

Special Focus on Multi-Dimensional QoS Provision of Intelligent Edge Computing for IoT
RESEARCH ARTICLE

A Deep Deterministic Policy Gradient-Based
Method for Enforcing Service Fault-Tolerance
in MEC

Tingyan LONG1, Peng CHEN2, Yunni XIA1, Yong MA3, Xiaoning SUN4, Jiale ZHAO1, and
Yifei LYU1

1. College of Computer Science, Chongqing University, Chongqing 400044, China
2. School of Computer and Software Engineering, Xihua University, Chengdu 610039, China
3. School of Computer and Information Engineering, Jiangxi Normal University, Nanchang 330022, China
4. School of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China

Corresponding author: Yunni XIA, Email: xiayunni@hotmail.com
Manuscript Received March 30, 2023; Accepted December 12, 2023
Copyright © 2024 Chinese Institute of Electronics

Abstract — Mobile edge computing (MEC) provides edge services to users in a distributed and on-demand way.
Due to the heterogeneity of edge applications, deploying latency and resource-intensive applications on resource-
constrained devices is a key challenge for service providers. This is especially true when underlying edge infrastruc-
tures are fault and error-prone. In this paper, we propose a fault tolerance approach named DFGP, for enforcing
mobile service fault-tolerance in MEC. It synthesizes a generative optimization network (GON) model for predicting
resource failure and a deep deterministic policy gradient (DDPG) model for yielding preemptive migration decisions.
We show through extensive simulation experiments that DFGP is more effective in fault detection and guaranteeing
quality of service, in terms of fault detection accuracy, migration efficiency, task migration time, task scheduling time,
and energy consumption than other existing methods.
Keywords — Mobile edge computing, Service, Generative optimization network, Fault tolerance, Deep deter-
ministic policy gradient.
Citation — Tingyan LONG, Peng CHEN, Yunni XIA, et al., “A Deep Deterministic Policy Gradient-Based
Method for Enforcing Service Fault-Tolerance in MEC,” Chinese Journal of Electronics, vol. 33, no. 4, pp. 899–909,
2024. doi: 10.23919/cje.2023.00.105.

I. Introduction
Mobile edge computing (MEC) is a proximity-based

paradigm with many benefits, such as low latency, effi-
cient communication, and high system responsiveness [1],
[2]. Recently, large-scale federated edge architecture de-
ployments have been achieved by leveraging multiple in-
dependent edge computing providers, enabling seamless
interconnection of multiple edge devices in a federated
setting [3]. In such an environment, edge nodes are with
limited power sources and can be deployed in a compli-
cated and volatile environment that may cause failures
or faults due to network faults, unexpected device break-
downs, or process faults. Faulty nodes may cause inaccu-

rate sensing outcomes, erroneous data processing, and
incorrect data communications. It is thus a challenging
task to enforce fault tolerance because of the essential
restrictions of MEC, such as unreliable connections, ran-
dom mobility, small-bandwidth for communication, re-
stricted power, and fixed storage. Luckily, techniques of
proactive fault-tolerant can be highly suited for those
cases, where it prevents edge node failures from running
applications by preemptively migrating tasks out before
occurrences of faults [4].

However, it remains a great challenge to enforce
high-quality fault-tolerance of MEC applications. In an
MEC environment, MEC servers manage data transmis-

Associate Editor: Prof. Jiwei HUANG, China University of Petroleum, Beijing.

Chinese Journal of Electronics
vol. 33, no. 4, pp. 899–909, July 2024
https://doi.org/10.23919/cje.2023.00.105

sion and broadcast to neighboring wireless networks. For
enforcing fault tolerance, tasks keep being moved out
and migrated among MEC terminals connected via an
edge network. The instability of wireless network can thus
strongly affect the efficacy of fault-tolerant activities.
Moreover, fault tolerance itself could bring in extra sys-
tem overhead, which usually refers to resource required
for fault compensation and cost of building/running task
replicas. Such overhead should be taken into account and
properly optimized to avoid a high loss of user-perceived
service quality and system responsiveness. Fall into cate-
gories. The formers reallocate tasks in advance. In con-
trast, the latter aims to compensate.

In this paper, we propose a deep deterministic poli-
cy gradient (DDPG)-based method for enforcing mobile
service fault-tolerance in MEC. The proposed framework
is comprised of a predictor built upon a generation opti-
mization network model for predicting failures of edge
nodes and a preemptive migration decision maker built
with a DDPG for yielding high-quality schedules of fault
tolerance. The rest of the paper is organized as follows:
Related work is overviewed in Section II. Section III de-
scribes the system model and formulates the problem.
Section IV presents the DFGP fault-tolerant method
proposed. Section V shows and discusses simulation re-
sults. Conclusions and future research suggestions are
presented in Section VI.

II. Related Work
In an MEC environment, computing offloading is es-

sential as it aims to reduce the latency, save bandwidth,
and improve resource utilization. There is a lot of existing
work on computing offloading [5]–[7]. Liu et al. studied
the joint task offloading and resource allocation problem
in device-edge-cloud collaborative framework for minim-
izing the task handling latency [5]. They proposed parti-
tioning tasks into subtasks and allocating them propor-
tionally to device, edge, and cloud, obtaining the opti-
mal tasks offloading and resource allocation policy by
Lagrangian dual method. Huang et al. proposed a com-
putation offloading and resource allocation (CORA) algo-
rithm based on a deep reinforcement learning method for
obtaining the optimal offloading scheme with the objective
of minimizing the cost of processing tasks in a dynamic
network environment [6]. Chen et al. presented a game
model among terminal devices named quality of service
(QoS)-aware computation offloading (QCO) game for ob-
taining the Nash equilibrium offloading strategy with
minimizing the total QoS cost for multiple IoT devices
[7]. However, most of the computation offloading works
reckon without the failure of edge equipment during task
offloading transmission in harsh environments. Current-
ly, proactive fault-tolerant techniques are widely used in
distributed systems and clouds. For example, Liu et al.
proposed a proactive co-ordinated fault tolerance method
that is capable of predicting physical machine failure and

conducting a particle swarm-based optimization for de-
ciding fault compensation times [8]. Rawat et al. proposed
a threshold-based adaptive fault tolerance approach. It
consists of a stochastic failure predictor for predicting
faulty virtual machines (VMs) and an adaptive manager
for deciding recovery schemes [9]. Ray et al. proposed a
preference-based fault management algorithm for predict-
ing faulty VMs and employed an integer linear program-
ming model for deciding VM reallocation schemes for
fault tolerance and maximizing system profit [10].

