelerate  the  rate
of convergence (line 13). The ReLU activation function is
used to avoid zero fault scoring (line 14). The fault score
was compared with the data generated by the peak val-
ue over threshold (POT) method [28] to obtain the fault
label  (line  15).  Compile  the  time  series  windows  of  all
brokers to  and label the failed edge nodes with fail-
ure labels. Finally, add the fault label to  (lines 16–18).
Then, use  optimization  goal  to  update  the  network  pa-
rameter  (line  19)  and  fine-tune  the  discriminator  model
with a new data point by loss Loss (line 20).

Algorithm 2  The DFGP fault-tolerance algorithm
Inputs:  The  number  of  scheduling  intervals N,  set  of  edge

nodes E;
M∗

tOutput: Migration decision ;

D(.; θ) 1: Trained GON model  with dataset;
 2: Initialize Algorithm 1 parameters;
 3: for interval index t to T do
 4: 　　for each broker do

Statet 5: 　　　 Send  to Algorithm 1;
Actiont ← Statet 6: 　　　    output of Algorithm 1 for ;

Actiont
 7: 　　　 Allocate new tasks and migration existing tasks

based on ;
M∗

t = (ej , eh) 8: 　　　 Task migration is represented by ;
ej ∈ LEI1 eh ∈ LEI2 9: 　　　 if  and  then

ej eh
LEI2

10: 　　　　Migrate tasks on edge node  to edge node 
in ;

11: 　　　 end if
St ← Actiont12: 　　　 ;
Wt+1 ← Simulation(Wt, St)

It

13: 　　　 ; //Simulate  execu-
tion tasks in scheduling interval 
W̌t+1 ← Adahessian(D(Gt,Wt, St; θ))14: 　　　  ;

ft = ||ReLU(Wt+1 − W̌t+1)||15: 　　　  ;
yt ft ≥ POT(Wt)16: 　　　   = 1( ); //Fault label

Wt17: 　　　 Compile time-series windows of all brokers as ;
⊆ yt = 118: 　　　 Faulty nodes FE  E that have ;
yt V E

t19: 　　　 Adding fault label  in ;

Loss = D(Gt,Wt+1, St; θ) (1−D(Gt, W̌t+1,
St))

20: 　　　 log  + log
;

D(.; θ) Loss21: 　　　 Fine-tune  using  and Adam.
22: 　　end for
23: end for

Since the time complexity of DFGP algorithm is re-
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O(K1)
K1

O(MT)

O(T2 × (N +N2)) T2

O(K1 +MT+
(T2 × (N +N2)))

O(K1 +MT+ T2N
2)

lated to  GON model  and  DDPG algorithm model,  sup-
pose that the time complexity of GON model is ,
and  depends on the number of nodes of input layer,
the number of hidden layers, the number of output layer
nodes, and the number of training iterations in the neu-
ral network model. Moreover, the number of samples and
the  number  of  neural  network  layers  are  much  smaller
than  the  number  of  training  turns  and  steps,  the  time
complexity  of  DDPG algorithm  can  be  approximatively
expressed  as .  Since  the  time complexity  of  task
simulation execution is constant and negligible, the time
complexity of Adahessian algorithm is determined by the
computational gradient  and  the  complexity  of  the  Hes-
sian  matrix,  and  the  computational  complexity  can  be
expressed as , where  is the number
of  iterations  and N is  the  number  of  model  parameters.
Therefore,  the  total  time  complexity  is 

, and the simplification is approximate-
ly .
 

V. Performance Evaluation
 

1. Experimental settings
In  this  section,  we  employ  the  Shanghai  Telecom’s

dataset [29], [30] for testing and validating our proposed
method. The dataset contains geographic locations of 7000
edge servers, resource request times to those servers, and
mobile  trajectories  of  requesters  as  shown  in Figure  4.
The selected edge nodes at different times are shown in
Figure  5.  Selected  taxi  trajectories  are  marked  red  and
edge nodes are marked blue. For the LEI groups, we di-
vided the edge servers contained in Telecom dataset into
15 LEI groups according to the 15 districts in Shanghai,
as shown in Figure 6.
 
 

Figure 4  The dataset of Shanghai Telecom.
 

In addition, we use the fog time series anomaly de-
tection  (FTSAD) datasets  [22],  as  shown in Table  2.  It
maintains fault  records  of  CPU  overloads,  RAM  con-
tentions, Disk attacks, and DDoS attacks. The detail ex-
perimental parameters are shown in Table 3. We use the
BWGD  workload  dataset  [31]  as  well,  which  maintains

workload records of 1750 services. We compare the pro-
posed method against PBFM [10],  IOTEF [32],  TBAFT
[9], TopoMAD [13], StepGAN [33], and DRAGON [34].
 