Recently, machine learning and deep learning meth-
ods and models have shown high potency in dealing with
fault-tolerant optimization problems. For instance, Zhang
et al. proposed an online failure detection approach by
using a systematic parameter-search model built upon a
supporting vector machine. In addition, it leverages a
prediction algorithm that can be updated round-by-
round with dynamic feedback [11]. Hu et al. provided an
unsupervised fault recognition model by using a deep
adaptive fuzzy clustering framework [12]. It integrates
stacked sparse autoencoder into adaptive weighted Gath-
Geva clustering for detecting faults. He et al. presented a
topology-ware multivariate time series anomaly detector
(TopoMAD) for detecting anomalies in clouds. The de-
tector leverages a long short-term memory (LSTM) model
for judging system status [13]. Tuli et al. proposed a pre-
emptive migration prediction model. It utilizes a genera-
tive adversarial network (GAN) for detecting node fail-
ures in MEC caused by overload [14].

III. System Models

1. System model

E = {e1,
e2, . . .} B = {b1, b2, . . .}

U = {u1, u2, . . .} eh
hth eh ∈ E

Rh

The MEC environment is illustrated in Figure 1. It
comprises local edge infrastructure (LEI) with a set of
heterogeneous edge nodes and a set of mobile users. An
environment consists of m edge nodes, i.e.,

, denotes the collection of edge
brokers, and denotes the set of user.
denotes the edge node and . Each edge node
has its own coverage , and each LEI has its own edge
broker responsible for sensing the status of contacting
edge nodes. We consider that all edge nodes can commu-

Cloud

Edge broker Edge server

Edge device Wireless communication

Connection

LEI LEI LEI

Figure 1 Mobile edge computing environment.

 900 Chinese Journal of Electronics, vol. 33, no. 4

nicate with each other by using an edge broker for inter-
connection. An edge broker can obtain resource utiliza-
tion indicators for all edge nodes and is capable of sens-
ing the status, i.e., CPU usage, RAM usage, disk re-
source, network bandwidth, and failure records, of all
edge nodes in the LEI group [15]. The parameters used
in this paper are listed in Table 1.

Table 1 The notaion of term

Notation Description

k The length of sliding window

u The features of edge nodes

n The number of active tasks
ch Real-time bandwidth of the edge node
eh hthThe edge node in an enumeration of E

bg gthThe edge broker in an enumeration of B
yt Fault label by prediction
ft Fault score by prediction

ati ith AtThe task in

bti atiThe amount of data of task

dti atiThe number of calculation instructions of task
ux
j jthThe longitude of the mobile user

uy
j jthThe latitude of the mobile user

exh hthThe longitude of the edge node

eyh hthThe latitude of the edge node

E E = {e1, e2, . . .}The set of edge nodes,

B B = {b1, b2, . . .}The set of edge brokers,

U U = {u1, u2, . . .}The set of edge devices,

It tth t ∈ (0, T)The interval time in simulation time T, and

At ItThe set of active tasks at the interval

Ct lt−1The set of completed tasks at the interval
Nt The set of new tasks

Ot It−1The remaining tasks at interval
Mt The set of migratable tasks at interval time t

St Scheduling decision at interval time t

Gt Undirected topology graph of environment

Wt Time-series window
Rh ehThe coverage of edge node
M∗

t Migration decision at interval time t

Et
j uj ItThe set of edge nodes for user at

Wt+1 It+1The time-series window at interval

W̌t+1 It+1The reconstruction window at interval

2. Workload model
The computing and bandwidth requirements for

tasks vary over time due to changing user demands and
mobility IoT devices. We thus assume that task execu-
tion timeline can be divided into fixed-sized scheduling

It tth
s(I0) = 0

I0 s(It) = s(It−1) +∆

At = {at0, at1,
. . . , atn}

It n = |At|
uj Et

j

dist(uj , eh) < Rh dist(uj , eh)

uj eh
λt,up
i λt,do

i

λt,ex
i λt,mi

hv

eh ev

intervals [16], where denotes the scheduling inter-
val (t ranging from 0 to T), denotes the start-
ing time of , and , where Δ indi-
cates scheduling intervals of equal durations.

 represents active tasks being performed on the
edge nodes in each scheduling interval and .
Mobile device will select an edge node from for of-
floading and , where de-
notes the distance between and . The delay is de-
cided by the uplink delay , the download delay ,
the executed delay , and the migration delay
from edge node to edge node [17].

delayti(eh) = λt,up
i + λt,do

i + λt,ex
i + λt,mi

h,v

=
bti

chηhi
+ ξ +

dti
fh

+ ϕdist(eh, ev) (1)

ch ηhi
ξ

fh eh
dti ati

ϕ

uj(t) = (ux
j , u

y
j)

eh
uj

where is the average bandwidth, is a parameter
that depends on distance, is a constant value, and the
value is 0.1 in [18], is average computing power of ,

 is the number of calculation instructions of task ,
and is the distance coefficient and the value is 0.01.

 denotes the user movement trajectory
and the distance between the edge node and the user

 is

dist(uj , eh) =
√
(ux

j − exh)
2 + (uy

j − eyh)
2 (2)

ux
j uy

j

uj exh eyh
eh Ct

It
Ot = At−1 \ Ct Nt

It
Mt ⊆ Ot

At =

Ot ∪Nt Gt

St

Nt Ot

It

where and represent the longtitude and latitude of
user , respectively, and represent the longtitude
and latitude of edge node , respectively. is the set
of completed tasks before . Hence, the set of tasks for
the next interval can be expressed as .
represents the set of newly arrived tasks in . Let

 be the set of migratable tasks due to the edge
node failure. Therefore, the set of active tasks is the
union of Ot and Nt at scheduling interval It, i.e.,

. denotes undirected topology graph of MEC
environment. Here, we consider only individual tasks and
each task has an associated service level objectives (SLO)
deadline. Apart from this, denotes the scheduling de-
cisions for new tasks and active tasks at the start
of the interval .

3. Fault model
There are multiple fault types in an MEC environ-

ment, i.e., hardware failure, software failure, and re-
source overflow, all of which lead to task failures and bad
user-perceived service quality [19]. In our work, we con-
sider four fault types in an MEC environment, including
CPU overload, RAM contention, Disk attack, and DDoS
attack. The fault data for each edge server can be col-
lected by using fault injection model [20]. Then the fail-
ure of edge server is simulated through discrete events
with random fault injection.

A Deep Deterministic Policy Gradient-Based Method for Enforcing Service Fault-Tolerance in MEC 901

4. Problem formulation

Lt

It Statet
Ot Nt

Actiont
{Ei} ati At

In this work, our goal is to prevent task failure
caused by the failure of edge node through a predictive
method. Due to the fact that edge brokers manage both
the resource and schedule tasks in LEI, the objective is
thus to optimize the performance of the scheduler with
proactive fault-tolerance implemented. The capability of
scheduler in each scheduling interval is L and is the
loss of the interval . The state is , residual ac-
tive tasks, , and new tasks are . The action is

, which refers to selecting the appropriate edge
node for task in .

Actiont = {eh ∈ E for task ati|ati ∈Mt ∪Nt}

Mt Nt

Thus, ,
which indicates the preemptive migration decision for
tasks in and scheduling decision for tasks in . The
problem can be formulated as

min
S

T∑
t

Lt

Lt = α×AECt + φ×ARTt + δ ×AMTt + η × SLAVt

s.t. a) ∀t, Actiont = S(Statet)
b) ∀t ∀ati ∈Mt ∪Nt, {Ei} ← Actiont(ati)

(3)

≥ 0

α+ φ+ δ + η = 1 Lt

Lt AECt ARTt AMTt

SLAV(ati) It AECt

It ARTt

Ct AMTt

At

SLAV(ati)

where S is scheduler model, α, φ, δ, and η , and
. In order to optimize , we consider

 as a convex combination of , , , and
 for interval . is the average energy

consumption for interval in (4). is the average
response time for tasks in in (5). is the aver-
age migration time for active tasks in in (6). And

 is the average count of optimal online deter-
ministic algorithms and adaptive heuristics for energy
and performance efficient dynamic consolidation of virtu-
al machines in cloud data centers (SLA) violations for
completed tasks [21] in (7).

AECt =

∑
eh∈E

ˆ s(It+1)

z=s(It)

Peh(z)dz

n×
∑

eh∈E
Pmax
eh

(zh+1 − zh)
(4)

ARTt =

∑
at
i∈Ct+1

R(ati)

|Ct+1|maxtmaxat
i∈Ct

R(ati)
(5)

AMTt =

∑
at
i∈At

M(ati)

n×maxtmaxat
i∈Ct

R(ati)
(6)

SLAVt =

∑
at
i∈Ct+1

SLA(ati)

|Ct+1|
(7)

Peh(t) eh
Pmax
eh

eh R(ati)

ati M(ati)

ati SLA(ati)
ati

where is the power function of edge node at t
and the maximum possible power of . is
the response time function of task , is the mi-
gration time function of task , and is the SLA
for tasks [21].

IV. Proposed Fault-Tolerant Method

Gt Wt St

In this section, we present the generative optimal
network (GON)-based fault prediction model and the
DDPG one, and the proposed fault-tolerant (DFGP) one
shown in Figure 2. Here, GON takes the graph topology

, time series window , and task scheduling as
the inputs for being aware of MEC status and predicting
future faults, and DDPG yields migration schedules.

1. Generative optimization networks

{x0, x1, . . . , xt}
xt+1

GON is a kind of unsupervised model [22]. It takes
multivariate time-series of states as in-
puts and aims to predict the future state of . For
the replication padding mechanism [23], we consider a
sliding window of length k for capturing:

Wt = {xt−k+1, xt−k+2, . . . , xt} (8)

Workload

DDPG

Wt+1 W̌t+1ft

Wt Zt
Z*

t

Real

samples

Noise

samples

Generated

samples

Discriminator D

Policy network
parameter: θμ

Target policy network

paramenter: θμ′

Optimizer

Soft update

OU noise

Behaviour policy: β Optimizer

Target evaluation network
parameter: θQ′

Evaluation network
parameter: θQ

Sample

mini-batch

Actor Critic

Gradient w.r.t a
Update θQUpdate θμ

yi
Soft update

Statet

D(Wt) D(Zt) D(Z*
t)

Graph topology Gt

Time series window Wt

St

Actiont

Q gradient

Policy

gradient

w.r.t θμ
w.r.t θQ

N*(si, ai, ri, si+1)

Stochastic process

μ(st)

θμ′← θμ
a=μ(si)

a′=μ′(si+1)

θQ′← θQ

Experience replay

memory

Random samples strategy

EnvironmentGON

f 0
0 f 0

0f 1
0 f 1

0 f 0
0 f 1

0f p
0 f q

0f o
0

... {E0}

f 0
1 f 0

1

e0
1

f 1
1 f 1

1

e1
1

f 0
1 f 1

1

e1
|E|

f p
1 f q

1f o
1

...
...

...

...

...

...

...

...

... ...

...

...

...

...
...

... ...
... ...

{E1}

f 0
|E| f 0

|Nt|
f 1

|E| f 1
|Nt|

f 0
|Mt|

e0
|At|

e1
|At|

e|E|

f 1
|Mt|

f
p

|Nt|
f

q

|Mt|
f o

|E|
...

...

e0
2 e1

2
e2

|E|...

...

...

{E|Mt|
}

VE
t

Vt
Nt Vt

Mt

|At|

store (st, at, rt, st+1)

Actiont

Figure 2 The DFGP model.

 902 Chinese Journal of Electronics, vol. 33, no. 4

k = 3 Gt

St yt
ft

Wt+1 W̌t+1

ft

Wt+1 W̌t+1

Figure 3 shows an example of a window with size
. GON takes graph topology and the schedul-

ing decision in Figure 2 as inputs as well. repre-
sents the predicting fault label, is the fault score,

 is the next window, and is the predicted
reconstruction of the next window. The fault score is
obtained through computing reconstruction error be-
tween the true window and its reconstruction :

ft = ||Wt+1 − W̌t+1|| (9)

W0

W1

W2

W3

W4

W5

W6

W0

W1

W2

W3

W4

W5

W6

a
b
c
d
e
f

a a a

a a a

a a

a

b

b

b

c

c

c

d

d

d

e

e f

k = 3k = 3

One-

dimensional
Two-

dimensional

t1

t2

t3

t4

t5

t6

t1

t2

t3

t4

t5

t6

a1

b1

c1

d1

e1

f1

a1

b1

c1

d1

e1

f1

a2

b2

c2

d2

e2

f2

a2

a1 a2

a1 a2

a1 a2

a1 a2

a1 a2

a1 a2

b1 b2

a1 a2

a1 a2

b2

b1 b2

c2

c1 c2

c1 c2 d2

d1 d2

e2d1

e1

d2

e2 f2

k = 3Figure 3 The example of sliding window when .

D(·; θ)

D(Gt,Wt,St; θ)

Z∗
t Zt

D(Gt, Z
∗
t ,St; θ)

Figure 2 shows the GON framework. Unlike GAN [24],
it incorporates only one neural network as discriminator
model , which is a differentiable multilayer percep-
tron with parameters θ. It includes three steps, namely
training with real samples , generating
fake samples with through a random noise sample ,
and training model with fake samples.
The discriminator aims at both generating fake samples,
as close to the real datas as possible, and identifying fake
samples as much as possible. Equations (10) and (12)
train real samples and fake ones with the cross-entropy
loss by descending the stochastic gradient, and (11) gen-
erates fake samples by using random noise samples. Here,
γ denotes a step parameter.