 

Table 2  Dataset statistics

Dataset Train Test Dimension Anomalies (%)

FTSAD-1 600 5000 1 12.88

FTSAD-25 574 1700 25 32.23

FTSAD-55 2158 2264 55 13.69

 
 

Table 3  Experiment parameters

Description Value

Learning rate 0.004

Weight decay 0.0005

The number of neurons in
feed-forward networks 128

Optimizer Adam

POT coefficient 0.004

POT low quantile 0.07

Window size k 15

Minibatch size 10

Scheduling interval Δ 0.0001

ϕ 0.01

ξ 0.1

α, φ, δ, η 0.25, 0.25, 0.25, 0.25
 

 

Figure 5  User trajectories and selected edge nodes.
 

Figure 6  The fifteen districts of Shanghai.
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2. Empirical results
In our  experiment,  we  first  compare  our  GON pre-

diction  model  with  other  anomaly  detection  methods
such  as  MAD-GAN  [35],  SlimGAN  [36],  USAD  [37],
CAE_M  [38],  and  LSTM_AD  [39] method,  upon  FS-
TAD datasets.

Figure  7 shows  how  the  accuracy  and  effectiveness
of  the  classification  of  GON  improve  with  rounds  of
training,  where  the y-axis  indicates  edge  nodes  and x-
axis intervals, i.e., the recovery strategy anomaly scores.

Figure  8 demonstrates  the  results  of  precision  and
F1  scores  for  different  dimension  anomaly  time  series
datasets. On average, the precision of the GON is 0.993
and F1 is 0.881. GON outperforms its peers in terms of
precision and F1, as well as training times.

Figure 9 shows the comparison between DFGP algo-
rithm and other comparison algorithms in terms of task
migration  number.  The  scheduling  interval  is  100.  We
can see that the DFGP algorithm on average shows 17.2%,
8.2%, 8.9%, and 17.2% increases than DRAGON, IoTEF,
PBFM, and StepGAN, respectively, while 61.4% and 78%

decreased than TopoMAD and TBAFT methods, respec-
tively.  This  is  because  different  fault  prediction  models
calculate the abnormal scoring criteria and the threshold
of  abnormal  selection is  different.  DFGP algorithm uses
POT method to determine the threshold. From the per-
spective  of  task  migration  number,  DFGP shows  better
stability and load-balance than other as well.
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Figure 8  The F1 value and precision.
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Figure 9  The number of workload migration.
 

Figure 10 demonstrates the averaged migration times
of  different  approaches.  It  can be  seen that  the  average
migration time of DFGP is 82.1%, 76.6%, 62.4%, 73.4%,
91.7%, and 94.5% lower than its peers, respectively. This

is because the DFGP method can quickly detect the fail-
ure or  interruption  of  edge  nodes  and immediately  trig-
ger  the  task  migration  process,  thus  reducing  migration
time.  This  shows  that  DFGP  fault-tolerant method  ex-
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Figure 7  Fault prediction with ground truth labels.
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hibits better stability than its peers as well.
Figure  11(a)  illustrates  the  averaged  response  time

of different fault-tolerant methods. DFGP is 4.0%, 22.0%,
13.1% and 9.6% decreases than DRAGON, PBFM, Step-
GAN, and TopoMAD, respectively, while 14.2% and 2.5%
increases than IoTEF and TBAFT, respectively. As indi-
cated  in Figure  11(b),  DFGP  shows  2.0%, 7.0%,  3.3%,
4.0%,  2.2%,  and  0.2%  decreases  in  the  scheduling time
than its peers, respectively. As indicated in Figure 11(c),
DFGP shows  13.2%,  6.6%,  5.2%,  6.2%,  1.5%,  and 1.4%
decreases  of  the  migration  time  than  its  peers.  And
Figure  11(d)  indicates  that  DFGP  shows  9.5%,  4.8%,
10.5%, 6.9%,  5.4%,  and  3.0%  decreases  of  SLA  viola-

tions than its peers.
 

VI. Conclusion
In this paper, we develop a novel deep policy gradient-

based  fault  tolerance  approach  for  enforcing  fault-toler-
ance of mobile services in mobile edge computing (MEC).
It synthesizes a generative optimization network (GON)
model  for  predicting and optimizing the task scheduling
of edge devices and a deep deterministic policy gradient
(DDPG) model  for  yielding  preemptive  migration  deci-
sions. We conducted evaluation experiments on the real-
workd data set and empirical results show that the pro-
posed DFGP method is more effective in fault detection
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Figure 10  Average migration time.
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Figure 11  Comparison of QoS parameters of DFGP against baselines.
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and guaranteeing quality of service (QoS) than its peers,
in  terms  of  multiple  metrics.  In  the  future,  we  plan  to
use  decentralized  method for  task  offloading  problem in
end-edge-cloud system [40]. 
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