−∇θ log(D(Gt,Wt,St; θ)) (10)

Zt ← Zt + γ∇Zt
log(D(Gt, Zt,St; θ)) (11)

−∇θ log(1−D(Gt, Z
∗
t ,St; θ)) (12)

W̌t+1

St

n×m
St

Wt

n+m u× k
Gt

Equation (12) implements an AdaHessian optimizer
[25] for improving convergence speed. Discriminator D
captures the temporal trends in the time-series data and
efficiently discriminates of the next window. In
this work, the scheduling decision is encoded as one-
hot matrix of size . The neural network operates
on as a batch of n vectors, each of which is with a di-
mension of m, and is operated as a batch with the
size and tensors with the size of . In addi-
tion, is obtained by conducting a graph convolution
network [26] for capturing the inter-edge nodes depen-
dencies.

2. Deep deterministic policy learning
DDPG is a strategy gradient algorithm for continu-

ous action space, which combines strategy gradients and
a deep Q-learning network. It yields a deterministic ac-
tion rather than an action probability distribution [27]
and the algorithm is described as Algorithm 1.
Algorithm 1 Deep deterministic policy gradient algorithm

V E
t V Nt

t V Mt
tInput: , , , M, γ, τ, β.

ActiontOutput: .

Q(s, a|θQ)
µ(s|θµ) θQ θµ

 1: Randomly initialize the critic network and
actor network with weights and ;

Q′ µ′

θQ
′
← θQ θµ

′
← θµ

 2: Initialize target network and with weights
, ;

 3: Initialize replay memory buffer R;
episode = 1 4: for , M do

N 5: 　　Initialize a random process for action explorati-
on;

s1 6: 　　Receive initial observation state ;
 7: 　　for t=1, T do

at = µ(st|θµ) +Nt 8: 　　　 Select action according to the
current policy and exploration noise;

at rt
st+1

 9: 　　　 Execute action and observe reward and
observe new state ;

(st, at, rt, st+1)10: 　　　 Store transition in R;

(si, ai, ri, si+1)
11: 　　　 Sample a random minibatch of N transitions

 from R;
yi = ri + γQ′

(si+1, µ
′(si+1|θµ

′
)|θQ

′
)

12: 　　　 Calculate Q reference value, called,
;

θQ

L = 1
N

∑N
i (yi −Q(si, ai|θQ))2

13: 　　　 Update critic network parameter by mini-
mizing the loss: ;

∇θµJ ≈ 1
N

∑N
i ∇aQ(s, a|θQ)|s=si,a=µ(si)

∇θµµ(s|θµ)|si

14: 　　　 Update actor network using the sampled policy
gradient:

;

θQ
′
← τθQ + (1−

τ)θQ
′

θµ
′
← τθµ + (1− τ)θµ

′
15: 　　　 Update the target networks:

, ;
16: 　 end
17: end

Actiont ← µ(st|θµ)18: .

θµ

at = µ(st|θµ) st
s
′

t

a
′

t θµ
′

θQ

DDPG is essentially an actor-critic framework being
able to select an action value for a given state. It in-
cludes four networks, i.e., a policy network, a target poli-
cy network, an evaluation network, and a target evalua-
tion network. The policy network iteratively updates the
policy network with parameters , selects the current
action according to state for interacting
with the environment, and generates next state , as
well as the current reward r. The target policy network
selects the next action and updates . The evalua-
tion network iteratively updates parameter . The tar-
get evaluation network calculates the target Q value. The
objective function of DDPG is in (13). The Q function is
expressed as the expectation of the reward value of the
selected action with the deterministic scheme μ in (14).

J(θµ) = Eθµ [r1 + γr2 + γ2r3 + · · ·] (13)

A Deep Deterministic Policy Gradient-Based Method for Enforcing Service Fault-Tolerance in MEC 903

Qµ(st, at) = E[r(st, at) + γQµ(st+1, µ(st+1))] (14)

Jβ(µ)

where γ is the discount factor. Equation (15) is used for
evaluating the quality of the strategy and the optimal
behavior strategy μ is defined as the strategy with maxi-
mal in (16).

Jβ(µ) =

ˆ
S
ρβQµ(s, µ(s))ds = Es∼ρβ [Qµ(s, µ(s))] (15)

µ = argmaxµJ(µ) (16)

Qµ(s, µ(s))

Jβ(µ) Qµ(s, µ(s))

ρβ

where represents the expected return ob-
tained by selecting actions in s state with strategy μ. β is
an Uhlenbeck-Orntein random process (UO process).

 is the expectation of when s is dis-
tributed hinge on . The network update process is as
follows:

policy network :

{
online : µ(s|θµ) gradient update θµ

target : µ′(s|θµ′
) soft update θµ

′

(17)

Q network :

{
online : Q(s, a|θQ) gradient update θQ

target : Q′(s, a|θQ) soft update θQ
′

(18)

soft update :
{

θµ
′ ← τθµ + (1− τ)θµ

′

θQ
′ ← τθQ + (1− τ)θQ

′ (19)

τ = 0.001where the soft update parameter .

St

S A
p(st+1|st, at) r(st, at)

Rt =
∑T

i=t γ
i−tr(si, ai)

γ ∈ [0, 1] S

St

It
V E
t

V E
t m× (u+ 1)

u = 4
V Nt
t |Nt| × u V Mt

t |Mt| × (u+ 1)

V Mt
t

It−1

st=(V E
t ,V Nt

t ,

V Mt
t) st ∈ S A

st at

rt

In this paper, we model the fault-tolerance decision
process of the scheduler as a Markov decision process
with a state space , an action space , a transition dy-
namics , and a reward function of .
The return from state refers to the sum of discounted fu-
ture reward with a discounting
factor . corresponds to the tasks in each LEI.
The edge broker in each LEI determines the scheduling
policy based on the observed information. Specifical-
ly, at the beginning of the interval , the observation is
described by a vectors of each edge node which
refers to the usage of its CPU, RAM, bandwidth, disk,
etc. The size of is and the last feature is
fault label of edge server, . The size of the feature
vector is . The size of is
and the last feature in indicates the edge node in-
dex number selected by the previous interval task.
A single state is thus described by a tuple

, where . For the action space , the cur-
rent state of the system is observed by each LEI edge
broker and an action , i.e., an appropriate edge
node is selected for each task for each time interval t.
For the reward function R, the behavior of each LEI
edge broker is reward-driven, and thus the reward func-
tion received by each agent after the time t step is (3).

3. Proposed method
The pseudo codes of the proposed DFGP algorithm

is illustrated in Algorithm 2. Each edge broker executes

Actiont
Actiont

St Wt

Gt W̌t+1

Wt

V E
t

DFGP algorithm and the neural network is fine-tuned
periodically to adapt to changing circumstances and
workload traits. We firstly training discriminator D with
dataset to obtain performance and initialize the network
parameters (line 1 and line 2). Then obtain the schedul-
ing decision through Algorithm 1 (lines 3–7).
The new task is assigned based on , and migrat-
ing tasks on potentially faulty edge nodes (lines 8–11).
The input of GON for unsupervised fault detection
method is multivariate time-series data, such as , ,

, and . The simulation setting is in line 12, and
the AdaHessian optimizer is used to accelerate the rate
of convergence (line 13). The ReLU activation function is
used to avoid zero fault scoring (line 14). The fault score
was compared with the data generated by the peak val-
ue over threshold (POT) method [28] to obtain the fault
label (line 15). Compile the time series windows of all
brokers to and label the failed edge nodes with fail-
ure labels. Finally, add the fault label to (lines 16–18).
Then, use optimization goal to update the network pa-
rameter (line 19) and fine-tune the discriminator model
with a new data point by loss Loss (line 20).

Algorithm 2 The DFGP fault-tolerance algorithm
Inputs: The number of scheduling intervals N, set of edge

nodes E;
M∗

tOutput: Migration decision ;

D(.; θ) 1: Trained GON model with dataset;
 2: Initialize Algorithm 1 parameters;
 3: for interval index t to T do
 4: 　　for each broker do

Statet 5: 　　　 Send to Algorithm 1;
Actiont ← Statet 6: 　　　 output of Algorithm 1 for ;

Actiont
 7: 　　　 Allocate new tasks and migration existing tasks

based on ;
M∗

t = (ej , eh) 8: 　　　 Task migration is represented by ;
ej ∈ LEI1 eh ∈ LEI2 9: 　　　 if and then

ej eh
LEI2

10: 　　　　Migrate tasks on edge node to edge node
in ;

11: 　　　 end if
St ← Actiont12: 　　　 ;
Wt+1 ← Simulation(Wt, St)

It

13: 　　　 ; //Simulate execu-
tion tasks in scheduling interval
W̌t+1 ← Adahessian(D(Gt,Wt, St; θ))14: 　　　 ;

ft = ||ReLU(Wt+1 − W̌t+1)||15: 　　　 ;
yt ft ≥ POT(Wt)16: 　　　 = 1(); //Fault label

Wt17: 　　　 Compile time-series windows of all brokers as ;
⊆ yt = 118: 　　　 Faulty nodes FE E that have ;
yt V E

t19: 　　　 Adding fault label in ;

Loss = D(Gt,Wt+1, St; θ) (1−D(Gt, W̌t+1,
St))

20: 　　　 log + log
;

D(.; θ) Loss21: 　　　 Fine-tune using and Adam.
22: 　　end for
23: end for

Since the time complexity of DFGP algorithm is re-

 904 Chinese Journal of Electronics, vol. 33, no. 4

O(K1)
K1

O(MT)

O(T2 × (N +N2)) T2

O(K1 +MT+
(T2 × (N +N2)))

O(K1 +MT+ T2N
2)

lated to GON model and DDPG algorithm model, sup-
pose that the time complexity of GON model is ,
and depends on the number of nodes of input layer,
the number of hidden layers, the number of output layer
nodes, and the number of training iterations in the neu-
ral network model. Moreover, the number of samples and
the number of neural network layers are much smaller
than the number of training turns and steps, the time
complexity of DDPG algorithm can be approximatively
expressed as . Since the time complexity of task
simulation execution is constant and negligible, the time
complexity of Adahessian algorithm is determined by the
computational gradient and the complexity of the Hes-
sian matrix, and the computational complexity can be
expressed as , where is the number
of iterations and N is the number of model parameters.
Therefore, the total time complexity is

, and the simplification is approximate-
ly .

V. Performance Evaluation

1. Experimental settings
In this section, we employ the Shanghai Telecom’s

dataset [29], [30] for testing and validating our proposed
method. The dataset contains geographic locations of 7000
edge servers, resource request times to those servers, and
mobile trajectories of requesters as shown in Figure 4.
The selected edge nodes at different times are shown in
Figure 5. Selected taxi trajectories are marked red and
edge nodes are marked blue. For the LEI groups, we di-
vided the edge servers contained in Telecom dataset into
15 LEI groups according to the 15 districts in Shanghai,
as shown in Figure 6.

Figure 4 The dataset of Shanghai Telecom.

In addition, we use the fog time series anomaly de-
tection (FTSAD) datasets [22], as shown in Table 2. It
maintains fault records of CPU overloads, RAM con-
tentions, Disk attacks, and DDoS attacks. The detail ex-
perimental parameters are shown in Table 3. We use the
BWGD workload dataset [31] as well, which maintains

workload records of 1750 services. We compare the pro-
posed method against PBFM [10], IOTEF [32], TBAFT
[9], TopoMAD [13], StepGAN [33], and DRAGON [34].

Table 2 Dataset statistics

Dataset Train Test Dimension Anomalies (%)

FTSAD-1 600 5000 1 12.88

FTSAD-25 574 1700 25 32.23

FTSAD-55 2158 2264 55 13.69

Table 3 Experiment parameters

Description Value

Learning rate 0.004

Weight decay 0.0005

The number of neurons in
feed-forward networks 128

Optimizer Adam

POT coefficient 0.004

POT low quantile 0.07

Window size k 15

Minibatch size 10

Scheduling interval Δ 0.0001

ϕ 0.01

ξ 0.1

α, φ, δ, η 0.25, 0.25, 0.25, 0.25

Figure 5 User trajectories and selected edge nodes.

Figure 6 The fifteen districts of Shanghai.

A Deep Deterministic Policy Gradient-Based Method for Enforcing Service Fault-Tolerance in MEC 905

2. Empirical results
In our experiment, we first compare our GON pre-

diction model with other anomaly detection methods
such as MAD-GAN [35], SlimGAN [36], USAD [37],
CAE_M [38], and LSTM_AD [39] method, upon FS-
TAD datasets.

Figure 7 shows how the accuracy and effectiveness
of the classification of GON improve with rounds of
training, where the y-axis indicates edge nodes and x-
axis intervals, i.e., the recovery strategy anomaly scores.

Figure 8 demonstrates the results of precision and
F1 scores for different dimension anomaly time series
datasets. On average, the precision of the GON is 0.993
and F1 is 0.881. GON outperforms its peers in terms of
precision and F1, as well as training times.

Figure 9 shows the comparison between DFGP algo-
rithm and other comparison algorithms in terms of task
migration number. The scheduling interval is 100. We
can see that the DFGP algorithm on average shows 17.2%,
8.2%, 8.9%, and 17.2% increases than DRAGON, IoTEF,
PBFM, and StepGAN, respectively, while 61.4% and 78%

decreased than TopoMAD and TBAFT methods, respec-
tively. This is because different fault prediction models
calculate the abnormal scoring criteria and the threshold
of abnormal selection is different. DFGP algorithm uses
POT method to determine the threshold. From the per-
spective of task migration number, DFGP shows better
stability and load-balance than other as well.

L
S

T
M

_
A

D

U
S

A
D

C
A

E
_
M

M
A

D
_
G

A
N

S
li

m
G

A
N

G
O

N

0

0.2

0.4

0.6

0.8

1.0

1.2

Precision

0

5

10

15

20

25

30

35

T
im

e
(s

)

F
1
 v

al
u
e

&
 P

re
ci

si
o
n

F
1
 v

al
u
e

&
 P

re
ci

si
o
n

F
1
 v

al
u
e

&
 P

re
ci

si
o
n

FTSAD_1

Training time
Test time

0

0.2

0.4

0.6

0.8

1.0

1.2
Training time
Test time

L
S

T
M

_
A

D

U
S

A
D

C
A

E
_
M

M
A

D
_
G

A
N

S
li

m
G

A
N

G
O

N

0

2

4

6

8

10

12

14

T
im

e
(s

)

FTASD_25

0

0.2

0.4

0.6

0.8

1.0

1.2
Training time
Test time

L
S

T
M

_
A

D

U
S

A
D

C
A

E
_
M

M
A

D
_
G

A
N

S
li

m
G

A
N

G
O

N

0

20

40

60

80

100

T
im

e
(s

)

FTASD_55

F1 F1 F1
Precision Precision

Figure 8 The F1 value and precision.

Th
e

nu
m

be
r o

f w
or

kl
oa

d
m

ig
ra

tio
n

Timestamp (s)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

2

4

6

8

10

12

14 DFGP
DRAGON
IoTEF
PBFM
StepGAN
TopoMAD
TBAFT

Figure 9 The number of workload migration.

Figure 10 demonstrates the averaged migration times
of different approaches. It can be seen that the average
migration time of DFGP is 82.1%, 76.6%, 62.4%, 73.4%,
91.7%, and 94.5% lower than its peers, respectively. This

is because the DFGP method can quickly detect the fail-
ure or interruption of edge nodes and immediately trig-
ger the task migration process, thus reducing migration
time. This shows that DFGP fault-tolerant method ex-

Timestamp (s)
0 50 100 150 200

0 50 100 150 200

Anomaly scores

1.0

0.5

0

1.0

0.5

0

G
ro

un
d

tru
th

Pr
ed

ic
tio

n

Figure 7 Fault prediction with ground truth labels.

 906 Chinese Journal of Electronics, vol. 33, no. 4

hibits better stability than its peers as well.
Figure 11(a) illustrates the averaged response time

of different fault-tolerant methods. DFGP is 4.0%, 22.0%,
13.1% and 9.6% decreases than DRAGON, PBFM, Step-
GAN, and TopoMAD, respectively, while 14.2% and 2.5%
increases than IoTEF and TBAFT, respectively. As indi-
cated in Figure 11(b), DFGP shows 2.0%, 7.0%, 3.3%,
4.0%, 2.2%, and 0.2% decreases in the scheduling time
than its peers, respectively. As indicated in Figure 11(c),
DFGP shows 13.2%, 6.6%, 5.2%, 6.2%, 1.5%, and 1.4%
decreases of the migration time than its peers. And
Figure 11(d) indicates that DFGP shows 9.5%, 4.8%,
10.5%, 6.9%, 5.4%, and 3.0% decreases of SLA viola-

tions than its peers.

VI. Conclusion
In this paper, we develop a novel deep policy gradient-

based fault tolerance approach for enforcing fault-toler-
ance of mobile services in mobile edge computing (MEC).
It synthesizes a generative optimization network (GON)
model for predicting and optimizing the task scheduling
of edge devices and a deep deterministic policy gradient
(DDPG) model for yielding preemptive migration deci-
sions. We conducted evaluation experiments on the real-
workd data set and empirical results show that the pro-
posed DFGP method is more effective in fault detection

Av
er

ag
e

m
ig

ra
tio

n
tim

e
(s

)

Timestamp (s)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0
1
2
3
4
5
6

9
8
7

DFGP
DRAGON
IoTEF
PBFM
StepGAN
TopoMAD
TBAFT

Figure 10 Average migration time.

D
FG

P

D
R
A

G
O

N

Io
TEF

PB
FM

Ste
pG

A
N

Top
oM

A
D

TB
A

FT
0

10

20

30

40

50

60

70

A
v
er

ag
e

re
sp

o
n
se

 t
im

e
(s

)

(a) Comparison of average response time

D
FG

P

D
R
A

G
O

N

Io
TEF

PB
FM

Ste
pG

A
N

Top
oM

A
D

TB
A

FT
5.8

5.9

6.0

6.1

6.2

6.3

6.4

6.5

6.6

S
ch

ed
u
li

n
g
 t

im
e

(s
)

(b) Comparison of scheduling time

D
FG

P

D
R
A

G
O

N

Io
TEF

PB
FM

Ste
pG

A
N

Top
oM

A
D

TB
A

FT
0

0.5

1.0

1.5

2.0

A
v
er

ag
e

m
ig

ra
ti

o
n
 e

n
er

g
y
 (

J)

×104

(c) Comparison of averaging migration energy

D
FG

P

D
R
A

G
O

N

Io
TEF

PB
FM

Ste
pG

A
N

Top
oM

A
D

TB
A

FT
3

4

5

S
L

O
 v

io
la

ti
o
n
 r

at
e

×10−1

(d) Comparison of SLO violation rate

Figure 11 Comparison of QoS parameters of DFGP against baselines.

A Deep Deterministic Policy Gradient-Based Method for Enforcing Service Fault-Tolerance in MEC 907

and guaranteeing quality of service (QoS) than its peers,
in terms of multiple metrics. In the future, we plan to
use decentralized method for task offloading problem in
end-edge-cloud system [40].

Acknowledgements
This work was supported by the National Key R&D

Program of China (Grant No. 2018YFB1403602), the
Chongqing Technological Innovation Foundations (Grant
Nos. cstc2019jscx-msxm0652 and cstc2019jscx-fxyd0385),
the Chongqing Key RD Project (Grant No. cstc2018jszx-
cyzdX0081), the Jiangxi Key RD Project (Grant No. 2018
1ACE50029), the Postgraduate Research and Innovation
Project of Chongqing (Grant No. CYB22064), the Gradu-
ate Research and Innovation Foundation of Chongging
(Grant. No. CYS22112), the Technological Program Organ-
ized by SGCC (Grant No. 52094020000U), and the Tech-
nology Innovation and Application Development Founda-
tion of Chongqing (Grant No. cstc2020jscx-gksbX0010).

References

 Y. Chen, J. Zhao, X. K. Zhou, et al., “A distributed game
theoretical approach for credibility-guaranteed multimedia
data offloading in MEC,” Information Sciences, vol. 644, ar-
ticle no. 119306, 2023.

[1]

 Y. Chen, J. Zhao, J. T. Hu, et al., “Distributed task offload-
ing and resource purchasing in NOMA-enabled mobile edge
computing: Hierarchical game theoretical approaches,” ACM
Transactions on Embedded Computing Systems, vol. 23, no.
1, article no. 2, 2024.

[2]

 X. F. Cao, G. M. Tang, D. K. Guo, et al., “Edge federation:
Towards an integrated service provisioning model,”
IEEE/ACM Transactions on Networking, vol. 28, no. 3, pp.
1116–1129, 2020.

[3]

 C. Engelmann, G. R. Vallee, T. Naughton, et al., “Proactive
fault tolerance using preemptive migration,” in Proceedings
of the 2009 17th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, Weimar,
Germany, pp. 252–257, 2009.

[4]

 F. Z. Liu, J. W. Huang, and X. B. Wang, “Joint task offload-
ing and resource allocation for device-edge-cloud collabora-
tion with subtask dependencies,” IEEE Transactions on
Cloud Computing, vol. 11, no. 3, pp. 3027–3039, 2023.

[5]

 J. W. Huang, J. Y. Wan, B. F. Lv, et al., “Joint computa-
tion offloading and resource allocation for edge-cloud collabo-
ration in internet of vehicles via deep reinforcement
learning,” IEEE Systems Journal, vol. 17, no. 2, pp.
2500–2511, 2023.

[6]

 Y. Chen, J. T. Hu, J. Zhao, et al., “QoS-aware computation
offloading in LEO satellite edge computing for IoT: A game-
theoretical approach,” Chinese Journal of Electronics, in
press, doi: 10.23919/cje.2022.00.412, 2023.

[7]

 J. L. Liu, S. G. Wang, A. Zhou, et al, “Using proactive fault-
tolerance approach to enhance cloud service reliability,”
IEEE Transactions on Cloud Computing, vol. 6, no. 4, pp.
1191–1202, 2018.

[8]

 A. Rawat, R. Sushil, A. Agarwal, et al., “A new adaptive
fault tolerant framework in the cloud,” IETE Journal of Re-
search, vol. 69, no. 5, pp. 2897–2909, 2023.

[9]

 B. K. Ray, A. Saha, S. Khatua, et al., “Proactive fault-toler-
ance technique to enhance reliability of cloud service in cloud
federation environment,” IEEE Transactions on Cloud Com-
puting, vol. 10, no. 2, pp. 957–971, 2022.

[10]

 P. Y. Zhang, S. Shu, and M. C. Zhou, “An online fault detec-
tion model and strategies based on SVM-grid in clouds,”
IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 2, pp.
445–456, 2018.

[11]

 X. F. Hu, Y. B. Li, L. Jia, et al., “A novel two-stage unsuper-[12]

vised fault recognition framework combining feature extrac-
tion and fuzzy clustering for collaborative AIoT,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 2, pp.
1291–1300, 2022.
 Z. L. He, P. F. Chen, X. Y. Li, et al., “A spatiotemporal deep
learning approach for unsupervised anomaly detection in
cloud systems,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 34, no. 4, pp. 1705–1719, 2023.

[13]

 S. Tuli, G. Casale, and N. R. Jennings, “PreGAN: Preemp-
tive migration prediction network for proactive fault-tolerant
edge computing, ” in Proceedings of 2022 IEEE Conference on
Computer Communications, London, United Kingdom, pp.
670–679, 2022.

[14]

 P. Dasgupta, R. C. Chen, S. Menon, et al., “Design and im-
plementation of the clouds distributed operating system,”
Computing Systems, vol. 3, no. 1, pp. 11–46, 1990.

[15]

 H. Gupta, A. V. Dastjerdi, S. K. Ghosh, et al., “IFogSim: A
toolkit for modeling and simulation of resource management
techniques in the internet of things, edge and fog computing
environments,” Software:Practice and Experience, vol. 47,
no. 9, pp. 1275–1296, 2017.

[16]

 A. Al-Shuwaili, O. Simeone, A. Bagheri, et al., “Joint
uplink/downlink optimization for backhaul-limited mobile
cloud computing with user scheduling,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 3,
no. 4, pp. 787–802, 2017.

[17]

 X. Chen, L. Jiao, W. Z. Li, et al., “Efficient multi-user com-
putation offloading for mobile-edge cloud computing,”
IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp.
2795–2808, 2016.

[18]

 D. Satria, D. Park, and M. Jo, “Recovery for overloaded mo-
bile edge computing,” Future Generation Computer Systems,
vol. 70, pp. 138–147, 2017.

[19]

 K. J. Ye, Y. Y. Liu, G. Y. Xu, et al., “Fault injection and de-
tection for artificial intelligence applications in container-
based clouds,” in Proceedings of the 11th International Con-
ference on Cloud Computing, Seattle, WA, USA, pp.
112–127, 2018.

[20]

 A. Beloglazov and R. Buyya, “Optimal online deterministic
algorithms and adaptive heuristics for energy and perfor-
mance efficient dynamic consolidation of virtual machines in
cloud data centers,” Concurrency and Computation: Prac-
tice and Experience, vol. 24, no. 13, pp. 1397–1420, 2012.

[21]

 S. Tuli, S. Tuli, G. Casale, et al., “Generative optimization
networks for memory efficient data generation,” arXiv
preprint, arXiv: 2110.02912, 2021.

[22]

 G. L. Liu, K. J. Shih, T. C. Wang, et al., “Partial convolu-
tion based padding,” arXiv preprint, arXiv: 1811.11718, 2018.

[23]

 P. Chen, H. Y. Liu, R. Y. Xin, et al., “Effectively detecting
operational anomalies in large-scale IoT data infrastructures
by using a GAN-based predictive model,” The Computer
Journal, vol. 65, no. 11, pp. 2909–2925, 2022.

[24]

 Z. W. Yao, A. Gholami, S. Shen, et al., “ADAHESSIAN: An
adaptive second order optimizer for machine learning,” in
Proceedings of the 35th AAAI Conference on Artificial In-
telligence, Virtual Event, pp. 10665–10673, 2021.

[25]

 S. Zhang, H. H. Tong, J. J. Xu, et al., “Graph convolutional
networks: A comprehensive review,” Computational Social
Networks, vol. 6, no. 1, article no. 11, 2019.

[26]

 D. Silver, G. Lever, N. Heess, et al., “Deterministic policy
gradient algorithms,” in Proceedings of the 31st Internatio-
nal Conference on Machine Learning, Beijing, China, pp. I-
387–I-395, 2014.

[27]

 A. Siffer, P. A. Fouque, A. Termier, et al., “Anomaly detec-
tion in streams with extreme value theory,” in Proceedings of
the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Halifax, NS, Canada, pp.
1067–1075, 2017.

[28]

 S. G. Wang, Y. L. Zhao, J. L. Xu, et al., “Edge server place-
ment in mobile edge computing,” Journal of Parallel and
Distributed Computing, vol. 127 pp. , pp. 160–168, 2019.

[29]

 S. Y. Liu, Y. H. Liu, L. M. Ni, et al., “Towards mobility-
based clustering,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data

[30]

 908 Chinese Journal of Electronics, vol. 33, no. 4

Mining, Washington, DC, USA, pp. 919–928, 2010.
 S. Q. Shen, V. V. Beek, and A. Iosup, “Statistical characteri-
zation of business-critical workloads hosted in cloud datacen-
ters,” in Proceedings of the 2015 15th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing,
Shenzhen, China, pp. 465–474, 2015.

[31]

 A. Javed, J. Robert, K. Heljanko, et al., “IoTEF: A federat-
ed edge-cloud architecture for fault-tolerant IoT
applications,” Journal of Grid Computing, vol. 18, no. 1, pp.
57–80, 2020.

[32]

 Y. Feng, Z. J. Liu, J. L. Chen, et al., “Make the rocket intel-
ligent at IoT edge: Stepwise GAN for anomaly detection of
LRE with multisource fusion,” IEEE Internet of Things
Journal, vol. 9, no. 4, pp. 3135–3149, 2022.

[33]

 S. Tuli, G. Casale, and N. R. Jennings, “DRAGON: Decen-
tralized fault tolerance in edge federations,” IEEE Transac-
tions on Network and Service Management, vol. 20, no. 1,
pp. 276–291, 2023.

[34]

 D. Li, D. C. Chen, B. H. Jin, et al., “MAD-GAN: Multivari-
ate anomaly detection for time series data with generative
adversarial networks,” in Proceedings of the 28th Interna-
tional Conference on Artificial Neural Networks, Munich,
Germany, pp. 703–716, 2019.

[35]

 L. Hou, Z. H. Yuan, L. Huang, et al., “Slimmable generative
adversarial networks,” in Proceedings of the 35th AAAI
Conference on Artificial Intelligence, Virtual Event, pp.
7746–7753, 2021.

[36]

 J. Audibert, P. Michiardi, F. Guyard, et al., “USAD: UnSu-
pervised anomaly detection on multivariate time series,” in
Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, New York,
NY, USA, pp. 3395–3404, 2020.

[37]

 Y. X. Zhang, Y. Q. Chen, J. D. Wang, et al., “Unsupervised
deep anomaly detection for multi-sensor time-series signals,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 35, no. 2, pp. 2118–2132, 2023.

[38]

 Z. W. Ji, J. H. Gong, and J. R. Feng, “A novel deep learn-
ing approach for anomaly detection of time series data,” Sci-
entific Programming, vol. 2021, article no. 6636270, 2021.

[39]

 Y. Chen, J. Zhao, Y. Wu, et al., “QoE-aware decentralized
task offloading and resource allocation for end-edge-cloud sys-
tems: A game-theoretical approach,” IEEE Transactions on
Mobile Computing, vol. 23, no. 1, pp. 769–784, 2024.

[40]

Tingyan LONG received the M.S. degree with
the School of Computer Science & Techno-
logy, Guizhou University, Guiyang, China, in
2019, and the Ph.D. degree from the College
of Computer Science, Chongqing University,
Chongqing, China, in 2023. Currently, she
works at the School of Computer Science and
Technology, Guizhou University, Guiyang,
China. Her research interests include fault-

tolerant, edge computing, and reinforcement learning method.
(Email: l5469369@hotmail.com)

Peng CHEN received the B.E. degree in com-
puter science and technology from University of
Electronic Science and Technology of China,
Chengdu, China, in 2001, the M.S. degree in
computer software and theory from Peking
University, Beijing, China, in 2004, and the
Ph.D. degree in computer science and techno-
logy from Sichuan University, Chengdu, China,
in 2017. He is currently a Professor with the

School of Computer and Software Engineering, Xihua Univer-
sity, Chengdu, China. His research interests include machine

learning, service computing, and time series analysis.
(Email: chenpeng@mail.xhu.edu.cn)

Yunni XIA received the B.S. degree in com-
puter science from Chongqing University,
Chongqing, China, in 2003, and the Ph.D. de-
gree in computer science from Peking Univer-
sity, Beijing, China, in 2008. He is currently a
Professor with the College of Computer Sci-
ence, Chongqing University, Chongqing, China.
He is the author or co-author of more than 100
research publications. His research interests

are in Petri nets, software quality, performance evaluation, and
edge computing and cloud computing system dependability.
(Email: xiayunni@hotmail.com)

Yong MA received the M.S. degree in com-
puter science from Xidian University, Xi’an,
China, in 2003, and Ph.D. degree in computer
science from Wuhan University, Wuhan, China,
in 2006. In 2018, he worked on the integrated
control and dispatching of energy in microgrid
with Malardalens University, Sweden. He is
now a Professor with the School of Computer
and Information Engineering, Jiangxi Normal

University, Nanchang, China. His current research focuses on
cloud computing, edge computing, and data science.
(Email: mywuda@126.com)

Xiaoning SUN received the B.S. degree in
computer science and the Ph.D. degree in soft-
ware engineering from in 2015 and 2022, re-
spectively, both from Chongqing University,
Chongqing, China. Since July 2022, she has
been a Lecturer with the School of Computer
and Information Science, Chongqing Normal
University, Chongqing, China. Her research
interests include service computing, perform-

ance evaluation, and edge computing.
(Email: sxiaoning@hotmail.com)

Jiale ZHAO received the B.E. degree in in-
formation security from Huaibei Normal Uni-
versity, Huaibei, China, in 2017, and the M.S.
degree in computer technology from Jiangxi
Normal University, Nanchang, China, in 2021.
He is currently pursuing the Ph.D. degree in
computer science and technology with
Chongqing University, Chongqing, China. His
research interests include fault-tolerance, edge

computing, and cloud computing.
(Email: zhaojiale0415@163.com)

Yifei LYU is currently pursuing the M.S. de-
gree with the College of Computer Science,
Chongqing University, Chongqing, China. His
research interests include the areas of cloud
computing, edge computing, and reinforcement
learning method.
(Email: yuzhe1334021@163.com)

A Deep Deterministic Policy Gradient-Based Method for Enforcing Service Fault-Tolerance in MEC 909

